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Abstract

The possibility of physically relevant singular solutions of the nonlinear Schrödinger equation with sustained
dissipation into the singularity is considered through numerical study of a nonlinear dissipative regularisation and its
small dissipation limit. A new form of such dissipative solutions is conjectured for certain parameter ranges where
this behaviour was previously not expected, including the two-dimensional case of laser self-focusing, involving a
multi-focusing mechanism. The space and time structure of such solutions for very small values of the nonlinear
dissipation parameter is studied numerically and compared to a conjectured mechanism related to a new family of
stationary singular solutions of the NLSE. © 2001 Elsevier Science B.V. All rights reserved.
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1. Background

The nonlinear Schrödinger equation (NLSE)

∂ψ

∂t
(t, x) = i1ψ(t, x)+ i|ψ(t, x)|2σψ(t, x), t ≥ 0, x ∈ RD (1)

is a generic model for the slowly varying envelope of a wave-train in conservative, dispersive, mildly
nonlinear wave phenomena. Physical applications include the collapse of various wave-modes in plasmas
whereD = 3 as well as laser self-focusing whereD = 2.

This wave collapse (or self-focusing) is manifested in solutions of the NLSE by the development of
large gradients in small regions and in some cases, singularities in finite time.

All the main physical examples have the cubic nonlinearity so most references will be to the cubic
Schrödinger equation (CSE)
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∂ψ

∂t
(t, x) = i1ψ(t, x)+ i|ψ(t, x)|2ψ(t, x) (2)

with generalisations to otherσ given in square brackets (e.g. [·]).

2. Singular solutions and dissipative regularisation

ForD ≥ 2 [σD ≥ 2], it is possible for solutions to develop singularities at some finite timet0 as shown
by Vlasov, Petritshev and Talanov [1] and Glassey [2].

The few known explicit singular solutions and numerical solutions strongly suggest that generically,
this takes the form of a single point focusing singularity.

Physically, such singularities will be prevented by the regularising effect of mechanisms ignored in
the above equation, and one important case is nonlinear dissipation through multi-photon absorption
modelled with dissipation coefficient,βIµ, dependent on the intensityI = |ψ |2, withµ depending on the
number of photons involved in the interaction: this gives the dissipative nonlinear Schrödinger equation
(DNLSE)

∂ψ

∂t
= i1ψ + i|ψ |2σψ − β|ψ |2µψ. (3)

The typical physical case isµ = 3 but the details of the dissipation are not clear, and so one hopes
for results that are somewhat independent of the details of the dissipative term. Thus, for the most
part, the remaining discussion further specialises toσ = 1, µ = 3, with generalisations following in
brackets.

3. Collapse types

If dissipation arrests focusing and leads to defocusing, scaling arguments suggest that this will happen
when the focusing and dissipation terms are in balance which occurs forI ≈ 1/

√
β at which point the

time scale of the evolution is 1/I,≈ β1/2 and the approximate length scale is 1/
√
I ,≈ β1/4.

Thus, one expects dissipation to occur principally in a dissipative core wherer / β1/4 at a rate per unit
volume ofβI 4 ≈ 1/β suggesting that the total loss of power,N = ‖ψ‖2

2, will scale like

δN ≈ β(D−2)/4

This allows for a nonzero limiting dissipation only in the caseD = 2, consistent with arguments based
on solutions in the nondissipative case which suggest that a fixed quantum of power would be dissipated
in such an event: this scenario has been called strong collapse, while the expected absence of limiting
dissipation is called weak collapse.

However, if stationary singular solutions of the NLSE exist with dissipation into a point singularity,
it is possible that focusing solutions would persist near these rather than rapidly defocusing, giving in-
creased total dissipation at a rate O(β(D−4)/4): this collapse scenario has been called super-strong, or
distributed.
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4. Stationary singular solutions of the NLSE

Stationary solutions of (NLSE) singularity were found by Malkin [3] and Zakharov et al. [4] for
3< D ≤ 4 [1/σ + 2< D ≤ 2/σ + 2].

In the external caseD = 4 [D = 2/σ + 2, e.g. D = 3, σ = 2] there are exact explicit solutions

ψ(r) = B
exp

[
i log r

√
B2 − 1

]

r
(4)

wherer = ‖x‖, B > 1. Both the amplitude and phase are as for the larger behaviour of the self-similar
blow-up solutions of the CSE as described by LeMesurier et al. [5] forD > 2, making it feasible for
focusing solutions to get close to these singular ones. The parameterB is related to a power flux into the
singularity of

P
def= lim
r→0

|ψ |2rD−1 d

dr
argψ = B2

√
B2 − 1 (5)

Note that this is the one case where the scaling argument above suggests a total dissipation rate that does
not scale as a negative power ofβ, allowing the possibility that the limit asβ → 0 of the dissipation rate
of the DNLSE matches the rate of a singular solution of this kind.

