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Chapter 1

Parametric Equations and Polar Coordinates

Revised on March 18.

References.
• Chapter 1, Sections 1–4 of OpenStax Calculus Volume 3.1

• Chapter 10 of Calculus, Early Transcendentals by Stewart.
• The Desmos online graphing calculator.2

Introduction. Chapter 1 of OpenStax Calculus Volume 3 simply reproduces Chapter 1 of OpenStax Calculus
Volume 23, and so the corresponding class notes are also reproduced here for convenient review when we see
similar topics in Section 3.3, p. 31 and Section 5.5, p. 83 (and to keep the chapter numbering in sync.)

1.1 Parametric Equations
References.

• OpenStax Calculus Volume 3, Section 1.11.
• Calculus, Early Transcendentals by Stewart, Section 10.1.

Introduction. Many interesting curves in the plane cannot be described as the graph of a function y = f(x);
the circle x2 + y2 = 1 is a very familiar example.
Relatedly, many curves describe the position of a moving object as a function of time; an object moving
around the above circle might have coordinates at time t given by x(t) = cos t, y(t) = sin t. This is an
example of a parametric description of a curve, with the new, “auxilliary” variable t called a parameter.
Note that this parametric form can convey more information that the equation x2 + y2 = 1 for the curve,
because of the information about time and place—this is important for example for computing the velocity
of a moving object.

Parametric Equations and Their Graphs. Let us introduce the main new concepts in this chapter:
1openstax.org/books/calculus-volume-3/pages/1-introduction
2www.desmos.com/calculator
3openstax.org/books/calculus-volume-2/pages/7-introduction
1openstax.org/books/calculus-volume-3/pages/1-1-parametric-equations
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https://openstax.org/books/calculus-volume-2/pages/7-introduction
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Definition 1.1.1 For two functions F and G defined on a common interval I, the pair of equations

x = x(t) = F (t), y = y(t) = G(t) (1.1.1)

are the parametric equations of a curve.
The set of all points x(t), y(t) for all t ∈ I is called the graph of these equations; also known as a parametric
curve or plane curve, and typically denoted C.
If the domain is a closed interval I = [a, b] then the curve has initial point (F (a), G(a)) and terminal point
(F (b), G(b)); these are are collectively called the endpoints of the curve.
Note however that that the interval could be open or semi-open and so lack one or both endpoints: it can
even be infinite, like (−∞,∞) or [0,∞). ♦

The parameter t often has the physical meaning of time, and will informally be referred to as “time” here.
Example 1.1.2 Circles. For any constant R > 0 and any point (c, d) in the plane

x = c+R cos t, y = d+R sin t, 0 ≤ t ≤ 2π

describes a circle of radius R, center (c, d). "
Exercise 1.1.3 Graphing this circle with Desmos. Graph the above parametric curve for the case of radius
R = 1, center (2, 3), using the Desmos online graphing calculator2: input the parametric equations as
(2 + cos(t), 3 + sin(t))
and then edit the limits of the t values (the value π can be entered by typing “pi”).
Practice using the mouse/trackpad/finger to move around the graph and to zoom in and out.

Note that in this case, the initial and terminal points are the same; the right-most extremity, (c+R, d):
Definition 1.1.4 A closed curve is one whose initial and final points are the same. ♦
Example 1.1.5 A spiral. The curve

x = t cos t, y = t sin t, 0 ≤ t <∞

describes one kind of spiral; at time t, the point is at distance t from the origin and as the parameter increases,
the position rotates around the origin infinitely often. Its initial point is the origin, but it has no terminal
point. "
Exercise 1.1.6 Graph this spiral with Desmos. One catch is that Desmos3 cannot handle an infinite interval
of t values, and anyway the whole spiral is infinitely large; thus, experiment with graphing a couple of turns;
say 0 ≤ t ≤ 4π.
Example 1.1.7 An exponential spiral. The curves

x = eat cos t, y = eat sin t, −∞ < t <∞

describe another kind spiral; this time the point is at distance eat from the origin at time t.
This has no initial or terminal point; however it makes sense to say that (for a > 0)

lim
t→−∞

(x(t), y(t)) = (0, 0)

so informally, it starts at the origin. "
Exercise 1.1.8 Visualizing exponential spirals. The above exponential spiral grows rather fast so to visualize,
it is best to keep the parameter a small. Thus, start by look at a case like x = e(t/4) cos t, y = e(t/4) sin t;
Desmos4 input can be done as (exp(t/4) cos(t), exp(t/4) sin(t))
(You can also experiment with inputing exponents, to get the notation et/4.)
Again the infinite interval has to be reduced; start with one turn on either side t = 0 with −2π ≤ t ≤ 2π.

2www.desmos.com/calculator
3www.desmos.com/calculator

https://www.desmos.com/calculator
https://www.desmos.com/calculator
https://www.desmos.com/calculator


CHAPTER 1. PARAMETRIC EQUATIONS AND POLAR COORDINATES 3

Then larger t intervals can be visualized with the help of zooming in and out.
As a further experiment with Desmos, include the parameter k with the form
(exp(k t) cos(t), exp(k t) sin(t)),
and see how Desmos allows setting up sliders for parameters.

Eliminating the Parameter. Sometimes the parameter can be eliminated, getting back to an equation of the
form y = F (x) or x = G(y), or just a more general equation form F (x, y) = 0 like the equation for a circle.
However, we will soon see that this is not always possible, and even when it is, some useful information can
be lost.
Example 1.1.9 Circles again. Consider the parametric equations

x = cos t, y = sin t, 0 ≤ t ≤ 3π/2

with initial point (1, 0) and terminal point (0,−1). We can use a very familiar trig. identity to get

x2 + y2 = 1,

which looks like the equation of a circle.
However, three things are lost here:

1. Information about where the point is at a give time t,
2. the fact that this only covers three-quarters of the circle, due to the limits on the parameter values,

and
3. the “function” form that will allow us to do calculus with curves in the next section, like computing

their slopes.
Also, we needed a bit of luck here, with the trig. identity; this strategy often fails, as seen with the example
of cycloids below. "
Example 1.1.10 Part of a parabola. For the parametric curve

x = cos2(t) + 2, y = cos t, 0 ≤ t ≤ 2π

we can to some extent do better than above, getting a function describing this curve: substituting the second
equation into the first gives

x = y2 + 2

This equation describes a side-ways parabola, but it hides two facts:
1. The y values are only in the interval −1 ≤ y ≤ 1
2. The curve both starts and ends at the point (1, 3), in between traveling to (−1, 3) and then back-

tracking.
"

Exercise 1.1.11 Graph this parametric curve x = cos2(t) + 2, y = cos t. Note that “cos2 t” can be typed into
Desmos5 as either “cos^2(t)” or “cos(t)^2”.

Cycloids and Other Parametric Curves. A very useful example of a parametric curve are the cycloids

x = a(t− sin t), y = a(1− cos t) (1.1.2)

because this cannot be written as the graph of a function in any useful way, and yet we can answer all kinds
of questions about it, like computing the slope at a point on it, the length along the curve between points
on this curve, and related areas under the curve.
The origin of this curve is that it describes the trajectory of a point on a wheel of radius a as that wheel
rolls along, starting on the ground at point (0, 0) at time t = 0.

4www.desmos.com/calculator
5www.desmos.com/calculator

https://www.desmos.com/calculator
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Note that no domain for t is specified above; this curve can be consider as defined for all time. However it
is also use to resrict to a single rotation

x = a(t− sin t), y = a(1− cos t), 0 ≤ t ≤ 2π (1.1.3)

which goes from initial point (0, 0) to terminal point (2πa, 0) with y > 0 in between, looking like an “arch”;
for times before and after that, the curve “repeats” with copies of that arch shifted left and righ by multiples
of 2πa.
Exercise 1.1.12 Graph two arches of a cycloid. Set the scale as a = 1, so the Desmos6 input can be (t-sin(t),
1-cos(t)); use interval 0 ≤ t ≤ 4π.
Note the special behavior at the points where y = 0, and zoom in on the point (2π, 0) given by t = 2π.
If you wish to explore further the capablities of Desmos, use the full form
(a(t-sin(t)), a(1-cos(t))) with parameter a,
and see how it allows setting up a slider for it.
Exercise 1.1.13 Another Desmos experiment: Prolate and Curtoid Cycloids. If you instead look at a point
on the edge of the overhanging flange of a train wheel, so that the flange has radius b > a, one gets a prolate
cycloid

x = at− b sin t, y = a− b cos t (1.1.4)
If instead b < a, this describes the motion of a point on the wheel that is closer to the center, and is called
a curtate cycloid.
Look at these with Desmos7, using input (a t - b sin(t), a - b cos(t)) and setup sliders for both parameters.
Note the special behavior at the points where t = 0, 2π, etc.

Study Guide. Study Calculus Volume 3, Section 1.18; in particular
• The Definition of parametric curves and parameters
• everything about Cycloids
• Examples 1 and 2
• Checkpoints 1 and 2
• and one or several exercises from each of the groups: 1–4, 6–9, 51–53. Of these, 6–9 should be done

with Desmos9 or similar software.

1.2 Calculus of Parametric Curves
References.

• OpenStax Calculus Volume 3, Section 1.21.
• Calculus, Early Transcendentals by Stewart, Section 10.2.

Derivatives of Parametric Equations. Often we are interested in the slope of a parameteric curve (x, y) =
(F (t), G(t)), meaning intuitively m = dy/dx, but we do not have an explicit formula y = f(x). Fortunately,
rather than having to solve for f by eliminating th parameter t, the needed derivative and slope can be
computed by implicit differentiation: if y = G(t) = f(x) = f(F (t)) then

dy

dt
=

dG

dt
= f ′(F (t))F ′(t) = f ′(x)F ′(t) =

dy

dx

dx

dt
;

6www.desmos.com/calculator
7www.desmos.com/calculator
8openstax.org/books/calculus-volume-3/pages/1-1-parametric-equations
9www.desmos.com/calculator
1openstax.org/books/calculus-volume-2/pages/7-2-calculus-of-parametric-curves

https://www.desmos.com/calculator
https://www.desmos.com/calculator
https://openstax.org/books/calculus-volume-3/pages/1-1-parametric-equations
https://www.desmos.com/calculator
https://openstax.org/books/calculus-volume-2/pages/7-2-calculus-of-parametric-curves
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which is the familiar intuitive pattern of the Chain Rule. This can than be solved to get

dy

dx
=

dy/dt

dx/dt
, (1.2.1)

so long as the denominator dx/dt is non-zero.
Note that this will be a formulas in terms of t, not x!
Example 1.2.1 Slope of the spiral (x, y) = (t cos(t), t sin(t)).
First,

dx/dt = cos(t)− t sin(t) and dy/dt = sin(t) + t cos(t),
so the slope at the point given by any value of the parameter t is given by

dy

dx
=

sin(t) + t cos(t)
cos(t)− t sin(t)

"
Example 1.2.2 Slope of the cycloid (x, y) = (t− sin(t), 1− cos(t)).
dx/dt = 1 − cos(t) and dy/dt = sin(t), so the slope at the point given by any value of the parameter t is
given by

dy

dx
=

sin(t)
1− cos(t) ,

except where the denominator is zero; that happens when cos(t) = 1, which is for t an integer multiple of
2π; t = 2nπ, where also sin(t) = 0.
This is the points (x, y) = (2nπ, 0) where the cycloid “touches down”, and where the graphs done in Sec-
tion 1.1, p. 1 suggested that something strange was happening. "

Second-Order Derivatives. Once one has a formula for the first derivative dy/dx (albeit in terms of t),
computing second and higher derivatives is relatively strightforward; no furhter implicit differentition is
needed. First,

d2y

dx2
=

d

dx

[
dy

dx

]

Next, use the above Equation (1.2.1) with y replaced by dy/dx:

d2y

dx2
=

d(dy/dx)/dt

dx/dt

Since the method above gives dy/dx as a function of t, we can evaluate the two derivatives here.

Exercise 1.2.3 The concavity of the cycloid. Compute the second derivative d2y

dx2
of the above cycloid.

Graphs suggest that this curve is always concave down, so check that.

Integrals Involving Parametric Equations: Area Under a Curve. If a curve y = f(x), a ≤ x ≤ b also has a
parametric form x = F (t), y = G(t), α ≤ t ≤ β, with f an increasing function and y = g(t) ≥ 0, then it lies
over a region a ≤ x ≤ b with x(α) = a, x(β) = b, and it makes sense to talk of the area between this curve
and the x-axis.
If we could eliminate the parameter and describe the curve as y = F (x), this area would be A =

∫ b
a F (x) dx,

but in fact, we do not need to get an explicit formulas for F (x)! Instead, use the (inverse) substitution
x = f(t) to get

A =

∫ b

x=a
y dx =

∫ b

x=a
f(x) dx =

∫ β

t=α
f(x(t))

dx

dt
dt =

∫ β

t=α
f(x(t))F ′(t)dt =

∫ β

t=α
y
dx

dt
dt. (1.2.2)



CHAPTER 1. PARAMETRIC EQUATIONS AND POLAR COORDINATES 6

where we use the fact that y = F (x(t)) and also y = g(t).
That is, we get the intuitive change of variables

A =

∫ b

x=a
y dx =

∫ β

t=α
y
dx

dt
dt. (1.2.3)

As always, note how the limits of integration change when the dummy variable is changed by substitution!
Exercise 1.2.4 Compute the area under one arch of the cycloid (x, y) = (a(t− sin(t)), a(1− cos(t)))

Arc Length of a Parametric Curve. The formula for the arc length of a curve y = f(x) can be converted to
parametric form when x = F (t), as was done for areas:

L =

∫ b

x=a

√

1 +

(
dy

dx

)2

dx

=

∫ β

t=α

√

1 +

(
dy

dx

)2 dx

dt
dt

=

∫ β

t=α

√(
dx

dt

)2

+

(
dy

dx

dx

dt

)2

dt

=

∫ β

t=α

√(
dx

dt

)2

+

(
dy

dt

)2

dt (1.2.4)

A good intuitive way to see this is that each “infinitesimally” small piece of the curve has length

ds =
√
(dx)2 + (dy)2 =

√(
dx

dt

)2

+

(
dy

dt

)2

dt (1.2.5)

sometimes called the arc length differential; the arc length is then the “sum” or integral of these infinitesimal
lengths: L =

∫
ds.

This idea can be used to show that in fact for any parametric curve with f ′(t) and g′(t) continuous for
α ≤ t ≤ β, the arc length is, as above,

L =

∫
ds =

∫ β

t=α

√(
dx

dt

)2

+

(
dy

dt

)2

dt (1.2.6)

The curve does not have to be in the form of the graph of a function, and in particular, x need not be an
increasing function of the parameter.
Exercise 1.2.5 Compute the circumference of a circle or radius R, parameterized as (x, y) = (R cos(t), R sin(t))
Exercise 1.2.6 Compute the length of one arch of the cycloid (x, y) = (a(t− sin(t)), a(1− cos(t)))

Surface Area Generated by a Parametric Curve (Omitted). This topic is not covered in this course, but I
include this brief introduction; it is discussed further in Section 7.2 of the OpenStax Calculus text.2

The area of the surface produced by rotating a parametric curve about the x-axis can be computed, and the
most intuitive way to see the result is to work with a surface area differential dS, much as the arc length
differential ds was used above.

2openstax.org/books/calculus-volume-2/pages/7-2-calculus-of-parametric-curves

https://openstax.org/books/calculus-volume-2/pages/7-2-calculus-of-parametric-curves
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When an infinitesimal part of the parametric curve x = F (t), y = G(t) of arc length ds is rotated about the
x-axis, it produces an angled strip of width ds, radius y, circumference 2πy, and thus with infinitesimal area
given by the surface area differential dS = 2πy ds.
Thus, with appropriate limits of integration, the surface area is

S =

∫
dS =

∫
2πy ds =

∫ b

t=α
2πy

√(
dx

dt

)2

+

(
dy

dt

)2

dt (1.2.7)

Exercise 1.2.7 Compute the area of the “football shaped” surface produced by rotating one arch of the cycloid
(x, y) = (a(t− sin(t)), a(1− cos(t))) about the x-axis.

Study Guide. Study Calculus Volume 3, Section 1.23; in particular
• Theorems 1 2, 3
• Examples 4, 5, 6, 7, 8
• Checkpoints 4, 5, 6, 7, 8
• and one or several exercises from each of the following groupls: 62–65, 66–70, 71–74, 75–77, 88–90,

104–107 (areas under curves), 108–112 (arclengths: no need to evaluate for 112, just setup the integral).
Note that we omit the final topic of Surface Area Generated by a Parametric Curve

1.3 Polar Coordinates
Revised on March 17.

References.
• OpenStax Calculus Volume 3, Section 1.31.
• Calculus, Early Transcendentals by Stewart, Section 10.3.

Defining Polar Coordinates. Polar coordinates describe the location of a point P in the plane in terms of
• the polar distance r from a reference point O, the pole, and
• the polar angle θ, describing the direction of motion from O to P relative to a direction considered

horizontal.
In comparison to standard cartesian coordinates (x, y) for P , using the pole as the origin and with the
positive x-axis as the horizontal direction, the polar distance is easily described:

r = |OP | =
√

x2 + y2. (1.3.1)

The angle is measured from the positive x-axis to the ray −−→OP , going in the direction towards the positive
y-axis (so “anti-clockwise”).
It is not so simple to give a formula for it in terms of x and y, so it helps to go the other way first:

Cartesian Coordinate Values from Polar Coordinate Values. The point P with cartesian coordinates (x, y)
lines an the circle of radius r, center (0, 0), so the angle θ determines its coordinates to be

x = r cos θ, y = r sin θ. (1.3.2)
3openstax.org/books/calculus-volume-3/pages/1-2-calculus-of-parametric-curves
1openstax.org/books/calculus-volume-2/pages/7-3-polar-coordinates

https://openstax.org/books/calculus-volume-3/pages/1-2-calculus-of-parametric-curves
https://openstax.org/books/calculus-volume-2/pages/7-3-polar-coordinates
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Polar Coordinate Values from Cartesian Coordinate Values. Getting r from x and y was easy. To get θ,
first divide, getting tan θ = y

x
, if x ̸= 0

There are two problems: the case x = 0 and the multiple angles with the same tangent.
We can of course restrict the allowed θ values to “one rotation”; two favorite choices are

• −π < θ ≤ π to keep the size of θ small (with a bias to positive values) and
• 0 ≤ θ < 2π to keep θ positive and still as small as possible.

However that still leaves two possible values for θ, differing by π, and using θ = arctan(y/x) does not always
give the correct value: it always gives an angle −π/2 < θ < π/2 and so a point in the right half-plane.

Polar Coordinate Values from Cartesian Coordinate Values: A Solution. Often we prefer the smallest
magnitude for θ, and use the value in (−π,π]. (Excluding θ = −π as it would be redundant.) Here is one
way to do that:

θ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

arctan(y/x) if x > 0, so − π/2 < θ < π/2
arctan(y/x)− π if x < 0 and y < 0, so − π < θ < −π/2
arctan(y/x) + π if x < 0 and y ≥ 0, so π/2 < θ ≤ π

π/2 if x = 0 and y > 0
−π/2 if x = 0 and y < 0

(1.3.3)

This still omits the case of the pole, where x = y = 0 (so r = 0): there the polar angle is ill-defined, but
the good news is that any value of θ is acceptable, in that the equations (1.3.2) give the correct cartesian
coordinates.

Simpler Equations for Getting from Cartesian to Polar Coordinates. Often we can avoid these complications
by working with the following simpler equations whenever possible:

r2 = x2 + y2, tan θ = y

x
when x ̸= 0, (1.3.4)

with special handling of points with x = 0: these are on the y-axis, so we can use
• θ = π/2 if y > 0

• θ = −π/2 or 3π/2 if y < 0

• any θ value we want if also y = 0, so we are at the origin where the polar angle makes no sense.
Also, since both these equations (1.3.4) and Equations (1.3.2) giving cartesian coordinates in terms of polar
coordinates make sense for all real values of r and θ, we sometimes do not restrict to r ≥ 0, −π < θ ≤ π.
This more flexible approach will help below to produce elegant descriptions of some interesting Polar Curves.

Polar Curves. Many curves have rotational features that make them easiest to describe in terms of polar
coordinates, with equations in terms of r and θ, like

r = f(θ).

Note well: we will graph them as curves in the cartesian plane, with axes x and y!
The cartesian coordinates are given with the help of the equations (1.3.2) as

x = f(θ) cos θ, y = f(θ) sin θ (1.3.5)

so that they are a type of parametric curve, with polar angle θ as the parameter.
The most basic example is the equation r = C, for C a positive constant. This is a circle of radius C. Since
the equation says nothing about the angle θ, it can take any value, and with the standard range of values
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(−π,π], the angle θ becomes a convenient parameter giving a parametric description of the curve by inserting
r = C into the Equations (1.3.2):

x = C cos θ, y = C sin θ.
Another example is r = eθ, which is the exponential spiral

x = eθ cos θ, y = eθ sin θ.

Example 1.3.1 The Graph of the Polar Equation θ = c, c a constant. The simple equation θ = c requires a
little more care to graph, and r must be used as the parameter instead of θ.
Equation (1.3.4) gives tan θ = tan c = y/x, so y = (tan c)x. This looks like the equation of a straight line
through the origin, and even the cases where tan c does not exist make sense: they give the vertical line
x = 0.
However, if we restrict to r ≥ 0, the curve is actually only part of this line: it is the ray starting at the origin
and going in the direction specified by the angle c.
The moral is that, as always with graphs and functions, we must specify the domain: do we want to allow
all r (and get a line), or r ≥ 0 (and get a ray)? For example, with r ≥ 0,

• θ = π/2 is the positive y-axis,
• θ = −π/2 is the negative y-axis.

"

Tangents to Polar Curves. Since any polar curve given by an equation r = f(θ) is a parametric curve as in
Equation (1.3.5), there is nothing really new here, but it is worth noting the formulas for the tangent slope
dy/dx:

dy

dx
=

dy/dθ

dx/dθ
=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ

Evaluation of this is a good case of the strategy I have been using recently, of evaluating key pieces and
then gathering them is stages: the term dr/dθ should be evaluated and simplified before inserting, to avoid
duplicated effort.

Symmetry in Polar Coordinates. (Omitted)

Study Guide. Study Calculus Volume 3, Section 1.32

The main content relevant for us is up to Example 13 and Checkpoint 13 (we skip the topic of symmetry,
but I suggest reading it).
Do one or several exercises from each of the ranges 136–141, 142–148, 154–157, and 158–160.

1.4 Area and Arc Length in Polar Coordinates
References.

• OpenStax Calculus Volume 3, Section 1.41.
• Calculus, Early Transcendentals by Stewart, Section 10.4.

Areas of Regions Bounded by Polar Curves. A polar curve r = f(θ) typically encloses a region inside the
curve, r < f(θ) rather than below it. That is, we are often interested in the region between the curve and
the pole (origin), rather than between the curve and a horizontal axis.

2openstax.org/books/calculus-volume-3/pages/1-3-polar-coordinates
1openstax.org/books/calculus-volume-3/pages/1-4-area-and-arc-length-in-polar-coordinates

https://openstax.org/books/calculus-volume-3/pages/1-3-polar-coordinates
https://openstax.org/books/calculus-volume-3/pages/1-4-area-and-arc-length-in-polar-coordinates
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Thus, the strategy for finding area as the integral of infinitesimal fragment or area differential dA will be
based on looking at the thin region that lies between the curve and the pole over a narrow range of polar
angle values dθ: a very thin sector of radius r = f(θ) and angular extent dθ

A circular sector of radius r covering angle θ has area 1
2r

2θ; thus this infinitesimal sector has area described
by the area differential

dA =
1

2
r2dθ =

1

2
[f(θ)]2dθ (1.4.1)

If you prefer using approximations with small finite pieces, the range of angles θi ≤ θ ≤ θi + ∆θ gives a
region that is approximately a sector, with area approximation

∆Ai ≈
1

2
[f(θ∗i )]

2∆θ for some angle θ∗i in [θi, θi +∆θ]

The transition from finite increments to infinitesimal ones turns this into the exact formulas seen above,

dA =
1

2
r2dθ =

1

2
[f(θ)]2dθ.

The familiar argument with limits and the FTC then shows that the area of the “sector” inside the curve
r = f(θ), a ≤ θ ≤ b is

A =

∫
dA =

1

2

∫ b

θ=a
r2dθ =

1

2

∫ b

θ=a
[f(θ)]2dθ. (1.4.2)

Arc Length in Polar Curves. The arc length of a polar curve r = f(θ), a ≤ θ ≤ b is given by simply using
the results for a parametric curve applied to

x = r cos θ, y = r sin θ.

The arc length differential for this polar curve,

ds =

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ,

simplifies nicely when combined with the formulas for the derivatives

dx

dθ
=

dr

dθ
cos θ + r sin θ

dr

dθ
=

dr

dθ
sin θ − r cos θ

to give

ds =

√

r2 +

(
dr

dθ

)2

dθ, (1.4.3)

and thus

L =

∫
ds =

∫ b

θ=a

√

r2 +

(
dr

dθ

)2

dθ. (1.4.4)

Study Guide. Study Calculus Volume 3, Section 1.42; in particular
• Theorems 6 and 7
• Examples 16 and 18

2openstax.org/books/calculus-volume-3/pages/1-4-area-and-arc-length-in-polar-coordinates

https://openstax.org/books/calculus-volume-3/pages/1-4-area-and-arc-length-in-polar-coordinates


CHAPTER 1. PARAMETRIC EQUATIONS AND POLAR COORDINATES 11

• Checkpoints 15 and 17
• and one or several exercises from each of the following groups: 188–194, 201–206, 214–217, 218–222.

Chapter Review. When reviewing this chapter, also look at the end of chapter review material in OpenStax
Calculus Volume 3, including Key Terms3, Key Equations4 and Key Concepts5.

3openstax.org/books/calculus-volume-3/pages/1-key-terms
4openstax.org/books/calculus-volume-3/pages/1-key-equations
5openstax.org/books/calculus-volume-3/pages/1-key-concepts

https://openstax.org/books/calculus-volume-3/pages/1-key-terms
https://openstax.org/books/calculus-volume-3/pages/1-key-equations
https://openstax.org/books/calculus-volume-3/pages/1-key-concepts


Chapter 2

Vectors in Space

References.
• Chapter 2 of OpenStax Calculus Volume 3.1

• Chapter 12 of Calculus, Early Transcendentals by Stewart.
• The Desmos online graphing calculator.2

2.1 Vectors in the Plane
References.

• OpenStax Calculus Volume 3, Section 2.11.
• Calculus, Early Transcendentals by Stewart, Section 12.2.

The earliest meaning of a vector relates to movement from one place to another (like a mosquito as a vector
for malaria), and this leads to the geometrical idea of a vector describing the displacement from one location
to another.
In this section we will consider the most basic case of vectors in the plane R2, where for example, points
P1(x1, y1) and P2(x2, y2) determine the two dimensional vector going from point P1 to point P2, denoted
−−−→
P1P2.
In algebraic terms, this is described by the changes in the values of each of the coordinates, so we denote
this −−−→P1P2 = ⟨x2 − x1, y2 − y1⟩. Note that only the change in position or displacement counts, so many
different pairs of points represent the same vector. Thus we often name a vector without reference to a pair
of endpoints, with an over-arrow like a⃗, or with boldface like a.

Using vectors as ”bundled coordinates”. Any vector a⃗ = ⟨x, y⟩ can be considered with the origin O(0, 0)

as its starting point so that it ends at P (x, y): a⃗ =
−−→
OP . Thus vectors give a convenient way to bundle

the values of all the coordinates of a point P into a single object, and we can sometimes think of vectors
as equivalent to points. But as we shall see, vectors have added features. Thus we call the set of all two
dimensional vectors V2, to distinguish from the set R2 of points in the plane.

See Example 1 in OSC3 Section 2.12.
1openstax.org/books/calculus-volume-3/pages/2-introduction
2www.desmos.com/calculator
1openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
2openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane

12

https://openstax.org/books/calculus-volume-3/pages/2-introduction
https://www.desmos.com/calculator
https://openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
https://openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
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The length or magnitude of a vector. Vectors share some but not all of the properties of real numbers
(which we now often call scalars to distinguish them from vectors) like length which resembles the absolute
value of a scalar; addition; and and a form of multiplication. The length or magnitude of a vector a⃗ = ⟨x, y⟩
is the distance between its endpoints, denoted |⃗a| or ∥a⃗∥ to mimic the absolute value or magnitude of a
scalar. Thus

∥a⃗∥ = ∥ ⟨x, y⟩ ∥ =
√

x2 + y2 (2.1.1)

Adding vectors. Since vectors describe displacements or movement from one point to another, one can
combine several vectors, by making one move and then the other. If a⃗ = ⟨a1, a2⟩ and b⃗ = ⟨b1, b2⟩, combining
these two displacements changes the first [x] coordinate by a1 + b1 and so on, so the combined displacement
is described by the new vector ⟨a1 + b1, a2 + b2⟩. This is called the sum of the vectors a⃗ and b⃗, and we write

a⃗+ b⃗ = ⟨a1, a2⟩+ ⟨b1, b2⟩ = ⟨a1 + b1, a2 + b2⟩ . (2.1.2)

Clearly this is commutative like addition of real numbers:

a⃗+ b⃗ = b⃗+ a⃗ (2.1.3)

Also, there is a natural zero vector 0⃗ = ⟨0, 0⟩ representing no change in position, with

a⃗+ 0⃗ = 0⃗ + a⃗ = a⃗. (2.1.4)
See Example 2.2(b) in OSC3 Section 2.13.

Scalar multiples of vectors. Repeated addition of copies of the same vector give natural number multiples
of a vector, like

2 ⟨a1, a2⟩ = ⟨a1, a2⟩+ ⟨a1, a2⟩ = ⟨2a1, 2a2⟩ .
This suggests the natural generalization to defining the scalar-by-vector product for any scalar (real number)
c:

ca⃗ = c ⟨a1, a2⟩ = ⟨ca1, ca2⟩ (2.1.5)
Geometrically, ca⃗ describes a displacement parallel to that described by a⃗ but of magnitude different by a
factor |c|, and in the opposite direction if c is negative. It is routine to check that this multiplication is
distributive in both factors and associative where it makes sense:

(c+ d)⃗a = ca⃗+ da⃗, c(⃗a+ b⃗) = ca⃗+ c⃗b, (cd)⃗a = c(da⃗). (2.1.6)

The magnitude of products. From the formula above for the length of a vector, it can be checked that the
magnitude of a scalar-vector product is the product of the magnitudes:

∥ca⃗∥ =
√
(ca1)2 + (ca2)2

=
√
c2(a21 + a22)

=
√
c2
√
a21 + a22

= |c|∥a⃗∥.

(2.1.7)

Vector subtraction and vector-scalar division. Subtraction as always is defined in terms of addition: a⃗− b⃗
must be the vector that satisfies (⃗a− b⃗) + b⃗ = a⃗, and this has to be

a⃗− b⃗ = ⟨a1, a2⟩ − ⟨b1, b2⟩ = ⟨a1 − b1, a2 − b2⟩ . (2.1.8)

Likewise division by a scalar can be defined in terms of multiplication:

a⃗/c =
1

c
a⃗. (2.1.9)

3openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane

https://openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
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See Example 2 in OSC3 Section 2.14.

Basic Vectors. Two dimensional coordinates were described in terms of getting to a point P with a succession
of two moves, parallel to each axis in turn. The displacement described by a vector can be broken up into
two such displacements, which can in turn be written as multiples of displacements by distance one:

a⃗ = ⟨a1, a2⟩ = ⟨a1, 0⟩+ ⟨0, a2⟩ = a1 ⟨1, 0⟩+ a2 ⟨0, 1⟩ .

Thus any vector can be written in terms of the two special vectors appearing in the last line: a⃗ = a1 ı̂+ a2ȷ̂
where

ı̂ = ı⃗ = ⟨1, 0⟩ ȷ̂ = ȷ⃗ = ⟨0, 1⟩ (2.1.10)
These are known as the standard basis vectors for the set V2 of vectors in the plane.

See Examples 4 and 5 in OSC3 Section 2.15.

Unit Vectors. Unit vectors are vectors of length one, like the standard basis vectors above. They are often
used to indicate a direction of motion, without indicating the magnitude of that motion. For example, the
above standard basis vectors indicate the directions ”east” and ”north”. For any non-zero vector a⃗, there is
a unique unit vector u⃗ with the same direction,

u⃗ =
1

∥a⃗∥ a⃗ =
a⃗

∥a⃗∥

Exercise 2.1.1 Find the unit vector in the direction of the vector ⟨3,−4⟩ ,= 3ı̂− 4ȷ̂.

See Examples 7 and 8 in OSC3 Section 2.16.

What is missing? Although we have seen how to do with vectors much of what can be done with real
numbers, a few things are missing: we have not defined

• a product of two vectors,
• a quotient of two vectors, or
• the inverse of a vector.

In subsequent sections we will see two versions of the product of vectors, but neither makes quotients or
inverses possible.

Study Guide. Study Section 2.1 of Calculus Volume 37; in particular:
• Theorem 2.1.
• Examples 2.1–2.8 and the Checkpoints folowing each.
• One or several exercises from each of the following ranges: 1–8, 11–14, 17–20.

2.2 Vectors in Three Dimensions
References.

• OpenStax Calculus Volume 3, Section 2.21.
• Calculus, Early Transcendentals by Stewart, Section 12.2.

4openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
5openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
6openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
7openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
1openstax.org/books/calculus-volume-3/pages/2-2-vectors-in-three-dimensions

https://openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
https://openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
https://openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
https://openstax.org/books/calculus-volume-3/pages/2-1-vectors-in-the-plane
https://openstax.org/books/calculus-volume-3/pages/2-2-vectors-in-three-dimensions
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Introduction. Much of what we have seen in Section 2.1, p. 12 about vectors in the plane R2 carries over
to three dimensional space, but first we need to look at coordinates, calculating distances, and equations in
three dimensions.

2.2.1 Three-Dimensional Coordinate Systems
To specify the location of a point in our three dimensional world, three numbers are needed. For example,
the position of an aircraft is specified by its latitude, longitude and altitude, which is to say by measuring
distances east or west, north or south and above or below some reference point.
In mathematical terms, we can think of starting with a reference plane (mimicing the surface of the earth
in a region small enough that the earth is close enough to flat), marking this plane with a reference point as
origin and a grid measuring how far east or west (let us call this number the x-coordinate: positive for points
east of the origin, negative for west) and how far north or south (let us call this number the y-coordinate:
positive for points north of the origin, negative for south) a point in to plane is from this origin.
In a room with rectangular floor and walls you can specify the location of any point P in the room with
three numbers; for example using one corner of the room as the reference point or origin.
First choose a corner as origin O, and name the three edges running from that corner as the x, y and z
axes. (A common choice is putting the origin in the bottom-south-west corner and then using x for the edge
running east, y for that running north, and z for that running upwards.) Thus the floor connects the x and
y axes (the x-y plane), one wall meeting the origin (”south”) connects the x and z axes (the x-z plane), and
the other wall meeting the origin (”west”) connects the y and z axes (the y-z plane).
The distance a horizontally west from the point to the ”west wall” or y-z plane, along a line parallel to the
x axis, is the x-coordinate; the values b and c of the y- and z-coordinates can be measured similarly.

How the coordinates determine the location of point P . How do these three coordinate values a, b and c
determine the point P , and why does the origin have that name? To get to P :

1. start originally at the origin O,
2. move along the x-axis (”east”) by a distance a,
3. then move parallel to the y axis (”north”) across the x-y plane by a distance b,
4. and finally move parallel to the z-axis (”up”) by a distance c.

Thus, a point in space can be described by a triple of numbers.

See Example 11 in OSC3 Section 2.22.

The point P with the above coordinate values is usually written (a, b, c), or to indicate the name too, P (a, b, c).
The set of all such triples is denoted as R× R× R or R3.
Exercise 2.2.1 What surfaces in the 3D space R3 are given by the following equations?

(a) z = 3
(b) y = 5
(c) x+ y = 1

(Note that it is important to specify that we are in R3, especially in (b).)

Exercise 2.2.2 R3y = x

Exercise 2.2.3 rC(h, k, l)

Exercise 2.2.4 Show that x2 + y2 + z2 + 4x− 6y + 2z + 6 = 0 is the equation of a sphere.
Which sphere?

2openstax.org/books/calculus-volume-3/pages/2-2-vectors-in-three-dimensions

https://openstax.org/books/calculus-volume-3/pages/2-2-vectors-in-three-dimensions
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Solid regions in space described by inequalities. Much as an inequality (or several) in the two variables x
and y describe a region within the x-y plane, inequalities in three variables describes solid regions in space.
A simple example is that x2 + y2 + z2 ≤ 1 describes the solid ball of radius 1, center the origin.

Example 2.2.5 Describe the region (in R3) given by the points whose coordinates satisfy the inequalities

1 ≤ x2 + y2 + z2 ≤ 4, z ≤ 0.

"

2.2.2 Vectors in R3

Much about vectors in R3 is very similar to what was seen in Section 2.1, p. 12, these notes will be brief, and
focus on the more significant differences.

A vector v⃗ =
−−→
PQ in three dimensions describes the dispacement between two points P (p1, p2, p3) and

Q(q1, q2, q3), so that v⃗ = ⟨v1, v2, v3⟩ = ⟨q1 − p1, q2 − p2, q3 − p3⟩, and is the same so long as the displacement
is the same; in particular, the above v⃗ is also −−→OV for O(0, 0, 0) the origin in R3 and V (v1, v2, v3).
The rules for multiplication by a scalar (number), addition, and thus subtraction are as expected; for any
v⃗ = ⟨v1, v2, v3⟩, w⃗ = ⟨w1, w2, w3⟩ and scalar k ∈ R,

kv⃗ = ⟨kv1, kv2, kv3⟩
v⃗ ± w⃗ = ⟨v1 ± w1, v2 ± w2, v3 ± w3⟩

and these follow all the expected rules about commutativity, associativity and distributivity of multiplication
over addition and subtraction, with the zero vector 0⃗ = ⟨0, 0, 0⟩.

Also, the length of a vector v⃗ =
−−→
PQ is the distance betwen the points P and Q, denoted either |PQ|, ∥v⃗∥ or

(lazily) |v⃗|:
∥v⃗∥ =

√
v21 + v22 + v23

See Example 12 in OSC3 Section 2.23.