For 3< D < 4 solutions are known only as asymptotic expansions, still with amplitude O(1/r) and the
possibility of a flux into the singularity, but forD = 3 the solution form changes to one with amplitude
O(1/(r log r)) (slightly slower than the decay rate of self-similar focusing solutions of the CSE) and has
zero dissipation rate.

For 2< D < 3 [2/σ < D < 1/σ + 2], existence of another class of dissipative singular solutions
was first observed in [6], based on existence results of Lions [7]. The construction starts with asymptotic
expansions for real-valued (and so nondissipative) solutions, of the form

ψ(r) = B

rα
(1 + b1r

δ + b2r
2δ + · · · ) (6)

with α = D − 2, δ = 2(3 −D) andB the sole free parameter: Lions proved, for integer dimensions at
least, the existence of singular solutions matching the first two terms of this form.

One can get then get expansions for solutionsψ = Aeiθ with arbitrary inward fluxP by combining a
real solution of

A′′ + D − 1

r
A′ + |A|2A− P 2

r2D−2A3
= 0

with the phase given byθ ′ = −Pr1−D/A2: the extra term in the equation affects only later terms in the
expansion, and any obstructions can be resolved with standard logarithmic corrections that do not affect the
leading order behaviour. The dissipation term adds power loss at the rateβ

∫
I 4rD−1 dr [β

∫
Iµ+1rD−1 dr].

The role of such solutions in describing solutions of the DNLSE can be expected to be confined to
a focusing shoulder region where the focusing nonlinearity is significant but the dissipative term is not
lying between the dissipative core and the outer region where intensity is too low to cause significant
focusing: 1� I � 1/

√
β and henceβ1/4 � r � 1.
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5. Numerical methods

To resolve solutions well on the extremely fine spatial scales that develop near the focus while respecting
boundary conditions, a modification of earlier “dilation rescaling” methods [5,8–10] is used here. For the
radially symmetric case, the spatial variabler ∈ [0, rmax] is related to a computational variableρ on a
fixed grid by

r = f (ρ, l(t)), ρ ∈ [0,1] (7)

so the transformed equation is

ψt = i1ψ + i|ψ |2σψ − |ψ |2µψ + ψrrllt . (8)

Note that all derivatives ofψ including those in the Laplacian are still with respect to the physical
co-ordinater, notρ.

The transformation function should be odd, increasing, achieve a desired scale lengthl near the focus
by havingfρ(ρ, l)|ρ=0 = l, and fix the outer boundary by havingf (1, l) = rmax. The form used here is

f (ρ, l) = l sinh(k(l)ρ) (9)

wherek(l) is determined by the conditionf (1, l) = rmax to fix the outer boundary. The length scalel(t)
is based on the functional

l∗(ψ(t, ·)) = C

∫ |ψ ||∇ψ |DrD−1 dr∫ |∇ψ |D+1rD−1 dr
. (10)

This functional is designed to be convergent for all relevant values ofD andσ in the presence of the
behaviour|ψ | ≈ r−1/σ that develops as the singularity is approached, and to be numerically stable (which
simpler measurements at the origin only are not).

To get stable, manageable implicit time stepping schemes, the evolution ofl(t) is decoupled from the
main evolution equation, determining its values through a time step before that step is started, using

dl

dt
= l∗n − l∗n−1

tn − tn−1
+ l∗n − ln

tn − tn−1
, on [tn, tn+1] (11)

wherel∗n = l∗(tn) etc.
The time discretisation is done by a partially implicit second order accurate PC method so as to avoid

solving nonlinear equations with implicit time differencing: the Laplacian term is handled by the implicit
trapezoid rule scheme and the other terms by the two stages of the modified Euler method.

5.1. Accuracy checks

The NLSE has several conserved quantities that can be used to check the accuracy of solutions, in
particular the powerN = ‖ψ‖2

2. In the dissipative case power is not conserved but has a simple evolution
equation: this can be integrated and the values checked against the actual power. Other functionals can
be treated similarly but it is best to keep to ones that do not involve spatial derivatives: thus theL2(σ+1)

norm is also checked, and data are discarded when either error exceeds an appropriate tolerance.
This has worked well in practice: the stage of a run where this test fails corresponds well to the start of

significant divergence of the solution from results of computations with more refined discretisations.
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Fig. 1.D = 4, h = 6, β = 10−10: maximum intensity, with marks on the axis at the times of the spatial profiles in the following
figures.