With this, we can get a unit vector u⃗ in the same direction as a given non-zero vector:

∥u⃗∥ = 1

∥v⃗∥∥v⃗∥, also denoted û

because unit vectors are sometimes denoted with a ”hat” instead of an arrow.
In particular, there are 3D versions of the standard unit vectors seen for vectors in the plane:

ı⃗ = ı̂ = ⟨1, 0, 0⟩
ȷ⃗ = ȷ̂ = ⟨0, 1, 0⟩

k⃗ = k̂ = ⟨0, 0, 1⟩

. Summary: Properties of Vectors in SpaceLet v⃗ = ⟨v1, v2, v3⟩ and w⃗ = ⟨w1, w2, v3⟩ be vectors, and let k
be a scalar.

• Scalar multiplication: kv⃗ = ⟨kv1, kv2, kv3⟩

• Vector addition: v⃗ + w⃗ = ⟨v1 + w1, v2 + w2, v3 + w3⟩

• Vector subtraction: v⃗ − w⃗ = ⟨v1 − w1, v2 − w2, v3 − w3⟩

• Vector magnitude: ∥v∥ =
√
v21 + v22 + v23

• Unit vector in the direction of v⃗: v̂ = 1
∥v⃗∥ v⃗ =

〈
v1
∥v⃗∥ ,

v2
∥v⃗∥ ,

v3
∥v⃗∥

〉
, if v⃗ ̸= 0⃗.

3openstax.org/books/calculus-volume-3/pages/2-2-vectors-in-three-dimensions

https://openstax.org/books/calculus-volume-3/pages/2-2-vectors-in-three-dimensions
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See Example 19 in OSC3 Section 2.24.

Study Guide. Study Section 2.2 of Calculus Volume 35; in particular:
• Theorem 2.2.
• Examples 2.11–2.15, 2.18, 2.19 and (as usual) the Checkpoints following each.
• One or several exercises from each of the following ranges: 67–68, 71–74, 75–76, 77–80, 87–90, 91–94.

2.3 The Dot Product (a.k.a. Scalar Product)
Revised on March 14.

References.
• OpenStax Calculus Volume 3, Section 2.31.
• Calculus, Early Transcendentals by Stewart, Section 12.3.

Introduction. There are two useful notions of a product of two vectors; in this section we meet the first of
them:
Definition 2.3.1 The dot product of two vectors in R3 is

u⃗ · v⃗ = ⟨u1, u2, u3⟩ · ⟨v1, v2, v3⟩ = u1v1 + u2v2 + u3v3 (2.3.1)

with the obvious 2D version. This is also known as the scalar product (because the value is a scalar, not
another vector) or the inner product. ♦
See Example 21 in OSC3 Section 2.32.

Geometric Characterization. Much of the importance of the dot product comes from its geometric proper-
ties; in fact the formula can be derived by requiring that
If θ is the angle between the two vectors u⃗ and v⃗ then

u⃗ · v⃗ = ∥u⃗∥∥v⃗∥ cos θ. (2.3.2)

See Examples 23 to 25 in OSC3 Section 2.33.

along with some basic properties of a product:
• u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗: (Distributive property)
• (au⃗) · v⃗ = u⃗ · (av⃗) = a(u⃗ · v⃗) (Associative property)

(In fact, (2.3.2) could be used as an equivalent definition.)

The main step is working out what (2.3.2) implies for the basic vectors ı̂, ȷ̂ and k̂.
Firstly,

ı̂ · ı̂ = ȷ̂ · ȷ̂ = k̂ · k̂ = 1

because the angle is θ = 0 and the lengths are all 1.
4openstax.org/books/calculus-volume-3/pages/2-2-vectors-in-three-dimensions
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Next,
ı̂ · ȷ̂ = ȷ̂ · ı̂ = ı̂ · k̂ = k̂ · ı̂ = ȷ̂ · k̂ = k̂ · ı̂ = 0

because now all the angles are π/2 so with zero cosine. Note that commutativity is not assumed (and will fail
for the cross product introduced in the next section); it is instead verified as a consequence of the definition.
Finally

u⃗ · v⃗ = (u1 ı̂+ u2ȷ̂+ u3k̂) · (v1 ı̂+ v2ȷ̂+ v3k̂)

= (u1 ı̂) · (v1 ı̂) + (u2ȷ̂) · (v2ȷ̂) + (u3k̂) · (v3k̂) + (u1 ı̂) · (v2ȷ̂) + · · ·
= u1v1 ı̂ · ı̂+ u2v2ȷ̂ · ȷ̂+ u3v3k̂ · k̂ + u1v2 ı̂ · ȷ̂+ · · ·
= u1v1 + u2v2 + u3v3

as all the remaining terms involve zero dot products.

Properties. From the formula in definition Definition 2.3.1, p. 17 on can derive some familiar properties
(including the one assumed to show the connection with the geometric formula (2.3.2)):

i u⃗ · v⃗ = v⃗ · u⃗ Commutativity
ii u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗ Distributivity
iii (au⃗) · v⃗ = u⃗ · (av⃗) = a(u⃗ · v⃗) Associativity with scalar multiplication
iv u⃗ · 0⃗ = 0

v u⃗ · u⃗ = ∥u⃗∥2

See Example 22 in OSC3 Section 2.34.

Direction Angles and Direction Cosines. The direction angles of a non-zero vector u⃗ are the angles that it
makes with the three coordinate axes, typically called α, β and γ. That is, the angles that the vector makes
with the three standard basic vectors ı̂, ȷ̂ and k̂. The cosines of these are the direction cosines.

cosα =
u⃗ · ı̂
|u⃗||̂ı| ,=

u1

|u⃗| , cosβ =
u2

|u⃗| , cos γ =
u3

|u⃗|

Since the angles are always in [0,π], they are unambiguously determined by their cosines; thus is usually
enough to know the direction cosines. It can be checked that

cos2 α+ cos2 β + cos2 γ = 1, u⃗ = |u⃗| ⟨cosα, cosβ, cos γ⟩

so the vector û = ⟨cosα, cosβ, cos γ⟩ of direction cosines is the unit vector in the direction of u⃗.

Projections. The vector projection (or just projection) of v⃗ onto u⃗ is the vector that is parallel to u⃗ (a
scalar multiple of u⃗) and with the difference between it and v⃗ being perpendicular to u⃗. Calling this vector
p⃗, these conditions are that p⃗ = cu⃗ and (v⃗ − p⃗) · u⃗ = 0.
These conditions have a unique solution, denoted proju⃗v⃗:

proju⃗v⃗ =
u⃗ · v⃗
|u⃗|2 u⃗

The scalar projection of v⃗ onto u⃗ is the ”signed magnitude” of this: the magnitude with sign plus or minus
according to whether the projection goes in the same or opposite direction as u⃗.
This is also called the component of v⃗ in direction u⃗, and denoted

compu⃗v⃗ = ±|proju⃗v⃗| =
u⃗ · v⃗
|u⃗| = |v⃗| cos θ, θ the angle between u⃗ and v⃗.

4openstax.org/books/calculus-volume-3/pages/2-3-the-dot-product
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See Examples 2.27 and 2.28 in OSC3 Section 2.35.

Study Guide. Study Section 2.3 of Calculus Volume 36; in particular:
• The Definitions and Theorems.
• Examples 2.21–2.25, 2.27 and 2.28, and the Checkpoints following each. (Examples 2.29 and 2.30 also

show connections to Physics.)
• One or several exercises from each of the following ranges: One or several exercises from each of the

ranges 123–126, 131–134, 135–140, 141–144, 147–148, 149–150, 161–164, 167–170, 171–172.

2.4 The Cross Product (a.k.a. Vector Product)
Revised on March 26.

References.
• OpenStax Calculus Volume 3, Section 2.41.
• Calculus, Early Transcendentals by Stewart, Section 12.4.

Introduction. There is a special situation in three dimensions that any two non-parallel vectors u⃗ and v⃗
determine a plane through the origin, in that all the combinations au⃗+ bv⃗ describe points in a plane, and it
is then interesting to find the unique direction perpendicular to that plane. This is done by a special product
w⃗ = u⃗× v⃗ to be defined soon.
The magnitude of this product is also significant: it will give the area of the triangle determined by the
factors u⃗ and v⃗ as ∥u⃗× v⃗∥/2. That is, for the points U and V in R3 such that u⃗ = ⟨OU⟩ and v⃗ = ⟨OV ⟩, the
triangle △OUV has area ∥u⃗× v⃗∥/2. Note that this means that the parallelogram with corners given by 0⃗, u⃗,
v⃗ and u⃗+ v⃗ has area ∥u⃗× v⃗∥. This will be useful in calcuating areas and volumes, and describing magnetic
and torque forces.
The final detail missing is the direction of this product, since for any vector w⃗ meeting the above conditions,
its negation does also. That choice will be resolved by appealing to the ”right-handedness” discussed with
3D coordinate systems, which will be sufficient to determine the value of this new product uniquely: it will
be required that the triple u⃗–v⃗–w⃗ be right-handed, in the way that, for example, the triple ı̂–ȷ̂–k̂ is.
As with the dot product, there is an algebraic formula that gives the product vector; this time, it will be
possible to derive this formula from the above list of desired properties with the help of expecting it to be
distributive over addition.
Much as with the dot product or scalar product, this is often called the cross product based solely on the
notation, but also the vector product, due to its value being a vector.
A warning: this deviates from what you might expect in several ways: this ”product” is neither commutative
nor associative.

2.4.1 Definition and a Derivation
The cross product can be defined as
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Definition 2.4.1

u⃗× v⃗ = ⟨u1, u2, u3⟩ × ⟨v1, v2, v3⟩ = ⟨u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1⟩ (2.4.1)

This is also known as the vector product, for contrast to the scalar product as in Definition 2.3.1, p. 17. ♦
See Example 31 in OSC3 Section 2.42.

One way to see why this has to be the desired formula is to start with the above geometric requirements, see
what they say about products of the three standard basis vectors ı̂, ȷ̂ and k̂, and then combine by assuming
distributivity (which can then be verified in hind-sight.)
The first simple step—which does most of the work—is to see that

ı̂× ȷ̂ = k̂ :

a To be perpendicular to ı̂ and ȷ̂, the product must be a multiple of k̂.
b The parallelogram formed by ı̂ and ȷ̂ is a square of area 1, so the product has length one, and so is ±k̂.
c The right hand rule then forces the result to be k̂, as claimed.

Similarly we get
ȷ̂× k̂ = ı̂, k̂ × ı̂ = ȷ̂

The second key step is reversing the order of the factors; right-handedness forces negations:

ȷ̂× ı̂ = −k̂, k̂ × ȷ̂ = −ı̂, ı̂× k̂ = −ȷ̂

So commutativity fails: in fact the pattern of negation seen here is general: the cross-product is anti-
commutative.
See Examples 32 and 33 in OSC3 Section 2.43.

Finally, what about parallel vectors? They determine a ”parallelogram” of area zero, so

ı̂× ı̂ = ȷ̂× ȷ̂ = k̂ × k̂ = 0⃗.

Exercise 2.4.2 Assuming that this product is distributive over addition, expand

u⃗× v⃗ = (u1 ı̂+ u2ȷ̂+ u3k̂)× (v1 ı̂+ v2ȷ̂+ v3k̂)

into a sum of nine pieces and use the above nine basic products to verify Equation (2.4.1).

2.4.2 Determinants
To complete the justification of this definition, and for other purposes, it is convenient to introduce the
concept of a determinant from linear algebra.
A determinant of order 2 is defined by

∣∣∣∣
u1 u2

v1 v2

∣∣∣∣ = u1v2 − u2v1. (2.4.2)

A determinant of order 3 is defined using this as
∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
= u1

∣∣∣∣
v2 v3
w2 w3

∣∣∣∣− u2

∣∣∣∣
v1 v3
w1 w3

∣∣∣∣+ u3

∣∣∣∣
v1 v2
w1 w2

∣∣∣∣ ,

= u1v2w3 − u1v3w2 − u2v1w3 + u2v3w1 + u3v1w2 − u3v2w1.

(2.4.3)
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The factors ui multiplying each order 2 determinant come from the top row; the coefficient of each is the
determinant of what you get when you delete from the 3x3 array of numbers the row and column that contain
the factor ui; the signs alternate. (This pattern also describes the order 2 determinant, but then all that is
left after deleting one row and one column is a single number.)

See Example 36 in OSC3 Section 2.44.

The cross product as a determinant. The coefficients in the cross product are given by order two determi-
nants:

u⃗× v⃗ = ı̂

∣∣∣∣
u2 u3

v2 v3

∣∣∣∣− ȷ̂
∣∣∣∣
u1 u3

v1 v3

∣∣∣∣+ k̂

∣∣∣∣
u1 u2

v1 v2

∣∣∣∣ , (2.4.4)

This is like the above order 3 determinant except with the components of u⃗ changed to standard basis vectors,
each vi replaced by ui and each wi replaced by vi. Thus

u⃗× v⃗ =

∣∣∣∣∣∣

ı̂ ȷ̂ k̂
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
(2.4.5)

where we allow vectors to appear where previously we had numbers.

See Example 37 in OSC3 Section 2.45.
Theorem 2.4.3 The cross product is distributive over addition:

(u⃗+ v⃗)× w⃗ = (u⃗× w⃗) + (v⃗ × w⃗)

Proof. This is shown by inserting the definition in all three places and simplifying. #

Exercise 2.4.4 Show that for any vector u⃗, u⃗× u⃗ = 0⃗.
(Think about why this makes inverses impossible with the vector product.)
Exercise 2.4.5 Use the above fact to show that the cross product is anti-commutative: u⃗× v⃗ = −v⃗× u⃗Expand
(u⃗+ v⃗)× (u⃗+ v⃗)

Theorem 2.4.6 The vector u⃗× v⃗ is orthogonal to both u⃗ and v⃗.
Proof. This is shown by computing (u⃗× v⃗) · u⃗ and simplifying until nothing is left; likewise for (u⃗× v⃗) · v⃗. #
See Examples 38 and 43 in OSC3 Section 2.46.

The Geometrical Meaning of the Cross Product.
Theorem 2.4.7 The Magnitude of the Cross Product. With θ the angle between vectors u⃗ and v⃗, their cross
product has magnitude

∥u⃗× v⃗∥ = ∥u⃗∥∥v⃗∥ sin θ
Proof. See OSC3, Section 2.47 #

Thus, just as u⃗ · v⃗ = 0 test for two vectors being orthogonal, we have:
Corollary 2.4.8 A Test for Parallel Vectors. Two vectors u⃗ and v⃗ are parallel if and only if their cross
product vanishes: u⃗ × v⃗ = 0⃗. (This includes the case of them pointing in opposite directions, sometimes
called ”anti-parallel”.)
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2.4.3 Computing Some Areas and Volumes
The Area of a Parallelogram. The area of a parallelogram with two sides given by vectors u⃗ and v⃗ is twice
the area of the corresponding triangle, so is equal to the length of one side times the perpendicular distance
from that side to the other vertex. With the angle between them being θ, that distance is the length of the
other side times sin θ. Combined, the area is the product of the two side lengths and sin θ: ∥u⃗∥∥v⃗∥ sin θ, and
as seen above, this is

A = ∥u⃗× v⃗∥. (2.4.6)

If these two vectors lie in the x–y plane, using Equation (??) gives this as

A =

∥∥∥∥k̂
∣∣∣∣
u1 u2

v1 v2

∣∣∣∣

∥∥∥∥ =

∣∣∣∣det
[

u1 u2

v1 v2

]∣∣∣∣ = |u1v2 − u2v1|. (2.4.7)

See Example 39 in OSC38.

The Volume of a Parallelepiped and the Scalar Triple Product. Any three vectors u⃗, v⃗ and w⃗ determine a
parallelopiped with one vertex the origin (now 0⃗), and three edges leaving it along those three vectors to the
adjacent vertices. Taking one face to be the parallelogram with vertices 0⃗, u⃗, v⃗ and u⃗+ v⃗, its volume is the
product of the area of this face (which is ∥u⃗× v⃗∥) times the perpendicular distance to the remaining vertex
w⃗. That distance is ∥w⃗∥ sinφ where φ is the angle between w⃗ and the u⃗–v⃗ plane.
However another way to describe that angle is as the complement of the angle θ between w⃗ and a vector
perpendicular to that plane, [not quite! see the note below] and a vector in that direction is u⃗ × v⃗, so that
sinφ = cos θ. Thus, the volume is ”area of the u-v plane times ∥w⃗∥ times cos θ”, which is ∥u⃗× v⃗∥∥w⃗∥ cos θ”,
and from the geometric formula for the dot product in Section 2.3, p. 17, this gives the volume as

V = |(u⃗× v⃗) · w⃗|

But why is the absolute value needed here? Because we cheated: the angles φ and θ are only complementary
if w⃗ is on the same side of the u-v plane as u⃗×v⃗ which is the case that u⃗–v⃗–w⃗ are in right-handed arrangement
and (u⃗ × v⃗) · w⃗ ≥ 0 If instead they are ”left-handed”, this quantity is negative, and the absolute value is
needed.
See Example 41 in OSC39.

Geometrically, we can swap the roles of the three vectors, and relatedly, one can verify that

(u⃗× v⃗) · w⃗ = u⃗ · (v⃗ × w⃗) (2.4.8)

This is called the scalar triple product, and using the formula for the cross product in terms of determinants
gives

(u⃗× v⃗) · w⃗ =

∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
(2.4.9)

See Examples 40 and 42 in OSC310.

2.4.4 Algebraic Properties of the Cross Product
To summarize,

i u⃗× v⃗ = −v⃗ × u⃗ Anti-commutativity
ii (u⃗+ v⃗)× w⃗ = (u⃗× w⃗) + (v⃗ × w⃗) Distributivity
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iii (au⃗)× v⃗ = u⃗× (av⃗) = a(u⃗× v⃗) Associativity with scalar maltiplication
iv u⃗× 0⃗ = 0⃗× u⃗ = 0⃗:
v u⃗× u⃗ = 0⃗

vi u⃗ · (v⃗ × w⃗) = (u⃗× v⃗) · w⃗

See Example 34 in OSC311.

Study Guide. Study Section 2.4 of Calculus Volume 312; in particular:
• The definition of the cross product and all the Theorems.
• The description of the right-hand rule.
• Examples 31–43 and the Checkpoints following each. (Example 44 shows an application to physics.)
• One or several exercises from each of the following ranges: 183–186 (part(a) is enough), 189–192,

197–198, 199–200.

2.5 Equations of Lines and Planes in Space
(Slightly revised on February 4.)

References.
• OpenStax Calculus Volume 3, Section 2.51.
• Calculus, Early Transcendentals by Stewart, Section 12.5.

Introduction. We have seen that dot and cross products have something to do with parallel lines and planes
respectively: we now use these properties to describe lines and planes in three dimensional space. It will be
convenient to describe a point P in R3 by giving its position vector p⃗ =

−−→
OP , and then to describe lines and

planes as collections of position vectors.

Lines in Vector Terms. We can characterize a line L by the property that all vectors between any two
points on the line are parallel, and so are multiples of some vector v⃗, which has a role like the slope of a line
in the plane. Starting with any one point r⃗0 on the line, the vector r⃗ − r⃗0 from it to any point r⃗ on the line
is a multiple tv⃗ of v⃗, so L consists of the points

r⃗ = r⃗0 + tv⃗, any real . (2.5.1)

This can be written out in terms of coordinates as three ”scalar” equations: with v⃗ = ⟨a, b, c⟩, r⃗0 = ⟨x0, y0, z0⟩,
r⃗ = ⟨x, y, z⟩,

x = x0 + at, y = y0 + bt, z = z0 + ct (2.5.2)
which is the general parametric equation for a line in space. These forms are not unique, since we could
replace r0 by any other point on the line, and replace v⃗ by any non-zero scalar multiple of it. The components
a, b and c together are called the direction numbers of line L; any other triple of numbers proportional to
these also serve as direction numbers of L.
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The Symmetric Equations for a Line. Each equation in (2.5.2) can be solved for t, and equating the three
results gives the symmetric equations of L:

x− x0

a
=

y − y0
b

=
z − z0

c
. (2.5.3)

xml:id=’lineparametric’ If any of the direction numbers is zero, the equations become even simpler: for
example if a = 0,

x = x0,
y − y0

b
=

z − z0
c

. (2.5.4)

(But at least one direction number must be non-zero!)