6. Numerical results and observations

In this sectionσ = 1 throughout, the numerical results presented are for initial dataψ0 = he−r2
, and

haveµ = 3. The last is justified by the observation in [6] and other unpublished computations that larger
µ values give qualitatively very similar results at “corresponding”β values, meaning ones that give the
same maximum amplitude (and hence similar space and time scales). Note also that power and other
spatial integrals are computed using the unnormalised volume measurerD−1 dr.

The caseD = 4 is a useful theoretical starting point as it has the most clear-cut behaviour, and is
already well studied in [4,6,11,12], with the numerical evidence supporting the scenario of “super-strong
collapse” through a quasi-stationary state described above. The basic pattern is shown by the amplitude
which is nearly constant at the focus (Fig. 1) and as a function of radiusr (Fig. 2, which uses intensity
I = |ψ |2), and by the dissipation rate which is almost steady, slowing only when the total power available
for dissipation is substantially diminished (Fig. 3).

Further, graphs of radial cross-sections at a succession of times all show a very slow and monoatomic
decay of the conjectured quasi-stationary state as power is lost, and as discussed shortly, the spatial
structure confirms that the form fits the conjecture based on the singular stationary solutions in the
focusing shoulder, modified in the dissipative core.

The main example used here hash = 6 and very smallβ = 10−10, for which the dissipative core is
expected to occur for intensityI ' 105; the figures show that this inequality holds forr / 0.01. TherD−1

weight in the distribution of volume means that there is also a significant proportion of the dissipation at
radii somewhat beyond the nominal boundary of the dissipative core, but still with most of it occurring
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Fig. 2.D = 4, h = 6, β = 10−10: spatial profiles of intensity |ψ |2.

Fig. 3.D = 4, h = 6,: power as function of time for (a)β = 10−6; (b)β = 10−8; (c)β = 10−10, showing dissipation rate nearly
independence of time andβ.



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

B.J. LeMesurier / Mathematics and Computers in Simulation 1912 (2001) 1–15 7

Fig. 4.D = 4, h = 6, β = 10−10: dissipation rate per unitr, concentrate inr < 0.02.

for r / 0.02 as shown by the “dissipation rate density”I 4rD−1 [Iµ+1rD−1] in Fig. 4 (for higher powers
of µ this “dissipation core boundary” would be even sharper). The focusing shoulder should then extend
from there untilr ≈ 1. The log–log graph of intensity (Fig. 5) shows a good fit to the conjecturedB2/r2

form over the range of 01≤ r ≤ 1 identified above as the focusing shoulder, and the phase also fits the
expected logr behaviour over the same interval (Fig. 6: note that all phase values are relative to the value
at the origin, and in fact it is the value at larger radii that is really more constant).

The second main point is that most of the dissipation occurs in and near the dissipative core while most
of the total power is outside this region (Fig. 7), so that the mechanism of sustained dissipation splits into
a combination of a focusing flux (see Eq. (5)) from the shoulder to the core and then dissipation within
the latter: this mimics the conjectured limiting case where the dissipation occurs only at the singularity
point itself.

The physically relevant casesD = 3 andD = 2: unfortunately the picture for 2≤ D ≤ 3 is more
complicated. Firstly as,β diminishes, the initial focus is sustained for a decreasing interval of time before
a defocusing occurs (Fig. 8); as one might expect since the dissipation rate is expected to exceed the
focusing flux for small enoughβ. Further the total dissipation before defocusing decreases asβ does,
apparently converging to zero (Fig. 9).

However, as these figures also show, the beam can refocus after collapse of the initial focus and as
shown in [6] and elsewhere, the time scale of refocusing also diminishes withβ, raising the question
of what the total dissipation is through multiple focii over a fixed interval of time [T, τ ], whereT is
the singularity time forβ = 0. In other words, does the limitβ → 0 for fixedτ > T still give a total
remaining power that decreases as a function ofτ , as the evidence strongly suggests forD = 4?
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Fig. 5.D = 4, h = 6, β = 10−10: log–log intensity curves, showing O(1/r2) form in the focusing shoulder.

Fig. 6.D = 4, h = 6, β = 10−10: log-linear relative phase curves, showing O(logr) form in the focusing shoulder.
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Fig. 7.D = 4, h = 6, β = 10−10: power distribution per unit radius, almost all outside dissipative core.