See Example 45 in OSC3 Section 2.52.

Planes. The directions of motion possible within a plane can be described two ways: by a single normal
vector n⃗ perpendicular to all vectors −−→PQ joining two points in the plane, or by giving two non-parallel vectors−−→
PQ and −→PR given by three points P , Q and R in the plane. Given a normal vector n⃗ and point r⃗0 in the
plane, any vector r⃗ − r⃗0 within the plane is perpendicular to n⃗, so the plane is given by all solutions r⃗ of

n⃗ · (r⃗ − r⃗0) = 0, or n⃗ · r⃗ = n⃗ · r⃗0 (2.5.5)

Either of these is called a vector equation of the plane.

The scalar equation for a plane. With n⃗ = ⟨a, b, c⟩ [careful: we are recycling those three letters!] and as
before r⃗ = ⟨x, y, z⟩,

a(x− x0) + b(y − y0) + c(z − z0) = 0. (2.5.6)
This is the scalar equation of the plane through point P (x0, y0, z0) with normal vector n⃗ = ⟨a, b, c⟩. Expand-
ing gives the alternate form

ax+ by + cz + d = 0, where d = −(ax0 + by0 + cz0). (2.5.7)

Any choice of constants a, b, c (not all zero) and d given a plane. Equation (2.5.7) is the most general linear
equation in three unknowns x, y and z, so we now know that the solution of such an equation is always a
plane (not a line as the name might suggest, and as is true for a linear equation in two unknowns.)

Three points (usually) determine a plane. Given three points P , Q, and R that do not line on a line, there
is a unique plane containing all of them. The two vectors −−→PQ and −→PR are parallel to the plane, so their
cross-product n⃗ =

−−→
PQ × −→PR is normal to the plane. Then using r⃗0 =

−−→
OR as a point on the plane give the

equation n⃗ · (r⃗ − r⃗0) as above. \pause This works unless n⃗ = 0⃗: that is the case where −−→PQ and −→PR are
parallel, meaning that the three points are collinear.

See Example 49 in OSC3 Section 2.53.

The angle between two planes, and distance to a plane. Two planes are parallel (and so either do not
intersect or are identical) if their normals n⃗1 and n⃗2 are parallel. Otherwise, they intersect along a line, and
the angle between them is the acute angle between their normals: the smallest angle θ with

cos θ = |n⃗1 · n⃗2|
∥n⃗1∥∥n⃗2∥

. (2.5.8)

Question 2.5.1
(a) Why is the absolute value here?
(b) What would the angle describe if the absolute value were omitted?
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"
See Example 53 in OSC3 Section 2.54.

Also, the shortest distance from a point P (x1, y1, z1) to a point in the plane ax+ by + cz + d = 0 thrpough
a point Q(x0, y0, z0) with normal n⃗ is

D =

−−→
PQ · n⃗
∥n⃗∥ =

|ax1 + by1 + cz1 + d|√
a2 + b2 + c2

(2.5.9)

and for Q, the closest point in the plane, −−→PQ is parallel to the normal vector n⃗ =
−−−→
a, b, c.

See Example 51 in OSC3 Section 2.55.

Note that if we use unit normal vectors n̂ = ⟨a, b, c⟩ and so on, the angle and distance formulas simplify to

cos θ = |n̂1 · n̂2|. (2.5.10)

and
D =

−−→
PQ · n̂ = |ax1 + by1 + cz1 + d| (2.5.11)

Study Guide. Study Section 2.5 of Calculus Volume 36; in particular
• All the Definitions, Theorems, Examples and Checkpoints.
• One or several exercises from each of the following ranges: 243–246; 251–254, 267–270, 271–274 [parts

(a) and (b) are enough], 281–282, 289–290.

2.6 Quadric Surfaces: Omitted for now
References.

• OpenStax Calculus Volume 3, Section 2.61.
• Calculus, Early Transcendentals by Stewart, Section 12.6.

2.7 Cylindrical and Spherical Coordinates
Revised on March 15.

References.
• OpenStax Calculus Volume 3, Section 2.71.
• Calculus, Early Transcendentals by Stewart, Sections 15.7 and 15.8.

Introduction. Coordinate systems for three dimensional space that are convenient for working with domains
and functions that have either cylindrical symmetry (depending only on distance from a certain line), or
spherical symmetry (depending only on distance from a certain point).
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2.7.1 Cylindrical Coordinates
One way to describe the location of a point in space is to gives its height z above [or below] the x-y plane
as with cartesian coordinates, but then describe the location of the point below [or above] it in that plane
with plane polar coordinates, r and θ.
This gives cylindrical coordinates (r, θ, z), (sometimes denoted (r, θ, z)c to distinguish from cartesian coordi-
nates), related to cartesian coordinates (x, y, z) by

x = r cos θ, y = r sin θ, [z = z] (2.7.1)

To convert from rectangular to cylindrical, one uses

r2 = x2 + y2 (so r =
√
x2 + y2), tan θ = y/x (or cos θ = x/r or sin θ = y/r)

A unique choice of θ is then determined by using the smallest non-negative value, so that 0 ≤ θ < 2π (Any
such value of θ is allowed on the z-axis x = y = 0.)
These coordinates are ”cylindrical” because a circular cylinder of radius a around the z-axis has the simple
equation r = a. Essentially, this is describing the (x, y) part of the location with plane polar coordinates.

See Examples 60 to 62 in OSC3 Section 2.72.

2.7.2 Spherical Coordinates
Just as plane polar and cylindrical coordinates are based around horizontal distance r from x = y = 0,
spherical coordinates start with the distance ρ from the origin O(0, 0, 0) to a point P (x, y, z):

ρ2 = x2 + y2 + z2 so ρ =
√
x2 + y2 + z2. (2.7.2)

Thus a sphere of radius a center the original has the simple equation ρ = a.

”Longitude” θ and ”Latitude” φ. To complete the coordinates, we need to describe the location of the point
P on the sphere of radius ρ with two numbers.
The familiar case of this is using angles of latitude and longitude to describe position on the earth’s surface.
Both are done a bit differently here, to avoid negative values.
First, we consider the circle of latitude containing the point: the circle of center Q(0, 0, z) on the z axis at
the same ”height” as P and passing through P , so that its radius is r =

√
x2 + y2.

Position on this circle can be described with polar coordinates, using the angle θ measured from the eastern
point E(r, 0, z) of this circle in the direction of positive y, and as above, using values θ ∈ [0, 2π).
The r and θ here are the same as with cylindrical coordinates, so we still have

x = r cos θ, y = r sin θ. (2.7.3)

The position of this circle of latitude on the sphere is specified with a ”latitude angle”, measured from the
North pole N(0, 0, ρ)

That is, φ is the angle ∠NOP , which we can take in the range 0 ≤ φ ≤ π, with φ = 0 the North Pole, φ = π
the South Pole S(0, 0,−ρ).
Note that the range only has to cover a half circle, not returning to the North pole at φ = 2π.
Another way to think of this is that one looks at the half plane of points with a given longitude θ, with
cartesian coordinates (z, r) in the place of (x, y) and describe this with a second set of polar coordinates, so
now measuring angles from the positive z-axis. Thus the radius is ρ, the polar angle is φ, and

z = ρ cosφ, r = ρ sinφ (2.7.4)

2openstax.org/books/calculus-volume-3/pages/2-7-cylindrical-and-spherical-coordinates
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One Difference from Geography. This ”top-down” measurement is used instead of measuring from the equator
as in geography; that keeps φ non-negative, as was also done above for θ (But arguably it would be slightly
better to measure up from the south pole, for reasons that we will see in Section 5.5.)

Equations Connecting these Coordinate Systems. Combining Equations (2.7.3) and (2.7.2) gives

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ (2.7.5)

relating spherical coordinates (ρ, θ,φ) to cartesian coordinates (x, y, z). (Spherical coordinates are sometimes
denoted (ρ, θ,φ)s to distinguish from cylindrical or cartesian coordinates.)

See Examples 63 to 65 in OSC3 Section 2.73.

Study Guide. Study Section 2.7 of Calculus Volume 34; in particular
• All the Definitions and Theorems.
• Examples 60–65 and 67, and the Checkpoints following each.
• One or several exercises from each of the following ranges: 363–366, 367–370, 371–378 (graphing not

necessary), 379–384, 385–388, 389–392, 393–398, 399–402, 407–410.

Chapter Review. When reviewing this chapter, also look at the end of chapter review material in OpenStax
Calculus Volume 3, including Key Terms5, Key Equations6 and Key Concepts7.
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Chapter 3

Vector-valued Functions

References.
• OpenStax Calculus Volume 3, Chapter 3.1

• Calculus, Early Transcendentals by Stewart, Chapter 13.

3.1 Vector-Valued Functions and Space Curves
References.

• OpenStax Calculus Volume 3, Section 3.11.
• Calculus, Early Transcendentals by Stewart, Section 13.1.

Introduction. Since a position in space can be described by a vector r⃗ = ⟨x, y, z⟩ and position can be a
function of time, it is natural to consider vector functions like

r⃗(t) = ⟨f(t), g(t), h(t)⟩ = f(t)̂ı+ g(t)ȷ̂+ h(t)k⃗,

functions whose value is a vector (or loosely, a vector each of whose components is a function). Many familiar
concepts of calculus like limits, continuity, derivatives and integrals extend simply to such vector functions,
and they also have the nice geometrical significance of describing curves in space.

See Examples 3.1 and 3.2 in OSC3 Section 3.12.

Limits of Vector Functions. A limit of a vector function r⃗ = ⟨f(t), g(t), h(t)⟩ is built up from limits of its
components:

lim
t→a

r⃗(t) =
〈

lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t)
〉

This limit thus exists if and only if all of the three component limits exist.

See Example 3.3 in OSC3 Section 3.13.
1openstax.org/books/calculus-volume-3/pages/3-introduction
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Continuity. With this notion of a limit, it makes sense to say that vector function r⃗(t) is continuous at a
if the limit exists there and equals the value

lim
t→a

r⃗(t) = r⃗(a)

which is true if and only if all of the component functions are continuous at a.

Space Curves. A continuous vector valued function describes a space curve. A space curve C can be
described as the set of points in space whose position vectors are given by the values of a function r⃗(t) =
⟨f(t), g(t), h(t)⟩ for values of t in some interval I. The interval can be finite like I = [a, b] or infinite such as
I = (−∞,∞).
The component equations

x = f(t), y = g(t), z = h(t)

are parametric equations for C, with t the parameter.

The Visual Meaning of Continuity. Continuity has a familiar geometrical meaning: a vector function r⃗(t)
is continuous if the space curve it describes has no breaks.
Note: when drawing space curves, arrowheads are typically used on the curve to indicate the direction of
motion as the parameter increases.

Study Guide. Study Section 3.1 of Calculus Volume 34; in particular
• All the Definitions, Theorems, Examples and Checkpoints.
• One or several exercises from each of the following ranges: 1, 2, 3, 5–7, 8–13, 15–17, 22–26, 27–32, 33,

34, 35 and 36 (this last four go together).
For the graphing examples and exercises, I suggest trying the (new) Desmos 3D graphing tool5.

3.2 Calculus of Vector-Valued Functions
References.

• OpenStax Calculus Volume 3, Section 3.21.
• Calculus, Early Transcendentals by Stewart, Section 13.2.

Introduction. Here, finally we see some calculus. Much of it is simply extending to 3D what was seen in
Calculus 2 for curves in the plane; for example, see OpenStax Calculus Volume 3, Section 1.22 and the notes
for that section 1.2, p. 4.

Derivatives of Vector-Valued Functions. We can build derivatives of vector functions from derivative of
components, but the definition can also be done from first principles, with difference quotients:
Definition 3.2.1 Derivative of r⃗. The derivative r⃗′ of a vector function of variable t is given by

dr⃗

dt
= r⃗′ = lim

h→0

r⃗(t+ h)− r⃗(t)

h
. (3.2.1)

♦
4openstax.org/books/calculus-volume-3/pages/3-1-vector-valued-functions-and-space-curves
5www.desmos.com/3d/
1openstax.org/books/calculus-volume-3/pages/3-2-calculus-of-vector-valued-functions
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It can be checked that for r⃗(t) = ⟨f(t), g(t), h(t)⟩, the derivative (if it exists) is the vector of derivatives of
the components:

dr⃗

dt
=

d

dt
⟨f(t), g(t), h(t)⟩ = ⟨f ′(t), g′(t), h′(t)⟩ . (3.2.2)

Thus the derivative exists if and only if all of the component derivatives exists.

See Examples 3.4 and 3.5 in OSC3 Section 3.23.

Properties of the Derivative of Vector-Valued Functions. The familiar differentiation rules for sums, prod-
ucts and compositions have natural counterparts for vector functions:
Theorem 3.2.2 For u⃗ and v⃗ differentiable vector functions, f a differentiable scalar (real-valued) function,
and c a scalar constant,

i d

dt
[u⃗(t) + v⃗(t)] = u⃗′(t) + v⃗′(t)

ii d

dt
[cu⃗(t)] = cu⃗′(t)

iii d

dt
[f(t)u⃗(t)] = f ′(t)u⃗(t) + f(t)u⃗′(t)

iv d

dt
[u⃗(t) · v⃗(t)] = u⃗′(t) · v⃗(t) + u⃗(t) · v⃗′(t)

v d

dt
[u⃗(t)× v⃗(t)] = u⃗′(t)× v⃗(t) + u⃗(t)× v⃗′(t)

vi d

dt
[u⃗(f(t))] = u⃗′(f(t))f ′(t)

Note: as always with the cross product, the order matters in Item v, p. 30.

See Example 3.6 in OSC3 Section 3.24.

Tangent Vectors and the Principle Unit Tangent Vector. For any value of t = a, where the derivative vector
r⃗′(a) exists and is non-zero, it is tangent to the space curve C at point P with position vector r⃗(a), and so
is called a tangent vector to C at P . The line through P with this tangent vector is the tangent line to C
at P with equation

L⃗(t) = r⃗(a) + t r⃗′(a)

It will often be useful to consider the principle unit tangent vector

T̂ (t) =
r⃗′(t)

∥r⃗′(t)∥ .

and then the tangent line at the point P can be written as

L⃗(s) = r⃗(a) + s T̂ (a)

Here the parameter s is used because it corresponds to arc-length along this line, as will be discussed in
Section 3.3, p. 31.

See Example 3.7 in OSC3 Section 3.25.

The existence of a tangent direction given by r⃗′(t) and thus of this unit tangent vector is what guarantees
that the curve has no ”corners”, as with the graph of a differentiable function, so this important ”niceness”
condition has a name:
Definition 3.2.3 A space curve is smooth if it is given by r⃗(t) on interval I with both r⃗ and r⃗′ continuous,
and with r⃗′ ̸= 0⃗ except possibly at the endpoints of I. This is equivalent to the existence of the unit tangent
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vector T̂ (t) = r⃗′(t)/∥r⃗′(t)∥.
If the derivative is zero at a finite number of points, the curve is called piecewise smooth. ♦

Integrals of Vector-Valued Functions. Like derivatives, definite integrals of vector functions can be built from
first principles with Riemann sums, and one gets the predictable result in terms of integrals of components:
For r⃗(t) = ⟨f(t), g(t), h(t)⟩,

∫ b

a
r⃗(t) dt =

〈∫ b

a
f(t) dt,

∫ b

a
g(t) dt,

∫ b

a
h(t) dt

〉

Indefinite integrals work likewise: the one new detail to note is that there is a constant of integration for
each component: ∫

r⃗(t) dt =

〈∫
f(t) dt+ C1,

∫
g(t) dt+ C2,

∫
h(t) dt+ C3

〉

Equivalently the constant of integration is a vector C⃗ = ⟨C1, C2, C3⟩.

See Example 3.8 in OSC3 Section 3.26.

Study Guide. Study Section 3.2 of Calculus Volume 37; in particular
• All the Definitions, Theorems, Examples and Checkpoints.
• One or several exercises from each of the following ranges: 41–50, 51–54, 55–58, 59–61, 62, 63, 63, 64.

3.3 Arc Length and Curvature
Revised on April 2.

References.
• OpenStax Calculus Volume 3, Section 3.31.
• Calculus, Early Transcendentals by Stewart, Section 13.3.

3.3.1 Arc Length
The arc length of parameterized curves in the plane was computed in Section 1.2, p. 4 as

L =

∫ β

t=α

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2dt, (3.3.1)

(see Equation (1.2.6)) and the same procedure can be applied to compute the length of a smooth curve in
space as

L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

=

∫ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt.

(3.3.2)

This has the more compact form L =
∫ b
a ∥r⃗

′(t)∥dt, valid of two or three dimensions.
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See Example 9 in OSC3 Section 3.32.

Other Parametrizations and the Arc Length Function. A curve can be parameterized in many ways. For
example

r⃗(t) =
〈
t, t2, t3

〉
, 1 ≤ t ≤ 2

describes the same curve as
r⃗(t) =

〈
eu, e2u, e3u

〉
, 0 ≤ u ≤ ln 2.

One particular useful and elegant parametrization is based on arc length, starting with the arc length function
s, given by

s(t) =

∫ t

a
∥r⃗′(t)∥dt (3.3.3)

which is the length of the part of the curve from the initial point r⃗(a) to the point r⃗(t). This is equivalent
to ds

dt
= ∥r⃗′(t)∥. If a curve is parameterized as r⃗(s) with arclength as its parameter then s(t) = t− a.

Parametrizing with Arc Length. Any smooth curve can be expressed with arc length as parameter: ds/dt =
∥r⃗′(t)∥ > 0, so s(t) is increasing and has an inverse, t(s), and this inverse gives r⃗ = r⃗(t(s)) as the arc length
parametrization. However it is often not possible to get an explicit formula for t(s) or for the arc length
parametrization.

See Example 10 in OSC3 Section 3.33.

3.3.2 Curvature
A smooth curve C described by vector function r⃗ has a tangent direction at each point (except possibly at
its end points) given by the unit tangent vector.

T̂ (t) =
dr⃗/dt

∥dr⃗/dt∥ =
dr⃗/dt

ds/dt
=

dr⃗

ds
(3.3.4)

Change in T̂ as one moves along the curve measures change in direction, so its rate of change measures
curvature:
Definition 3.3.1 The curvature of a curve with unit tangent T̂ (t) is

κ = κ(t) =

∥∥∥∥∥
dT̂

ds

∥∥∥∥∥ ,=

∥∥∥∥∥
dT̂/dt

ds/dt

∥∥∥∥∥ =
∥T̂ ′(t)∥
∥r⃗′(t)∥ .

♦
Exercise 3.3.2 Show that the curvature of a circle of radius a is 1/a at every point.

See Example 11 in OSC3 Section 3.34.
Theorem 3.3.3 The curvature of the curve given by r⃗(t) is

κ(t) =
∥r⃗′(t)× r⃗′′(t)∥
∥r⃗′(t)∥3 , = ∥r⃗′(s)× r⃗′′(s)∥, (3.3.5)

where s as usual refers to the arc length parametrization.
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Computing the Curvature of Plane Curves. For the special case of a curve in the plane given by y = f(x),
the parametric form r⃗ = ⟨x, f(x), 0⟩ gives

κ(x) =
|f ′′(x)|

[1 + (f ′(x))2]3/2
(3.3.6)

so there is a relation to the second derivative, but not as simple as you might have guessed.
Exercise 3.3.4 For

a the parabola y = x2 and
b the semi-circle y =

√
1− x2,

compute both the curvature and y′′.
Discuss why these results suggests that the curvature is a more reasonable geometrical measure than the
second derivative.

3.3.3 Normal and Binormal Vectors, and the Osculating Plane
The Principle Unit Normal Vector. With arc-length parametization, κ(s) = ∥r⃗′(s)×r⃗′′(s)∥ and r⃗′(s) = T̂ (s),
so

κ(s) =

∥∥∥∥∥T̂ (s)×
dT̂

ds
(s)

∥∥∥∥∥ .

The directions of these three vectors T̂ (s), T̂ ′(s) and T̂ (s)× T̂ ′(s) help describe the direction, curvature and
”bending” of a curve in more detail.
Firstly, T̂ ′ is orthogonal (or normal) to T̂ and thus is normal to the curve (unless it is zero). It is natural to
normalize it, giving the principal unit normal vector or unit normal.

N̂(t) =
T̂ ′(t)

∥T̂ ′(t)∥
(3.3.7)

Note: In the special case that the curvature is zero a point, T̂ ′ = 0⃗ there, and so the unit normal vector and
normal direction are undefined.

The Binormal Vector. In the plane, the tangent and normal vectors forrm a basis that can be used to
describe all directions in the plane. In space (R3) instead, there is a whole plane normal to T̂ and thus to
the curve, and a third dimension not cover by these two vectors. Then we can get a second normal direction,
the binormal vector with

B̂(t) = T̂ (t)× N̂(t) (3.3.8)

which is automatically a unit vector, normal to both T̂ (t) and N̂(t).

See Example 12 in OSC3 Section 3.35.
Question 3.3.5 Why. "

Note: At a point where the curvature is zero, the binormal vector is also undefined.

The Normal and Osculating Planes of a Curve. At any point P given by r⃗(t) on a smooth curve C, the
three vectors T̂ , N̂ , and B̂ form a right-handed set of orthogonal directions, and in some sense specify a
natural set of coordinates for looking at the world with P as the origin.
Two planes through the point P are important in this view:

• The plane through P with normal T̂ (and thus containing the two ”normal” directions N̂ and B̂) is
the normal plane of C at P .
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• The plane through P containing directions T̂ and N̂ , and so with normal B̂, is in some sense the plane
that the curve is momentarily moving in, and is called the osculating plane of C at P . In particular,
if the curve lines entirely in a plane, B̂ is always normal to that plane, and so the osculating plane is
that plane.

Note: At a point where the curvature is zero, the osculating plane is undefined, but the normal plane makes
sense at any point on any smooth curve.

See Example 13 in OSC3 Section 3.36.

Tangent Lines and Osculating Circles. If we look closely enough at a curve near a point it is approximated
by a straight line, the tangent line, determined by r⃗(t) and T̂ (t): geometrically, this is the straight line that
best fits the curve near that point.
A more precise picture is given by noting the curvature too, and looking instead for the circle that best fits
the curve at that point. This circle turns out to have radius ρ = 1/κ, lying in the osculating plane, to the
side of the curve given by the principal normal direction N̂(t).
Note: At a point where the curvature is zero, this circle effectively becomes a straight line: the tangent line.

Exercise 3.3.6 Find the osculating circle at the origin on the parabola y = x2.
Exercise 3.3.7 Verify that when the curve is a circle, the osculating circle at each point of the curve is that
same circle (as it should be!)

For a visualization of the three directions T̂ , N̂ and B̂, and the related osculating circle, see this YouTube
video:

Figure 3.3.8 The T̂ -N̂ -B̂ frame and osculating circle

A Relationship Between κ, T̂ and N̂ . The formula for curvature in terms of arc-length parameter s is

κ(s) = ∥T̂ ′(s)∥, and N̂(s) =
T̂ ′(s)∥∥∥T̂ ′(s)

∥∥∥
, so

dT̂

ds
= κN̂ . (3.3.9)

A geometrical interpretation if this is that the direction of a curve is changing at a rate κ in the principal
normal direction.
This perhaps helps to explain why over a short period of time, the curve lies roughly in the osculating plane.

6openstax.org/books/calculus-volume-3/pages/3-3-arc-length-and-curvature

https://openstax.org/books/calculus-volume-3/pages/3-3-arc-length-and-curvature


CHAPTER 3. VECTOR-VALUED FUNCTIONS 35

Study Guide. Study Section 3.3 of Calculus Volume 37; in particular
• All the Definitions, Theorems, Examples and Checkpoints.
• One or several exercises from each of the following ranges: 102–109, 110, 130, 133–134, and several

from 113–126.

3.4 Motion in Space
References.

• OpenStax Calculus Volume 3, Section 3.41.
• Calculus, Early Transcendentals by Stewart, Section 13.4.

Introduction. Many of the geometrical ideas from the previous section relate to physical quantities like speed,
velocity and acceleration, in the natural case where the value of a function r⃗(t) is a position space and the
value of its argument t is time.

Velocity, Speed and Acceleration.
Definition 3.4.1 Velocity is the rate of change of position with respect to time as already seen with scalar
valued functions, but now velocity is a vector function,

v⃗(t) = r⃗′(t).

So the velocity is a tangent vector in the direction of motion. ♦
Definition 3.4.2 Speed is the magnitude of velocity or rate of change of position with respect to time:

v = ∥v⃗(t)∥ = ∥r⃗′(t)∥ = ds

dt
.

♦
See Example 3.14 in OSC3 Section 3.42.

Note that arc length s has the natural physical meaning of distance traveled along the curve.
Definition 3.4.3 Acceleration is as always the rate of change of velocity with respect to time, again a vector
quantity

a⃗(t) = v⃗′(t) = r⃗′′(t).

♦

Force and Motion: Position from Acceleration. Newton’s laws relate motion to the force acting on a body
of mass m, with the force a vector F⃗ and determining acceleration through

F⃗ = ma⃗.

If the force is known as a function of time, along with the position r⃗0 and velocity v⃗0 at one time t0, the
position at all times can be calculated:

a⃗ = F⃗/m, v⃗(t) = v⃗0 +

∫ t

t0

a⃗(u)du, r⃗(t) = r⃗0 +

∫ t

t0

v⃗(u)du.
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Tangential and Normal Components of Acceleration. With motion along a straight line, acceleration can
be thought of as rate of change of speed. With motion in a plane or space, acceleration can also change
direction, perhaps with no change is in speed.
These two effects of acceleration can be described in terms of the tangential and normal components of
acceleration.
First, compute the speed v = ∥v⃗∥, so that T̂ = v⃗/v and

v⃗ = vT̂ .

Then
a⃗ = v⃗′ =

(
vT̂
)′

= v′T̂ + vT̂ ′.

Also κ = ∥T̂ ′∥/∥r⃗′∥ = ∥T̂ ′∥/v, so
∥T̂ ′∥ = κv

and N̂ = T ′/∥T̂ ′∥ so
T̂ ′ = ∥T̂ ′∥N̂ = κvN̂ .

All together,
a⃗ = v′T̂ + κv2N̂ ,= aT T̂ + aN N̂ . (3.4.1)

Here aT = v′ and aN = κv2 are the tangential and normal components of the acceleration:
• the tangential component aT measures change of speed;
• the normal component aN measures change of direction.

Note that there is no ”binormal component of acceleration”: instantaneously, acceleration acts in the oscu-
lating plane. From another perspective, the osculating plane at any time is the plane determined by the
current position, velocity and acceleration, in which the motion appears momentarily to lie.

Acceleration Components in Terms of Velocity and Acceleration Vectors. It is often convenient to express
everything in terms of the basic derivatives of components of r⃗(t), without use of intermediate quantities like
v′(t) and κ(t) thus avoiding differentiation of square roots. First it can be checked that v⃗ · a⃗ = vv′, so that

aT = v′ =
v⃗ · a⃗
v

=
r⃗′ · r⃗′′

∥r⃗′∥ , =
dr⃗

ds
· d

2r⃗

ds2
.

Next, recalling from Theorem 3.3.3, p. 32 that κ = ∥r⃗′(t)× r⃗′′(t)∥/∥r⃗′(t)∥3,

aN = κv2 =
∥r⃗′(t)× r⃗′′(t)∥
∥r⃗′(t)∥ , =

∥∥∥∥
dr⃗

ds
× d2r⃗

ds2

∥∥∥∥ .

See Example 3.15 in OSC3 Section 3.43.

Another Way to Compute N̂ . These formulas for aT and aN also give a sometimes more convenient way
to compute the normal vector:

N̂ =
a⃗− aT T̂

aN
=

r⃗′′ − (aT /v)r⃗′

aN
=

vr⃗′′ − v′r⃗′

∥r⃗′(t)× r⃗′′(t)∥

Study Guide. Study Section 3.4 of Calculus Volume 34; in particular
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• The Definitions.
• Theorems 3.7 and 3.8.
• Examples 3.14 and 3.15, and the Checkpoints following each.
• Several exercises from the range 157–162.

Note: The topics after Checkpoint 3.15, Projectile Motion and Kepler’s Laws should be interesting reading
for some students, but will not be covered on quizzes or tests.

Chapter Review. When reviewing this chapter, also look at the end of chapter review material in OpenStax
Calculus Volume 3, including Key Terms5, Key Equations6 and Key Concepts7.
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Chapter 4

Differentiation of Functions of Several Variables

References.
• OpenStax Calculus Volume 3, Chapter 4.1

• Calculus, Early Transcendentals by Stewart, Chapter 14.

4.1 Functions of Several Variables
References.

• OpenStax Calculus Volume 3, Section 4.11.
• Calculus, Early Transcendentals by Stewart, Section 14.1.

Introduction. Earth’s surface temperature (T ) at a single time depends on several quantities, the latitude (x)
and longitude (y) of the point whose temperature is indicated. Mathematically we can describe temperature
as a function with two variables or arguments, T (x, y).
Definition 4.1.1 A real valued function f of two variables is a rule that, for each ordered pair (x, y) in a
subset D of R2, assigns a unique real number denoted by f(x, y). The set D is the domain of f , and the
range of f is the set of all the values that arise for f(x, y).

See Example 1 in OSC3 Section 4.12.
The rule can be specified with a list of ordered triples (x, y, z) such that in every triple, the initial pair (x, y)
is in the set D (the domain of f), and for every ordered pair (x, y) in D, there is exactly one such triple: the
z value in that triple is denoted f(x, y). ♦

We often write z = f(x, y): x and y are the independent variables or arguments of f , z is the dependent
variable or value of f .
Geometrically, we often think of the domain D as a set in the plane. When a function is specified by a
formulas in terms of the independent variables, the domain is to be all pairs for which the formulas makes
sense. This is sometimes called the natural domain associated with the formula. (This can be unclear or
hard to determine, so I generally recommend stating the domain explicitly if you can.)

Example 4.1.2 The (natural) domain of f(x, y) =
√
x2 − y2 is all ordered pairs (x, y) with |x| ≥ |y|. In the

plane this is all points in the two quadrants to the right and left of the two lines y = x, y = −x. "
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Graphs. The graph of a function f is the corresponding set of points (x, y, z) in R3 for which z = f(x, y),
so it is typically a surface, like the elliptic paraboloid z = x2 + (y/2)2.
To visualize functons of two variables, I suggest first working out the domain and then examining their graphs
with the Desmos 3D Graphing Calculator3 (or other suitable graphing software that you know about).
The Desmos notation for a function of two variables is ”z = f(x, y)” or just the formula ”f(x, y)”; for
example, for f(x, y) = x2+ y2 in Example 4.2(b) of Section 4.14, one can type in z = x^2 + y^2 (which gets
rendered as z = x2 + y2) or just x^2 + y^2.

See Examples 2 and 3 in OSC3 Section 4.15;

Level Curves and Contour Plots. Such surfaces in three dimensions are sometimes hard to illustrate clearly
in a two dimensional drawing, so one alternative method of visualization is drawing level curves, also known
as contours, as used in maps to show altitude.
Definition 4.1.3 The level curves of a function f of two variables are the set of curves in the plane given by
the solutions of f(x, y) = k for each number k in the range of f . ♦

To plot contours at level z = k with Desmos6 the notation is ”f(x, y) = k” (or replace the parameter k by any
letter other than the coordinate names x,y or z). Entering this invites you to add a slider for the parameter
k. For example, try x2 − y2 = k.

Example 4.1.4 For each k > 0, the level curve of the function given by the formula f(x, y) = x2 + (y/2)2 is
an ellipse.
The level curve for k = 0 is”degenerate”: it is the single point (0, 0).
There are no level curves for k < 0, as such values are not in the range of f .
Together the level curves fill out the entire plane. "
See Examples 4 and 5 in OSC3 Section 4.17;

In general, the collection of all level curves of a function fill out its whole domain, with each point of the
domain on exactly one level curve.

Functions of Three or More Variables. It is easy to extend the above ideas to functions with three or
more independent variables, denoted f(x, y, z) and so on. These are also often natural: for example, air
temperature depends on position specified by the three variables latitude, longitude and altitude, and the
total energy of a moving object can depend on six variables: three specifying its position and three its
velocity. The domain of a function of three variables is a region in three dimensional space R3, typically a
solid.
Example 4.1.5 The natural domain of the function given by the formula f(x, y, z) = 1/(x2 + y2 + z2 − 1) is
every point in space except those on the sphere of radius 1 center the origin. "

Level Surfaces. Level surfaces are the equivalent here of level curves, and are even more important since the
graph of a function of three variables is a four dimensional object, ordered quadruples of numbers (x, y, z, w)
with w = f(x, y, z), and these are very difficult to graph or visualize. The level surfaces are sets of points in
space, rather easier to draw. Note again that different level surfaces for different k values do not intersect,
and they divide up the domain up into a nested collection of surfaces, like the layers of a deformed onion or
a can of pringles.
Example 4.1.6 The level surfaces of f(x, y, z) = x + 2y + 4z are the various planes x + 2y + 4z = k. Note
that these are all parallel (they have the same normal ⟨1, 2, 4⟩) and so indeed do not intersect, and together

3www.desmos.com/3d
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fill out all of R3. "

Even More Variables, and Vector Valued Arguments. One quantity can depend on more than three others;
say on n quantities x1 · · ·xn. We sometimes write such a function with ellipsis as f(x1, x2, . . . , xn) when n
is large.
At times we consider functions of several variables as a function of a single vector argument:

• f(x, y, z) becomes f(x⃗) with x⃗ = ⟨x, y, z⟩, and
• f(x, y) also becomes f(x⃗), now with x⃗ = ⟨x, y⟩.

This is particularly convenient with functions of a large number of variables: defining the n-component vector
x⃗ = ⟨x1, x2, . . . , xn⟩, the function f(x1, x2, . . . , xn) can be expressed in the same concise form f(x⃗).

See Examples 6 and 7 in OSC3 Section 4.18;

Study Guide. Study Section 4.1 of Calculus Volume 39; in particular
• All the Definitions.
• Examples 1.–6, and the Checkpoints following each.
• One or several exercises from each of the following ranges: 5–10, 11–13, 14–29, 30–32.

4.2 Limits and Continuity
References.

• OpenStax Calculus Volume 3, Section 4.21.
• Calculus, Early Transcendentals by Stewart, Section 14.2.

Limits and Continuity. To make sense of a statement like “f(x, y) has limit L as the arguments approach
the point (a, b)” we need to quantify the idea of a pair of arguments x and y being close to another pair a
and b. This is done with the distance between the points (x, y) and (a, b) in the plane.
Thus the precise δ − ϵ definition of a limit is
Definition 4.2.1 f(x, y) has limit L as (x, y) approaches (a, b) if for any positive value ϵ, there is a
positive value δ such that for any point (x, y) in the domain D of f (other than (a, b) itself), having
0 <

√
(x− a)2 + (y − b)2 < δ ensures that |f(x, y)− L| < ϵ.

Note that only points (x, y) ̸= (a, b) matter.
If the limit exists and has value L, we write

lim
(x,y)→(a,b)

f(x, y) = L.

♦
It is sometimes nice to consider f as a function of a vector argument x⃗ = ⟨x, y⟩ and the point (a, b) as the
vector ⟨a, b⟩.
Then the condition is that for any x⃗ = ⟨x, y⟩ in domain D other than a⃗ = ⟨a, b⟩,

∥x⃗− a⃗∥ < δ ensures that |f(x⃗)− L| < ϵ.

One advantage of this is that it applies equally well for functions on three variables (or even more). In fact
it also works for functions on the real numbers: just take ∥x⃗− a⃗∥ to mean |x− a| and so on.
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Limit Laws. All the familiar limits laws apply, for sums, differences, products, quotients and so on.

See Example 8 in OSC3 Section 4.22.

Some Cautionary Examples: Limits can Fail to Exist in New Ways. With functions of one variable, it is
sometimes convenient to compute limits using the one-sided limits from each side.
It might seem worth trying a similar thing with functions of two variables: approach a point (a, b) along
various straight lines passing through it, so that one is really working with a function of one variable:
g(t) = f(a+ ct, b+ dt) with ⟨c, d⟩ giving the direction of the line.
However, strange things can happen:
Question 4.2.2 For the functions f and g given by

f(x, y) =
sin(x2 + y2)

x2 + y2
and x2 − y2

x2 + y2

with domain everything except the origin (0, 0), consider how the values behave as (x, y) approaches the
origin along straight lines.
For each function, does the limit exist as (x, y)→ (a, b) and if so, what is it?Parameterize the lines as ⟨t,mt⟩,
along with the exceptional case of the vertical line ⟨0, t⟩. "
Question 4.2.3 For the function

f(x, y) =

⎧
⎨

⎩

x2

y
, y ̸= 0

0, y = 0

1. Show that approaching the origin on any straight line gives f(x, y)→ 0, but …
2. … it does not have a limit at the origin.

Look at the curves y = kx2 "
See Example 9 in OSC3 Section 4.23.

Interior Points and Boundary Points. For functions of one variable, the domain is typically an interval like
(a, b), [a, b], (a, b] or [a, b) (or a union of these), and in the latter three cases, the domain includes endpoints,
a and/or b where limits are handled a bit differently, as one-sided limits.
The issue of the limit at a boundary point a⃗ is now dealt with more elegantly by simply requiring that
|f(x⃗)− L < ϵ for any x⃗ in the domain of f where ∥x⃗− a⃗∥ < δ. That is, we just ignore points x⃗ outside the
domain.
Nevertheless, it is useful to consider what happens at the ”edges” of a domain in two (or more) dimensions.
The generalization of endpoints is the boundary of a set D in R2 or R3, as contrasted to the interior:
Definition 4.2.4 A point a⃗ in any set D is in the interior of D if it is surrounded by a small enough ”disk”
or ”ball” that lies entirely in D. That is, there is some radius δ > 0 such that all points in the set
Bδ (⃗a) = {x⃗ : ∥x⃗− a⃗∥ < δ} of radius δ and center a⃗ are also in D. ♦

Any such set Bδ(x⃗) is called a ball, even though in two dimensions it is a disk. This jargon is sometimes
even used in one dimension, where a ”ball” is an open interval (a− δ, a+ δ).
The points of D that are not in its interior are on its boundary. However, the boundary includes points that
are ”adjacent” to D even if they are not in it: for example the boundary of Bδ(x⃗) is the circle in R2 (or
sphere in R3) where ∥x⃗− a⃗∥ = δ, and this is entirely outside that ball.
Definition 4.2.5 A point a⃗ is in the boundary of D if no ball Bδ (⃗a) is either entirely in D or entirely outside
it.
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That is, every ball around a point in the boundary is partly in the set, partly outside it.
Yet another way of saying this is that one can get as close as you want to such a boundary point both from
inside the set and from outside it.
The boundary of a set D is sometimes denoted ∂D. ♦
Question 4.2.6 What is the boundary of each of the four sets (a, b), [a, b],[a, b) and (a, b]? "
See Example 10 in OSC3 Section 4.24.