ForD = 3 the densities of dissipation rate power and are again largely separated (Figs. 10 and 11),
so one can still describe the process as an interaction between different phenomena in the core and
shoulder regions. The boundary of the dissipation core is at aboutr = 0.05. During the focus collapse,
waves develop in the intensity travelling out to the inner part of the shoulder (r ≈ 0.1), and these hold
considerably more power than the core (Figs. 11 and 12).

Also, the phase flattens out in the dissipation core (Fig. 13), as it must: the phase gradient is a factor
in the intensity flux density of Eq. (5). However, further out, in the inner part of the shoulder, the phase
difference from the origin hardly changes: the faster phase growth at the origin during focusing has slowed
or stopped but has not been significantly reversed, so this flattening pushes out the region of steep phase
gradient into the inner shoulder. This phase gradient is in the region where the intensity waves reach, and
is seen to drive them back to the core after a short time: this persistent phase gradient structure could
explain why refocusing occurs far faster than the initial focus formation, in which the phase gradient had
to develop from nothing.

For the laser propagation caseD = 2, with smallerβ = 10−10, the intensity looks similar but behaviour
of the phase from the collapse of the initial focus to the rapid formation of the next (Fig. 14) has a somewhat
different form, but with an even clearer indication of the preservation of the overall phase gradient across
the shoulder. Bear in mind that the values are computed relative to the origin: in reality the values in the
outer part are changing little except for a small oscillation propagating out, while the phase in the core
is retarded during defocusing but then rapidly rebuilt as the phase gradient in the shoulder produces an
inward flux and hence refocusing.
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Fig. 8. Multi-focusing forD = 3 and 2: intensity evolution for (a)β = 10−6; (b) β = 10−8; (c) β = 10−10.
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Fig. 9. Multi-focusing forD = 3 and 2: power evolution for the sameβ values as above.
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Fig. 10.D = 3, h = 8, β = 10−8: dissipation density spatial profiles.

Fig. 11.D = 3, h = 8, β = 10−8: power density spatial profiles.
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Fig. 12.D = 3, h = 8, β = 10−8: intensity spatial profiles.

Fig. 13.D = 3, h = 8, β = 10−8: relative phase spatial profiles.
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Fig. 14.D = 2, h = 8, β = 10−10: relative phase spatial profiles.

Another difference is that during focusing peaks, a substantial proportion if the power is in the dissi-
pative core pattern, but in the essentially nondissipative periods in between, the power is again almost
entirely in the region where dissipation never occurs. Thus, the oscillations between dissipative bursts
and nondissipative interludes can still be understood in terms of phase structures there produced mostly
by focusing not dissipative effects, with some significant but small contributions from waves sent out
from the dissipative core as focusing peaks collapse.

7. Conclusions

1. ForD = 4 (orD = 3 with quintic nonlinearity,σ = 2) a quasi-steady-state approximating station-
ary singular solutions of the NLSE matches dissipation in a small central core at a rate essentially
independent of the dissipation coefficientβ, suggesting a natural dissipative singular solution in the
limit β → 0. Asβ diminishes, the shrinking core in which dissipation is significant contains an ever
decreasing fraction of the total power, so that the mechanism divides cleanly into an inward flux in a
shoulder where focusing but not dissipation occurs, and dissipation only in the core; mimicking the
behaviour of the time independent singular dissipative solutions of the NLSE.

2. For the plasma physics caseD = 3 the exact stationary singular form is on the threshold between
different forms, the expected dissipation rate in the dissipative core goes to infinity asβ → 0, and the
quasi-stationary state collapses after a short time interval. However, as before, the power is mostly in
the nondissipative focusing shoulder and there, the logr phase structure developed during the initial
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nondissipative focusing period and present in the stationary singular solutions persists, at least as a
rapid drop-off of phase which supports the quick rebuilding of the phase gradient that in turn produces
the inward focusing flux. This has only been studied in detail for a couple of focusing events, but
evidence from longer time computations suggests that this multi-focusing can combine to produce
total dissipation roughly independent ofβ and with overall time scale also essentially independent, so
that a well-defined dissipative limit asβ → 0 is still plausible.

3. For the laser self-focusing caseD = 2 there is no exact stationary singular form and the expected
asymptotic form of singular solutions of the NLSE has no phase gradient. However, in the approach
to singularity, those solutions are predicted [13] to have phase proportional to logr with a very slowly
decreasing coefficient. In the DNLSE, this phase structure is seen clearly at the onset of dissipation, and
is then preserved in the focusing shoulder. Thus, despite many theoretical and qualitative differences
from the supercritical caseD > 2, this phase structure can drive repeated rapid refocusing, and long
time calculations suggest that again, the result in the limit of smallβ approximates a roughly steady
dissipation rate, little dependent onβ.
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