Open and Closed Sets. There are two opposite extremes that can make a domain easier to work with:
Definition 4.2.7 A set is open if it consists entirely of interior points: it contains none of its boundary points.

♦
A familiar example is open intervals like (a, b); the balls Bδ (⃗a) defined above are another example: hence
these are sometimes called open balls.
Definition 4.2.8 A set is closed if it contains all of its boundary points. ♦

A familiar example is closed intervals like [a, b]. There are also the closed balls

B̄δ (⃗a) = {x⃗ : ∥x⃗− a⃗∥ ≤ δ}

(Pay close attention to the inequality sign!)
Remark 4.2.9 Recall that a continuous function on closed and bounded interval always attains a maximum
and minimum value; we will see a similar result for functions whose domain is a closed.

Continuity. Continuity is now defined in the familiar way:
Definition 4.2.10 a function f is continuous at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b),

and f is continuous if it is continuous at each point (a, b) in its domain. ♦
See Example 11 in OSC3 Section 4.25.

The familar properties of continuity apply, for sums, differences, products, compositions (so long as the range
of the ”inner” function is within the domain of the ”outer” one) and quotients (where they are defined; away
from division by zero).

See Example 12 in OSC3 Section 4.26.

Polynomials and Rational Functions.
Definition 4.2.11 A polynomial function in two variables x and y is any sum of constant multiples of terms
like xnym with m and n non-negative integers, and a rational function in two variables is a quotient of such
polynomials. ♦

As one might guess, polynomials in one variable are continuous at every point, and so are simply continuous,
and rational functions are continuous at any point where the denominator is non-zero.
But more is true: since points with zero denominator are not in the domain of the rational function, rational
functions are also continuous!
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Functions of Three or More Variables. All the above ideas of limits, continuity, polynomials and rational
functions extend in an obvious way to functions of three or more variables, like f(x, y, z) or f(x1, x2, . . . , xn).
The vector notation x⃗ = ⟨x, y⟩, x⃗ = ⟨x, y, z⟩ or x⃗ = ⟨x1, x2, . . . , xn⟩ becomes convenient for dealing with
functions of any number of independent variables by using the common notation f(x⃗).
We have:
Definition 4.2.12 Function f with domain D in Rn has limit L as x⃗ approaches a⃗ if for any positive ϵ, there
is a positive δ such that

|f(x⃗)− L| < ϵ whenever 0 < ∥x⃗− a⃗∥ < δ and x⃗ is in D.

(Note that only points x⃗ ̸= a⃗ matter.)
If so, we write

lim
x⃗→a⃗

f(x⃗) = L.

♦
See Example 13 in OSC3 Section 4.27.

Study Guide. Study Section 4.2 of Calculus Volume 38; in particular
• All the Definitions, Theorems, Examples and Checkpoints.
• One or several exercises from each of the following ranges: 61, 62, 63–77, 78, 79, 86&87, 88&89, 90–93.

4.3 Partial Derivatives
Revised on March 26.

References.
• OpenStax Calculus Volume 3, Section 4.31.
• Calculus, Early Transcendentals by Stewart, Section 14.3.

Introduction. For a differentiable function of one variable, y = f(x), a single number f ′(a) describes the
rate of change of the function value relative to change in the independent variable x away from x = a.
Change in the value of a function of two variables can be more complicated depending on the direction of
the change. Consider the simple function f(x, y) = 2x− y for (x, y) near (0, 0). Moving a distance h in the
positive x direction changes the value by 2h; moving a distance h in the positive y direction changes the
function value by −h; moving any distance in the direction ⟨1, 2⟩ does not change the value at all.
The reason for this is that there are infinitely many directions in which the values of the independent
variables can change. Thus we start by considering the effect of change along the coordinate axes: changing
one independent variable while holding the other constant.

4.3.1 Partial Derivatives of f(x, y) at a point
For f(x, y) and a point (a, b) in its domain, consider the function given by allowing just x to vary while the y
values is always b: g(x) = f(x, b). Then g′(a) is its rate of change at x = a, which is also the rate of change
of f(x, y) due to change in x alone at (a, b).
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This is called the partial derivative of f with respect to x at (a, b), denoted fx(a, b): using the definition of
the derivative in terms of limits,

fx(a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h
(4.3.1)

Similarly, we define the partial derivative of f with respect to y at (a, b) by

fy(a, b) = lim
h→0

f(a, b+ h)− f(a, b)

h
. (4.3.2)

4.3.2 Partial Derivatives as Functions
For a given point (a, b), the partial derivatives at (a, b), fx(a, b) and fy(a, b), are numbers. As the point at
which these are computed is allowed to vary, this gives functions:
Definition 4.3.1 If f is a function of two variables, its partial derivatives are the functions fx and fy with
values given by

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h

♦
See Example 14 in OSC3 Section 4.32.

That is, to compute fx, treat y as a constant, so that f is teated as a function of a single variable x and
differentiate that. Likewise to compute fy.

See Example 15 in OSC3 Section 4.33.

To distinguish from partial derivatives, the derivative of a function of a single variable, f ′ or dy/dx, is
sometimes called an ordinary derivative.

4.3.3 Notations
A great variety of notations are used in various places for partial derivatives. For z = f(x, y), some are

fx(x, y) = fx =
∂f

∂x
= ∂xf =

∂z

∂x
= f1 = D1f = Dxf (4.3.3)

fy(x, y) = fy =
∂f

∂y
= ∂yf =

∂z

∂y
= f2 = D2f = Dyf (4.3.4)

Note the symbol ∂ (a variant of δ, spoken ”partial”) used in place of the d of the Leibniz notation df/dx for
derivatives of function of a single variable.
For notation that does not depend on particular variable names, the prime notation f ′ is now ambiguous,
so numerical subscripts are used to indicate the position of the variable in forms like f1 and D2f .

4.3.4 Geometrical Meaning
A geometrical interpretation of this is that when computing fx(a, b), one looks at the intersection of the
graph of f with the plane y = b.
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This is the curve that is the graph of function z = g(x) = f(x, b), but drawn on plane y = b instead of on
the x− z plane.
Then fx(a, b) = g′(b) which is the tangent slope of the curve at the point P (a, b, c) with c = f(a, b).
Likewise, fy(a, b) is the tangent slope at this point P to the curve given by the intersection of the graph of
f with the plane x = a.

See Example 16 in OSC3 Section 4.34.

4.3.5 Functions of More than Two Variables
Extensions to functions of three or more variables are fairly intuitive. For example with u = f(x, y, z), we
have

fz(x, y, z) = lim
h→0

f(x, y, z + h)− f(x, y, z)

h

When multiple variables are used with notation u = f(x1, x2, . . . , xn),

∂f

∂xi
= lim

h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x1, . . . , xi, . . . , xn)

h

As above, effectively all variables except one [xi] are treated as constants in the formula for f , and one then
computes as one would the derivative with respect to that one remaining variable.

Other notations include ∂u

∂xi
=

∂f

∂xi
= ∂xif = fxi = fi = Dif .

See Examples 17 and 18 in OSC3 Section 4.35.

4.3.6 Second Partial Derivatives
As with ordinary derivatives one can compute partial derivatives of partial derivatives. The most methodical
notations are things like (fx)y for the derivative with respect to y of the derivative with respect to x of f .
A variety of more concise notations are used:

(fx)x = fxx = f11 =
∂

∂x

∂f

∂x
=
∂2f

∂x2
=
∂2z

∂x2
= D2

1f = D2
xf

(fx)y = fxy = f12 =
∂

∂y

∂f

∂x
=

∂2f

∂y∂x
=

∂2z

∂y∂x
= D2D1f = DyDxf

(fy)x = fyx = f21 =
∂

∂x

∂f

∂y
=

∂2f

∂x∂y
=

∂2z

∂x∂y
= D1D2f = DxDyf

(fy)y = fyy = f22 =
∂

∂y

∂f

∂y
=
∂2f

∂y2
=
∂2z

∂xy
= D2

2f = D2
yf

In the middle two, note the different order of x an y in the different notations, according to whether new
derivatives are added to the right or the left.

See Example 19 in OSC3 Section 4.36.

4.3.7 Does the Order of Derivatives Matter?
In mixed derivatives like fxy and fyx, the order often does not matter, though this is far from obvious:
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Theorem 4.3.2 (Clairaut). If f is defined on an open set D that contains the point (a, b), both partial
derivatives fxy and fyx exist, and both are continuous on that disk, then

fxy(a, b) = fyx(a, b)

In particular, if these two mixed derivatives exist and are continuous everywhere, they are equal everywhere.

4.3.8 Higher Derivatives
Differentation can be done repeatedly (so long as the derivatives exist), and with any number of variables,
with notations like fxyy, fxyzx, ∂3f

∂x∂y∂z
and so on.

Repeated application of Clairaut’s Theorem typically allows reordering of the derivatives, greatly reducing
the number of different higher partial derivatives that need to be computed.

4.3.9 Partial Differential Equations
Many physical laws describe a function of several variables in terms of an equation relating its partial
derivatives. Three of the most important basic ones for functions of two variables are

The Wave
Equation

utt = c2uxx

The Heat
Equation

ut = Kuxx

Laplace’s
Equation

uxx + uyy = 0

Poisson’s
Equation

uxx + uyy = f(x, y)

Schrödinger’s
Equation ih̄ψt = −

h̄2

2m
(ψxx + ψyy + ψzz) + V (x, y, z, t)ψ

See Example 20 in OSC3 Section 4.37.
Question 4.3.3 Verify that u(t, x) = e−t sinx is a solution of the heat equation. "

Study Guide. Study Section 4.3 of Calculus Volume 38; in particular
• The Definitions.
• Clairaut’s Theorem.
• All the Examples (and the Checkpoints following each).
• One or several exercises from each of the following ranges: 112–117, 118–128, 129–131, 132–133, 135–

140, 145–148.

4.4 Tangent Planes and Linear Approximations
References.

• OpenStax Calculus Volume 3, Section 4.41.
• Calculus, Early Transcendentals by Stewart, Section 14.4.
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Tangent Lines Revisited. Recall that for a differentiable function of one variable y = f(x), the tangent line
at point x = a is

L(x) = f(a) + f ′(a)(x− a).

It approximates f(x) well in that the error is

E(x) := f(x)− L(x) = ϵ(x)(x− a) with ϵ(x)→ 0 as x→ a, (4.4.1)

so that
f(x) = f(a) + f ′(a)(x− a) + ϵ(x)(x− a). (4.4.2)

In terms of the increments ∆x = x− a and ∆y = f(x)− f(a),

∆y = f ′(a)∆x+ ϵ∆x.

Big-O and little-o notation. To discuss the smallness of the errors in such tangent approximations, some
notation is useful.
To say that one function f(x) is not ”greatly bigger” than another (positive) quantity g(x) in the limit x→ a,
we use the big-O notation

Definition 4.4.1 f(x) = O(g(x)) near a if there is an upper bound M giving |f(x)|
g(x)

≤ M for |x − a| small
enough.
The same is said for vector-valued functions quantities (using vector norms), and for a =∞. ♦
Example 4.4.2 For any quadratic q(x), q(x) = O(x2) at ∞. "

To say that more, that function f(x) is far smaller than another quantity g(x) in the limit x → a, we use
the little-o notation:
Definition 4.4.3 f(x) = o(g(x)) as x→ a if

lim
x→a

|f(x)|
g(x)

= 0

(And again the same for vector-valued functions and for a =∞.) ♦
Example 4.4.4 lnx = o(1/x) as x→ 0+. "

With this notation the accuracy of the linear approximation can be stated as

f(x) = f(a) + f ′(a)(x− a) + o(|x− a|) (4.4.3)

for x near a.
In fact Taylor’s Theorem says a bit more when f is twice differentiable:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(ξx)

2
(x− a)2

for some ξx between x and a; (see Theorem 6.7 in Section 4.4 of OpenStax Calculus Volume 2.2)
Stated using big-O notation,

f(x) = f(a) + f ′(a)(x− a) +O((x− a)2)
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Tangent Planes. For a function z = f(x, y) whose partial derivatives fx and fy exist a point (a, b), the best
candidate for a function that approximates f well near (a, b) is

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b), (4.4.4)

which in terms of the increments ∆x = x− a and ∆y = y − b is

L(a+∆x, b+∆y) = f(a, b) + fx(a, b)∆x+ fy(a, b)∆y.

This defines the tangent plane z = L(x, y) to f at (a, b).

See Examples 21 and 22 in OSC3 Section 4.43.

The Tangent Plane as a Linear Approximation to f . The tangent plane fits as closely as possible to f , at
least when one look at the traces in the planes x = a and y = b.
The traces of L(x, y) are z = f(a, b)+ fx(a, b)(x− a) in plane y = b and z = f(a, b)+ fy(a, b)(y− b) in plane
x = a, which are the tangent lines to the traces of f in those planes. Since these two tangent lines determine
a unique plane, the plane given by L(x) is the only one that fits this well in these two planes.

See Example 23 in OSC3 Section 4.44.

However, as we shall see, this plane is not always a useful approximation is the sense seen in Equation (4.4.1):
extra conditions of ”continuity nearby” are needed.
Example 4.4.5 Cautionary Example: The Uncomfortable Saddle. Consider the function

f(x, y) =

{ xy

x2 + y2
, (x, y) ̸= (0, 0)

0 , x = y = 0

Both partial derivatives exist at the origin (0, 0) because f(x, 0) = 0, giving fx(x, 0) = 0 and similarly
fy(0, y) = 0. Thus the tangent plane to f at (0, 0) is z = 0. However, for nearby points with y = x,
f(x, y) = f(x, x) = 1/2, and with y = −x, f(x,−x) = −1/2. Thus the value of L(x, y) differs from that of
f(x, y) by up to 1/2 for points arbitrarily close to (0, 0). In fact this shows that f has no limit at the origin,
and so is not continuous. "

Notes on the Example. A novelty here is that both partial derivatives exist, yet the function itself is not
continuous. And those partial derivatives exist everywhere, not only at (0, 0): for (x, y) ̸= (0, 0),

fx(x, y) =
y(x2 − y2)

(x2 + y2)2
, fy(x, y) =

x(y2 − x2)

(x2 + y2)2
.

The problem is that like f itself, neither of these is continuous at (0, 0). For example, fx(0, y) = 1/y for
y ̸= 0.

Linear Approximations and Differentiable Functions. The approximation behavior that we want from the
tangent plane is a 2D version of Equation (4.4.2) or (4.4.3), and this leads to the natural, geometrically
based concept of being differentiable:
Definition 4.4.6 Differentiability. A function f of two variables is differentiable at (a, b) if

f(a+∆x, b+∆y) = f(a, b) + fx(a, b)∆x+ fy(a, b)∆y +ϵ1∆x+ ϵ2∆y

= L(a+∆x, b+∆y) +ϵ1∆x+ ϵ2∆y

with the functions ϵi = ϵi(∆x,∆y) both small near (a, b) in that ϵi(∆x,∆y)→ 0 as (∆x,∆y)→ (0, 0).
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With the little-o notation, this can be phrased in the simpler form

f(a+∆x, b+∆y) = f(a, b) + fx(a, b)∆x+ fy(a, b)∆y + o
(√

(x− a)2 + (y − b)2
)

(4.4.5)

or with vector notation a⃗ = ⟨a, b⟩, x⃗ = ⟨x, y⟩, −→∆x = ⟨∆x,∆y⟩,

f (⃗a+
−→
∆x) = f (⃗a) + ⟨fx(⃗a), fy (⃗a)⟩ ·

−→
∆x+ o(∥−→∆x∥), (4.4.6)

mimicing Equation (4.4.3).
A function f is differentiable if it is differentiable at each point of its domain. ♦
See Example 24 in OSC3 Section 4.45.

A Criterion for Differentiability. Fortunately, there is a simple criterion for differentiability:
Theorem 4.4.7 A function f of two variables is differentiable at (a, b) if its partial derivatives fx and fy exist
at and near (a, b) and are continuous at (a, b).
That is, the partial derivatives exist on some ”ball” Bδ (⃗a).

Clearly the continuity requirement excludes the above example.
On the other hand, all polynomial and rational functions are seen to be differentiable on their natural
domains, including that example: its natural domain excludes (0, 0) due to division by zero in the formula.

Differentials. By definition, a function z = f(x, y) that is differentiable at point (a, b) is accurately approx-
imated nearby by its tangent plane, and it can be convenient to approximate the change in the value of a
function using the notation of differentials as in Section 4.2 of OpenStax Calculus, Volume 16 or Section
3.11 of Calculus, Early Transcendentals by Stewart.
For the independent variables x and y of function z = f(x, y), the differentials dx and dy are just any
increments in the value of those variables from a starting point (x, y).
For the dependent variable z, the differential is the change in the value of the linear approximation as the
independent variables change from (x, y) to (x+ dx, y + dy):

dz = fx(x, y)dx+ fy(x, y)dy =
∂z

∂x
dx+

∂z

∂y
dy.

This differs from the increment in the function value, ∆z = f(x+ dx, y + dy)− f(x, y), by the amount

∆z − dz = ϵ1dx+ ϵ2dy.

This discrepancy is suitably small when the differentials dx and dy are small.

See Example 25 in OSC3 Section 4.47.

Estimating Error with Differentials. One application of this is when the known values x and y of the
independent variables represent experimental measurements or other numerical values with some margin of
error, so that the exact values are x + dx, y + dy and all we know is upper limits on the magnitudes of dx
and dy, say |dx| ≤ Ex, |dy| ≤ Ey.
Then we can get an upper limit on the differential dz and use it to estimate the error ∆x in using f(x, y) as
an approximation of f(x+ dx, y + dy):

|∆z| ≈ |dz| ≤ |fx(x, y)||dx|+ |fy(x, y)||dy| ≤ |fx(x, y)|Ex + |fy(x, y)|Ey.
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Functions of Three Variables. All the ideas of this section extend in unsurprising ways to functions of three
or more variables. In a nutshell, the linear approximation of w = f(x, y, x) is

f(x, y, z) ≈ f(a, b, c) + fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c),

the corresponding differential formula is

dw =
∂w

∂x
dx+

∂w

∂y
dy +

∂w

∂z
dz,

and a function is differentiable if

f(a+∆x, b+∆y, c+∆z) = f(a, b, c) + fx(a, b, c)∆x+ fy(a, b, c)∆y + fz(a, b, c)∆z

+ ϵ1∆x+ ϵ2∆y + ϵ3∆z

= L(a+∆x, b+∆y, c+∆z)

+ ϵ1∆x+ ϵ2∆y + ϵ3∆z

with ϵi(x, y, z)→ 0 as (x, y, z)→ 0.

Functions of Many Variables. For higher dimensions, vector notation is convenient:
Definition 4.4.8 For x⃗ = a⃗+∆x⃗ = ⟨a1, . . . , an⟩+ ⟨∆x1, . . . ,∆xn⟩, differentiability at a⃗ means

f(x⃗) = f (⃗a) + ⟨f1(⃗a), . . . , fn(⃗a)⟩ ·∆x⃗+ ϵ⃗ ·∆x⃗,

ϵ⃗(x⃗)→ 0 as x⃗→ a⃗. ♦

Study Guide. Study Section 4.4 of Calculus Volume 38; in particular
• All the Definitions and Theorems.
• All the Examples (and the Checkpoints following each).
• The following exercises (in the case of a range, do at least one from the range): 163–164, 170–181, 191,

192, 196, 197.

4.5 The Chain Rule and Implicit Differentiation
References.

• OpenStax Calculus Volume 3, Section 4.51.
• Calculus, Early Transcendentals by Stewart, Section 14.5.

Introduction. Since the partial derivatives of any given function can be computed using the rules for ordinary
derivatives, we do not really need any new rules for the derivative of compositions.
However, in practice there is a nice pattern, and by stating this as a rule, time and effort can be saved in
computing partial derivatives, including an easier version of implicit differentiation.

Theorem 4.5.1 The Chain Rule, Case I. For z = f(x, y) a differentiable function of two variables and x = g(t)
and y = h(t) differentiable functions of one variable, the composite function z = f(g(t), h(t)) of one variable
has [ordinary] derivative

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
,=

∂f

∂x

dg

dt
+
∂f

∂y

dh

dt
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or
d

dt
f(g(t), h(t)) = fx(g(t), h(t))g

′(t) + fy(g(t), h(t))h
′(t).

See Example 26 in OSC3 Section 4.52.

The last version emphasizes that the derivatives of f are evaluated with the same arguments as f .
The variables x and y here are independent variables of f but dependent variables of g and h: they are called
intermediate variables in this composition, to distinguish from the independent variable t of the composition.
Adding an extra independent variable to the functions g and h simply turns the above ordinary derivative
dz/dt into a partial derivative ∂z/∂t and adds a second partial derivative:
Theorem 4.5.2 The Chain Rule, Case II. For z = f(x, y), x = g(s, t) and y = h(s, t) functions of two
variables, all differentiable, the function z = f(g(s, t), h(s, t)) is also differentiable, with partial derivatives

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

See Example 27 in OSC3 Section 4.53.

The variables x and y here are independent variables of f and dependent variables of g and h: they are
called intermediate variables in this composition, to distinguish from the independent variables s and t.
There is nothing special about f having two variables: the above rules extend to z = f(x1, x2, . . . xn).
Also, there is nothing special about these n intermediate variables being functions of one or two variables as
in the two cases above. They can instead be functions of m intermediate variables t1 . . . tm.
The following final version of the Chain Rule includes the above two cases, along with the Chain Rule for
functions of a single variable:
Theorem 4.5.3 The Chain Rule, General Version. For z = f(x1, x2, . . . xn) and xi = gi(t1, . . . , tm), 1 ≤ i ≤ n,
all differentiable, the composition z = f(x1(t1, . . . , tm), . . . , xn(t1, . . . , tm)) is a function of t1, . . . , tm that is
also differentiable, with partial derivatives

∂z

∂ti
=

∂z

∂x1

∂x1

∂ti
+ · · ·+ ∂z

∂xj

∂xj

∂ti
+ · · ·+ ∂z

∂xn

∂xn

∂ti

=
n∑

j=1

∂z

∂xj

∂xj

∂ti

See Examples 28 and 29 in OSC3 Section 4.54.

Implicit Differentiation Made Easy. The method of implicit differentiation introduced in an introductory
calculus course (see Section 3.6 of Calculus, Early Transcendentals by Stewart or Section 3.8 of OpenStax
Calculus Volume 15) can be expedited using the Chain Rule for a function of two variables.
Suppose that a function y = f(x) is specified implicitly, as the solution of an equation in x and y. That
equation can be written in terms of a function F of two variables, as F (x, y) = 0. Applying the Chain Rule,
but now with x as the independent variable, F (x, f(x)) = 0 and so dF

dx
= 0, but also the Chain Rule gives

0 =
dF

dx
=
∂F

∂x

dx

dx
+
∂F

∂y

dy

dx
=
∂F

∂x
+
∂F

∂y

dy

dx
.
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Solving gives
dy

dx
= −∂F/∂x

∂F/∂y
= −Fx

Fy
. (4.5.1)

Note the difference between dF

dx
and ∂F

∂x
.

Example 4.5.4 If y = f(x) is defined by the equation x2 + xy3 + sin y = 0, the form F (x, y) = 0 has

∂F

∂x
= 2x+ y3,

∂F

∂y
= 3xy2 + cos y,

so
dy

dx
= −Fx

Fy
= − 2x+ y3

3xy2 + cos y
This is the result one would get with implicit differentiation, but all the equation solving has been done in
advance in (4.5.1), so no longer needs to be done each time. "
See Example 30 in OSC3 Section 4.56.

When Is this Valid? The Implicit Function Theorem. So far it has been assumed that the equation
F (x, y(x)) = 0 determines a differentiable function y = f(x).
This is not always true; there can be:

1. multiple solutions, describing different parts of the curve F (x, y) = 0, and
2. points where that curve has a vertical tangent, so no finite value of dy/dx is possible.

The precise conditions are as follows:
Theorem 4.5.5 The Implicit Function Theorem.

1. If for a point P (x0, y0) satisfying F (x0, y0) = k (a constant), the function F and its partial derivatives
are continuous near P [i.e. on a disk centered at that point] and Fy(x0, y0) ̸= 0, then there is a unique
differentiable function y = f(x) defined for values of x near x0 which solves F (x, f(x)) = k and with
f(x0) = y0; that is, there is a differentiable curve throughP which lies in the level set F (x, y) = k.
Further, its derivative is given by (4.5.1):

dy

dx
= −∂F/∂x

∂F/∂y
= −Fx

Fy
.

2. Likewise, if Fx(x0, y0) ̸= 0, there is a unique differentiable function x = f(y) defined for values of y
near y0 which solves F (f(y), y) = k and with f(y0) = x0, and

dx

dy
= −∂F/∂y

∂F/∂x
= −Fy

Fx
.

Note that in each case, the non-zero derivative condition is merely what is needed for the formulas for the
derivatives along the curve to make sense!
A refinement of this will be seen in Theorem 4.6.2, p. 56 of Section 4.6, p. 53.

Implicitly Defined Functions of Several Variables. A function z = f(x, y) of two variables is sometimes
specified as the solution of an equation F (x, y, z) = 0: for example the function describing a quadric surface,
or at least part of such a surface.
The Chain Rule can again be used to compute the partial derivatives of f .

6openstax.org/books/calculus-volume-3/pages/4-5-the-chain-rule
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(Aside: These partial derivatives help describe the tangent plane at a point on the surface F (x, y, z) = 0 by
giving components of a normal vector to the tangent plane, which will be useful in studying surfaces defined
by equations.)
For such a function f , u(x, y) = F (x, y, f(x, y)) = 0 so both partial derivatives of this composition are zero:
ux = uy = 0.
The Chain Rule gives

∂u

∂x
= 0 =

∂F

∂x

∂x

∂x
+
∂F

∂y

∂y

∂x
+
∂F

∂z

∂z

∂x
.

and a similar result for uy.
A strange thing here is that x and y are the independent variables of u and are also two of the three
intermediate variables.
Clearly intermediate variable y does not depend on independent variable x, so ∂y/∂x = 0, and also ∂x/∂x = 1.
Thus

∂F

∂x
+
∂F

∂z

∂z

∂x
= 0.

This and a similar calculation based on uy = 0 give

∂z

∂x
= −∂F/∂x

∂F/∂z
,

∂z

∂y
= −∂F/∂y

∂F/∂z
. (4.5.2)

Again this is valid at a point (x0, y0, z0) if the following version of the Implicit Function Theorem applies:
Theorem 4.5.6 The Implicit Function Theorem for F (x, y, z) = k.

1. If for a point P (x0, y0, z0) satisfying F (x0, y0, z0) = k, the function F and its partial derivatives
are continuous near P [i.e. on a ball centered at that point] and Fz(x0, y0, z0) ̸= 0, then there is
a unique differentiable function z = f(x, y) defined for values of (x, y) near (x0, y0) which solves
F (x, y, f(x, y)) = k and with f(x0, y0) = z0; that is, there is a ”smooth surface” through P which lies
in the level set F (x, y, z) = k.
Further, its derivatives are as in (4.5.2).

2. Likewise for the other two possibilities of solving for x or y.

A refinement of this will be seen in Theorem 4.6.4, p. 56.

Study Guide. Study Section 4.5 of OSC37; including
• All Theorems, Examples and Checkpoints.
• One or several exercises from each of the following ranges or groups: 215 or 218; 216, 217, 219 or 220;

227, 230–238, 256.

4.6 Directional Derivatives and the Gradient
Slightly revised on April 18.

References.
• OpenStax Calculus Volume 3, Section 4.61.
• Calculus, Early Transcendentals by Stewart, Section 14.6.
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Introduction. It is natural to ask about the rate of change of a function f(x, y) as the arguments change in
any direction around a point (x0, y0) not just along the coordinate axes, and to ask questions like in which
direction is change the fastest.
The cautionary Example 4.4.5, p. 48 of the ”uncomfortable saddle” in Section 4.4, p. 46 shows that the partial
derivatives do not always answer this question.
On the other hand, when a function is differentiableat the point, it is well approximated by the tangent
plane there, and then this linear approximation becomes a good candidate for giving information about the
rate of change in any direction, from the partial derivatives alone.

Directional Derivatives. A direction of change in the plane can be specified by a unit vector u⃗ = ⟨u1, u2⟩,
and we can consider how f(x, y) changes in this direction near (x0, y0) looking at a ”slice” of the function,
along the line ⟨x0, y0⟩+ tu⃗. The value of the function along this line is f(x0 + tu1, y0 + tu2) and its rate of
change is given by the Chain Rule as

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= fx(x0, y0)u1 + fy(x0, y0)u2

This is the directional derivative of f at (x0, y0), denoted Du⃗f(x0, y0), and it does indeed depend only on
the partial derivatives at the point.
Note that its value is the same as if one used the linear approximation T at that point in place of f .

See Example 31 in OSC3 Section 4.62.

Directional Derivatives Defined With Limits. Equivalently, the directional derivative can be defined in
terms of limits as

Du⃗f(x0, y0) = lim
h→0

f(x0 + hu1, y0 + hu2)− f(x0, y0)

h

This exists when f is differentiable at the point (x0, y0).
To summarize, for any unit vector u⃗ = ⟨u1, u2⟩ (or indeed any non-zero vector) and any function f differen-
tiable at (x0, y0), the directional derivative of f at (x0, y0) in direction u⃗ is

Du⃗f(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2 = ⟨fx(x0, y0), fy(x0, y0)⟩ · u⃗

See Example 32 in OSC3 Section 4.63.

The Gradient Vector. The vector ⟨fx(x0, y0), fy(x0, y0)⟩ appearing in the formula for the directional deriv-
ative encapsulates all information about directional and partial derivatives of f at (x0, y0) in a way that has
a nice geometrical meaning.
It is called the gradient vector of f at (x0, y0), and denoted gradf or ∇f , the latter sometimes pronounced
”del f”.
Considered as a function of position,

∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩ =
∂f

∂x
ı̂+

∂f

∂y
ȷ̂.

Note: this is our first example of a vector valued function of several variables.

See Example 33 in OSC3 Section 4.64.
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Directional Derivatives in Terms of The Gradient Vector. The directional derivative above can be written
as

Du⃗f(x, y) = u⃗ ·∇f(x, y),

so the gradient contains all information about directional derivatives.

Tangent Lines to Level Curves. If ∂F
∂y
̸= 0 at point (x0, y0), the implicit function theorem says that the

level curve C of F (x, y) for value k = F (x0, y0) is described nearby by a function y = f(x).
Then Chain Rule differentiation of k = F (x, f(x)) gives

0 =
∂F

∂x

dx

dx
+
∂F

∂y

dy

dx
=
∂F

∂x
+
∂F

∂y

dy

dx

so
dy

dx
= −∂F/∂x

∂F/∂y

Thus the tangent line to the level curve through this point has this slope, and
〈
−∂F

∂y (x0, y0),
∂F
∂x (x0, y0)

〉
is

a tangent vector to the curve. This is perpendicular to the gradient vector
〈

∂F
∂x (x0, y0),

∂F
∂y (x0, y0)

〉
, so the

gradient at such a point on the curve is normal to the tangent line to the level curve at that point, and can
be considered normal to the level curve C.
Similarly, if ∂F/∂x ̸= 0 at any point, swapping x and y above shows that part of the described by an implicit
function x = g(y), and again the gradient vector is normal to the level curve. Hence,
Theorem 4.6.1 The Gradient is Normal to Level Curves. At any point (x0, y0) where F (x, y) is differentiable
and its gradient ∇F (x0, y0) is non-zero, this gradient vector is normal to the level curve of F through that
point, in that it is normal to the line tangent to the level curve at that point.
See Example 35 in OSC3 Section 4.65.

Maximizing the Directional Derivative. The gradient gives the direction in which the directional derivative
is greatest, and is thus the direction of most rapid increase of the value of the function.
One physical interpretation is that if the function value is altitude, the gradient vector indicates the direction
”straight up-hill”. To see this, recall that if the angle between ∇F at (x0, y0) and a unit vector u⃗ is θ,

Du⃗F (x0, y0) = ∇F · u⃗ = |∇F ||u⃗| cos θ,

and this has maximum value when cos θ = 1, which is when θ = 0, so u⃗ is a positive multiple of ∇F . Thus
u⃗ = ∇F/|∇F | gives the direction in which Du⃗F is greatest and so F is increasing the fastest. Further, the
maximum value of the directional derivative is then |∇F |, because |u⃗| = 1.

See Example 34 in OSC3 Section 4.66.

Aside: the Directions of Fastest Decrease and of No Change. The opposite direction −∇F gives fastest
decrease of F .
In between, moving perpendicular to ∇F is moving tangent to the level curve, which is what happens at that
point if movement is along the level curve. Thus moving perpendicular to the direction of fastest increase
or decrease in F is moving in the ”direction of no change in F”, given by moving along a level curve.

The Implicit Function Theorem in Terms of The Gradient.5openstax.org/books/calculus-volume-3/pages/4-6-directional-derivatives-and-the-gradient
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Theorem 4.6.2 If at a point P (x0, y0) on a level set F (x, y) = k the gradient is non-zero (∇f(x0, y0) ̸= 0⃗)
then there is a differentiable parametric curve x = f(t), y = g(t) which passes through the point (x0, y0) and
lies in the level set F (x, y) = k: F (f(t), g(t)) = k.
Also, the parameter can be chosen to be one of x or y and so one can ensure than d

dt ⟨x(t), y(t)⟩ is a multiple
of ⟨Fy,−Fx⟩ (a normal to ∇F ), ensuring that this part of the level set near the point P is a smooth curve.
Thus, if the gradient of F is non-zero everywhere on this level set, the whole level set is a collection of smooth
curves. Even if ∇F is zero at some points, the rest of the level set is a collection of smooth curves.
Proof. (Sketch)
At least one of the components Fx(x0, y0) and Fy(x0, y0) of the gradient is non-zero, so at least one option
in Theorem 4.5.5, p. 52 in Section 4.5, p. 50 applies, and the parameter t can always be chosen to be one of
x or y. Then either dx/dt = 1 or dy/dt = 1, so the velocity is non-zero, ensuring smoothness. #
Exercise 4.6.3 Consider the level sets F (x, y) = x2 − y2 = k. Break it up into the three cases

1. k > 0
2. k < 0
3. and the exceptional case k = 0

Functions of Three Variables. For a differentiable function f of three variables one can likewise define the
directional derivative of in direction u⃗ = ⟨u1, u2, u3⟩

Du⃗f(x, y, z) = lim
h→0

f(x+ u1h, y + u2h, z + u3h)− f(x, y, z)

h

and the gradient
∇f(x, y, z) = ⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩ .

See Example 36 in OSC3 Section 4.67.

Again
Du⃗f(x, y, z) = u⃗ ·∇f(x, y, z),

and again the directional derivative is greatest in the direction of the gradient.

See Example 37 in OSC3 Section 4.68.
Theorem 4.6.4 The Implicit Function Theorem in 3D. If at a point P (x0, y0, z0) on a level set F (x, y, z) = k
the gradient is non-zero then there is a differentiable parametric surface x = f(t, s), y = g(t, s), z = h(t, s)
which passes through the point (x0, y0, z0) and lies in the level set F (x, y, z) = k: F (f(t, s), g(t, s), h(t, s)) = k.
Further, the parameters can be chosen to be one of the pairs (x, y), (x, z) or (y, z), which ensures that this
part of the level set near the point P is a smooth surface approximated well by a tangent plane.

Tangent Planes to Level Surfaces. For a function F , consider the level surface S given by F (x, y, z) = k
through a point P (x0, y0, z0), consider and any curve r⃗(t) = ⟨x(t), y(t), z(t)⟩ that lies in this level surface
and passes through this point when t = t0. The composition of F with these three component functions give
the constant function F (x(t), y(t), z(t)) = k, and by the Chain Rule, its zero derivative is also

0 =
∂F

∂x

dx

dt
+
∂F

∂y

dy

dt
+
∂F

∂z

dz

dt
= ∇F · r⃗′(t)

In particular ∇F (x0, y0, z0) · r⃗′(t0) = 0.
The possible directions r⃗′(t0) for a curve passing through this point and staying in the level curve are thus
all orthogonal to ∇F (x0, y0, z0) and thus are directions in the plane:

∇F (x0, y0, z0) · ⟨x− x0, y − y0, z − z0⟩
= Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0
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Thus it is natural to call this plane the tangent plane to this level surface S at point P and to say that the
direction of ∇F (x0, y0, z0) is normal to S at P .

Normal Lines to Level Surfaces. The line through this point normal to the surface is called the normal line
to S through P , and has symmetric equations

x− x0

Fx(x0, y0, z0)
=

y − y0
Fy(x0, y0, z0)

=
z − z0

Fz(x0, y0, z0)
.

Tangent Planes to Graphs. An important special case is the tangent plane to the graph of a function of
two variables, z = f(x, y). This is given as a level surface by F (x, y, z) = f(x, y)− z = 0, so Fz(x, y, z) = −1,
leading to the equation

fx(x0, y0)(x− x0) + fx(x0, y0)(y − y0)− (z − z0) = 0.

Using z0 = f(x0, y0), this is

z = f(x0, y0) + fx(x0, y0)(x− x0) + fx(x0, y0)(y − y0),

which is the equation of the tangent plane to z = f(x, y) at (x0, y0) seen in Section 4.4, p. 46.

Study Guide. Study Section 4.6 of Calculus Volume 39; in particular
• All Theorems, Examples and Checkpoints.
• One or several exercises from each of the following ranges or groups: 263–273, 274–279, 280–283,

299–301, 302–305.

4.7 Maxima/Minima Problems
References.

• OpenStax Calculus Volume 3, Section 4.71.
• Calculus, Early Transcendentals by Stewart, Section 14.7.

Introduction. We have seen the significance of the gradient ∇f when it is non-zero: it gives the direction of
fastest increase (and decrease) of the value of f .
What happens at a point where the gradient vector vanishes? All directional derivatives vanish a such a
point, as Du⃗f = ∇f · u⃗ = 0, so loosely, the function does not increase or decrease in any direction.
This suggests that f has a local maximum, local minimum or other type of critical point, just as with the
case where the derivative of a function of one variable is zero. We shall see that this is so, but with some
extra geometrical possibilities at critical points not seen with functions of a single variable.

Definition 4.7.1 A function f of two variables has a local maximum at point (a, b) if f(x, y) ≤ f(a, b) when
(x, y) is near (a, b) (in the sense that this is true for all points within some disk with center (a, b)). The
number f(a, b) is a local maximum value. A local minimum at (a, b) and the local minimum value there
are defined similarly in terms of f(x, y) ≥ f(a, b). A local extremum is either a local maximum or a local
minimum. ♦
Theorem 4.7.2 If f has a local extremum at point (a, b), both first order partial derivatives exist there,
and the domain of f includes some disk (or ball) around the point, then fx(a, b) = fy(a, b) = 0. That is,
∇f(a, b) = 0.

The ”disk” requirement is for the same reason that a function of one variable can have a local extremum at
an endpoint of its domain even though f ′ ̸= 0 there.
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Caution at the Boundary of the Domain of f . This theorem says nothing about points at the boundary
of the domain of f , since at such points, at least one partial derivative fails to exist. That is because the
definitions

fx(a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h
, fy(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h

require f(a+ h, b) and f(a, b+ h) to exist for all h values near 0, both positive and negative, so the domain
of f needs to extend a bit to the ”left”, ”right”, ”above” and ”below” (a, b). Thus we will consider boundary
points separately.
Definition 4.7.3 A point (a, b) in the domain of f is a critical point (or stationary point) if fx(a, b) = fy(a, b) =
0, or if at least one of these partial derivatives does not exist. Strictly, this includes any point on the boundary
of the domain, because strictly one or both derivatives do not exist at such a point. ♦
Exercise 4.7.4 Check that the functions

f1(x, y) = x2 + y2,f2(x, y) = −x2 − y2,

f3(x, y) = x2 − y2,f4(x, y) = xy

each have a single critical point, at (0, 0). Which have local minima, which have local maxima, and which
have neither? What about the critical points of f5(x, y) = x2?

See Example 38 in OSC3 Section 4.72.

Note that if we freeze one variable (x = 0 or y = 0), each of the resulting functions of a single variable has a
local extremum, and the second derivative test tells us which it is. However, something new happens in the
last two cases, and a modified second derivative test helps:
Theorem 4.7.5 The Second Derivatives Test. Suppose that fx(a, b) = fy(a, b) = 0 and also the quantity

D = D(a, b) = fxx(a, b)fyy(a, b)− [fxy(a, b)]
2

is not zero. Then
• If D > 0 and fxx(a, b) > 0 then f has a local minimum at (a, b).
• If D > 0 and fxx(a, b) < 0 then f has a local maximum at (a, b).
• If D < 0 then f does not have a local extremum at (a, b).
• If D = 0, no conclusion!

See Example 39 in OSC3 Section 4.73.

Notes on the Second Derivatives Test.
1. When D < 0, the point is called a saddle point, as in the last two of the four examples above.
2. To see why there is no conclusion when D = 0, consider examples like f(x, y) = ±x4 ± y4.
3. D is given by the determinant formula

D =

∣∣∣∣
fxx fxy
fyx fyy

∣∣∣∣

Absolute Maximum and Minimum Values. With a continuous function of one variable on a closed interval
[a, b], absolute maximum and minimum values are attained, and occur at points where f ′ = 0, or f ′ does not
exist, or at at endpoints. Thus typically, finding the absolute extrema only involves comparing the values
of f at a finite collection of such points. With functions of two variables, closed intervals are replaced by
closed, bounded domains, which have an infinite number of points at their boundary where extrema can
occur, regardless of how the partial derivatives behave.
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Definition 4.7.6 A bounded set in R2 or R3 is one that lies inside some disk or ball.
(This also works in R, where a ”ball” is an open interval {x : |x− a| < δ}.) ♦

And to recap some definitions from Section 4.2, p. 40:
Definition 4.7.7 A boundary point for a set is one such that every disk/ball centered at that point is partly
in that set, partly outside it, and the boundary of a set is the set of all its boundary points. ♦

Note that a boundary point might or might not be in the set itself:
the two set of points {(x, y) : x ≥ 0} and {(x, y) : x > 0} both have the boundary points {(x, y) : x = 0},
but the first set contains all these boundary points, while the second contains none.
Definition 4.7.8 A closed set is one that contains all its boundary points. A set is open if it contains none of
its boundary points. Many sets are neither open nor closed. ♦
Theorem 4.7.9 Extreme Value Theorem for Functions of Two Variables. If function f is continuous on a
closed, bounded set D in R2 then f attains an absolute maximum value f(x1, y1) and an absolute minimum
value f(x2, y2) at some points in D.

Thus there a basic strategy for finding these absolute extrema:
1. Find the critical points of f in D, ignoring points on the boundary of D.
2. Find the values of f at each such point.
3. Find the extreme values of f on boundary of D.
4. Find the largest and smallest of all these values.

However, for now, Item 3, p. 59 might rely on case-by-case stategies, depending on the form of the boundary,
since unlike the situation with end-points of an interval, there are usually infinitely many boundary points.
Section 4.8, p. 59 introduces a powerful method for finding those extrema on the boundary of a set.

See Example 40 in OSC3 Section 4.74.

Study Guide. Study Section 4.7 of Calculus Volume 35; in particular
• All the Definitions, Theorems, Examples and Checkpoints.
• Both the Problem Solving Strategies.
• One or several exercises from each of the following ranges: 310–313, 314–317, 318–340, 345–347, 348–

357.

4.8 Lagrange Multipliers
References.

• OpenStax Calculus Volume 3, Section 4.81.
• Calculus, Early Transcendentals by Stewart, Section 14.8.

Introduction. We often wish to find the optimum value of some quantity (like designing a car of minimum
weight, or maximum fuel efficiency) subject to various constraints (like sufficient strength and passenger
capacity).
For example, we might wish to design a rectangular box of volume one cubic metre with minimum surface
area. This involves choosing values of the three dimensions x, y, and z of the box such that

4openstax.org/books/calculus-volume-3/pages/4-7-maxima-minima-problems
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• V (x, y, z) = xyz = 1 and
• A(x, y, z) = 2xy + 2xz + 2yz is minimized.

There is also the restriction that x, y and z must be positive, which determines the domain of functions A
and V .

4.8.1 Finding the Extrema Values on a Curve of a Function of Two Variables
There is a geometrical approach to such problems, most easily seen in two dimensions.
The problem then is to find the maximum of minimum of function F (x, y) over points (x, y) lying on a level
curve of a function G: G(x, y) = k, for some given constant k. At a typical point (x0, y0) of this level curve,
the level curve F (x, y) = F (x0, y0) that passes through the same point crosses the level set of G.
Thus, moving along the set G(x, y) = k, one can get to either side of this level curve of F , and the two sides
given higher and lower values of F .
Therefore, the value of F is not at a maximum or minimum at such a point (x0, y0), amongst points with
G(x, y) = k.
By elimination, an extremum of F on the level curve G(x, y) = k can only occur at a point where the two
level curves do not cross, but are ”tangent”, and this can only happen when they have the same tangent
direction, and thus the same normal direction. The normal vectors are given by the gradients, so the
necessary condition for an extremum of F under the constraint that G(x0, y0) = 0 is

−→∇F (x0, y0) = λ
−→∇G(x0, y0) for some value of λ. (4.8.1)

The factor λ is the Lagrange Multiplier, which gives this method its name. The same result can be derived
purely with calculus, and in a form that also works with functions of any number of variables. Note: it is
typical to fold the constant k into function G so that the constraint is G = 0, but it is nicer in some examples
to leave in the k, so I do that.

Deriving Necessary Condition −→∇F = λ
−→∇G from Calculus. The necessary condition for a local extremum

of F on the set G(x, y) = k can also be derived by calculus.
Suppose a local extremum occurs at point (x0, y0) and consider the generic case that neither Gx(x0, y0) nor
Gy(x0, y0) is zero there.
By the Implicit Function Theorem Theorem 4.5.5, p. 52, there is a solution y = g(x) of G(x, y) = k near a
point where F has a local maximum [minimum].
Points (x, g(x)) satisfy the constraint, so F (x0, y0) being a local maximum [minimum] means that f(x) =
F (x, g(x)) has a local maximum [minimum] at x0, and so has a critical point.
The Chain Rule and implicit differentiation give

0 =
df

dx
=
∂F

∂x

dx

dx
+
∂F

∂y

dy

dx
= Fx + Fy

−Gx

Gy

so
FxGy = FyGx or Fx

Gx
=

Fy

Gy
, at .

Thus at (x0, y0),
−→∇F = ⟨Fx, Fy⟩ is a multiple of −→∇G = ⟨Gx, Gy⟩. The special case where one of Gx(x0, y0)

or Gy(x0, y0) is zero can also be handled: one can always get FxGy = FyGx, which says that the two vectors
are parallel.
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The Augmented Function F +λ(k−G). For differentiable functions F and G, the above conditions −→∇F =

λ
−→∇G and G = k are exactly the conditions for a critical point of the augmented function H = F +λ(k−G);

that is, solutions of −→∇H(x, y,λ) = 0.
Aside: If the constraint is in form G = 0, the augmented function is H = F − λG.
To see this, note that the critical points of H are given by

∂H

∂x
=
∂F

∂x
− λ∂G

∂x
= 0,

∂H

∂y
=
∂F

∂y
− λ∂G

∂y
= 0,

∂H

∂y
= k −G = 0.

The first two equations are equivalent to −→∇F − λ−→∇G = 0; the last is G(x, y)(x, y, z) = k.

The System of Equations to Solve. Although the form −→∇ [F + λ(k − G)] = 0 can be easier to remember,
and redefining G so that k = 0 gives the even simpler form

−→∇(F − λG) = 0.

In practice one can work with the component equations

Fx(x, y) = λGx(x, y), Fy(x, y) = λGy(x, y), G(x, y) = k. (4.8.2)

Since in the end only the value of x and y are needed, one approach is to eliminate λ by multiplying the first
two equations by Gy(x, y) and Gx(x, y) respectively, getting

Fx(x, y)Gy(x, y) = λGx(x, y)Gy(x, y) = Fy(x, y)Gx(x, y)

so that
Fx(x, y)Gy(x, y)− Fy(x, y)Gx(x, y) =

∣∣∣∣
Fx(x, y) Fy(x, y)
Gx(x, y) Gy(x, y)

∣∣∣∣ = 0. (4.8.3)

This single equation involving a 2-by-2 determinant is then combined with the constraint equation G(x, y) = k
to get two equations in the two relevant unknowns x and y.

Another way to see this result is to think of the gradients as the vectors −→∇F = Fx ı̂+Fy ȷ̂ and −→∇G = Gx ı̂+Gy ȷ̂
in R3; then the condition of them being parallel is that they have zero cross product, and that multiplication
gives

(Fx ı̂+ Fy ȷ̂)× (Gx ı̂+Gy ȷ̂) =

∣∣∣∣
Fx(x, y) Fy(x, y)
Gx(x, y) Gy(x, y)

∣∣∣∣ k̂ = 0.

See Example 42 and 43 in OSC3 Section 4.82.

4.8.2 Finding the Extrema Values on a Surface of a Function of Three Variables
A very similar argument using the implicit function theorem shows that for differentiable functions F and
G of any number of variables, F can only have its maximum or minimum values over the set defined by
equation G(x, y) = k at points where −→∇F and −→∇G are parallel, which can again be expressed as

−→∇F = λ
−→∇G (4.8.4)

Example 4.8.1 The box of smallest area for given volume is a cube. Consider the problem of designing a
rectangular box of specified volume V = xyz and minimum surface area A = 2xy + 2xz + 2yz:
F (x, y, z) = 2(xy + xz + yz) is to be minimized under the constraint G(x, y, z) = xyz − V = 0.
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The conditions on the three components of the gradients are

2(y + z) = λyz, 2(x+ z) = λxz, 2(x+ y) = λxy

Multiplying these by x, y and z respectively gives

V = xyz = λ2x(y + z) = λ2y(x+ z) = λ2z(x+ y). (4.8.5)

Eliminating the Lagrange multiplier λ as soon as possible is usually a good idea, since it is not part of the
final answer, and we can do that now: from (4.8.5) and the fact that V ̸= 0, we see that λ ̸= 0, giving

xy + xz = yx+ yz = zx+ zy.

The first equality gives xz = yz and since z ̸= 0, this gives x = y; similarly, y = z, so x = y = z: a cube, as
claimed.
Finally, the constraint xyz = V gives the dimensions as x = y = z = 3

√
V , and so the minimum area is

A = 2xy + 2xz + 2yz = 6( 3
√
V )2 = 6V 2/3. This is the only possible extremum, so must give the desired

minimum of area: for any size, the optimal shape is a cube. "
Example 4.8.2 The open-topped box of minimum surface area for a given volume is a half cube (half as high
as wide). Consider the problem of designing a rectangular open topped box of width x, depth y, and height
z that minimizes surface area A = xy + 2xz + 2yz while having a prescribed volume V = xyz, say V = 4:
A = F (x, y, z) = xy + 2xz + 2yz is to be minimized under the constraint G(x, y, z) = xyz = V , V constant.
The condition on the the gradients is −→∇A = λ

−→∇G, or

y + 2z = λyz, x+ 2z = λxz, 2x+ 2y = λxy.

Multiplying these by x, y, and z respectively gives

λxyz = xy + 2xz = xy + 2yz = 2xz + 2yz. (4.8.6)

Again, eliminate the Lagrange multiplier λ as soon as possible; using the last two of the equations above:

xy + 2xz = xy + 2yz (4.8.7)
xy + 2xz = 2xz + 2yz. (4.8.8)

To avoid division by zero, note that xyz = V > 0, so none of x, y or z can be zero.
From Equation (4.8.7) we get x = y: the bottom is square.
Then Equation (4.8.8) becomes x2 + 2xz = 4xz, so x = 2z: the height is half the horizontal dimensions; a
half-cube.
Finally, the volume constraint xyz = V = 4 becomes x3/2 = V = 4, so x = y = 3

√
2V = 2, z = x/2 = 1. "

Example 4.8.3 The open-topped box of greatest volume for a given surface area is again a half cube. Consider
now the related problem of designing a rectangular open topped box of width x, depth y, and height z, but
this time specifying the value of the surface area A = xy + 2xz + 2yz and maximizing the volume V = xyz:
F (x, y, z) = V = xyz is to be maximized under the constraint G(x, y, z) = xy + 2xz + 2yz = A, A constant
(say A = 12).
The condition on the the gradients is −→∇V = λ

−→∇G, or

yz = λ(y + 2z), xz = λ(x+ 2z), xy = λ(2x+ 2y).

Multiplying these by x, y and z respectively gives

V = xyz = λ(xy + 2xz) = λ(xy + 2yz) = λ(2xz + 2yz).

Again we can and should eliminating the Lagrange multiplier λ now. Division by zero is avoided because
V ̸= 0 ensures that none of λ, x, y, and z is zero, so

xy + 2xz = xy + 2yz = 2xz + 2yz,
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just as in Equation (4.8.6). just as in Equation (4.8.6). Thus, just as in that example, we get the half-cube
shape, x = y, z = x/2.

• From xy + 2xz = xy + 2yz we get x = y: the bottom is square.
• Then xy + 2xz = 2xz + 2yz becomes x2 = 2xz = 4xz, so x = 2z: the height is half the horizontal

dimensions; a half-cube.
• Finally, the area constraint xy + 2xz + 2yz = A becomes 3x2 = A, so x = y =

√
A/3, z = x/2.

"
See Example 44 in OSC3 Section 4.83.

Dual Problems. The fact that the optimum shape is the same for these two problems is not a coincidence:
Swapping the function to be extremized with the constraint function and swapping between maximizing
and minimizing always gives the same solutions like this, through getting the same equations once we have
eliminated that Lagrage multiplier λ.
All that happens is that the factor λ moves from one gradient to the other, which is like changing λ to 1/λ.
Pairs of optimization problems related in this way are called Dual Problems.
An alternate strategy for solving makes this duality even clearer, by eliminating the Lagrange multiplier λ
from the beginning and treating the functions F and G equally. This is to note that the condition (4.8.4) is
again that the two gradient vectors are parallel and so their cross product is zero:

−→∇F ×−→∇G

=

∣∣∣∣
Fy(x, y, z) Fz(x, y, z)
Gy(x, y, z) Gz(x, y, z)

∣∣∣∣ ı̂+
∣∣∣∣
Fz(x, y, z) Fx(x, y, z)
Gz(x, y, z) Gx(x, y, z)

∣∣∣∣ ȷ̂+
∣∣∣∣
Fx(x, y, z) Fy(x, y, z)
Gx(x, y, z) Gy(x, y, z)

∣∣∣∣ k̂

= 0⃗. (4.8.9)

This now gives three equations (each of these 2-by-2 determinants must be zero), but in fact any two holding
ensures that the third one does also, so only any two need be solved; along with the constraint equation
G(x, y, z) = k this gives a total of three equations in the three unknowns, as expected.

4.8.3 Finding Extreme Values under Several Constraints
A function F (x, y, z) can have it domain restricted by two constraints, G(x, y, z) = k1, H(x, y, z) = k2, which
generically limits the points (x, y, z) to a curve in space. Arguments like those above show that extrema can
only occur at solutions of −→∇F = λ

−→∇G+ µ
−→∇H, (4.8.10)

where there are now two Lagrange multipliers, λ and µ.
In practice, one can proceed by solving the system of five equations

Fx = λGx + µHx, Fy = λGy + µHy, Fz = λGz + µHz,

G(x, y, z) = k1, H(x, y, z) = k2.

As noted above, it is often best to to try to eliminate λ and µ as soon as possible, since their values are
unneeded.
Example 4.8.4 Find the points in R3 of the intersection of the cylinder x2+y2 = 1 with the plane x+y+z =
1 that are (a) closest to and (b) furthest from the origin. (This intersection is an ellipse.)Rather than
extremizing the distance, use its square: F (z, y, z) = x2 + y2 + z2. "

Yet again, one strategy for eliminating the two Lagrange multipliers is to note that the condition is that the
three vectors −→∇F (x, y, z), −→∇G(x, y, z) and −→∇H(x, y, z) lie in a plane, and so the parallelepiped with these
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three vectors as its edges has zero volume, or equivalently, these vectors have zero scalar triple product, as
discussed in Subsection 2.4.3, p. 22. Thus the condition is

−→∇F (x, y, z) · (−→∇G(x, y, z)×−→∇H(x, y, z)) = 0

which expands to the determinant equation
∣∣∣∣∣∣

Fx(x, y, z) Fy(x, y, z) Fz(x, y, z)
Gx(x, y, z) Gy(x, y, z) Gz(x, y, z)
Hx(x, y, z) Hy(x, y, z) Hz(x, y, z)

∣∣∣∣∣∣
= 0 (4.8.11)

This single equation plus the two constraint equations gives three equations in just the three relevant un-
knowns x, y and z.

See Example 45 in OSC3 Section 4.84.

Study Guide. Study Section 4.8 of Calculus Volume 35; in particular
• The Problem Solving Strategy.
• Theorem 20, and its implied extension to the case of two constraints.
• All Examples and Checkpoints.
• Several exercises from the range 358–368, including at least one with a function of three variables

f(x, y, z).
• Several of the ”modelling” exercises from the range 380–390.

Chapter Review. When reviewing this chapter, also look at the end of chapter review material in OpenStax
Calculus Volume 3, including Key Terms6, Key Equations7 and Key Concepts8.
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Chapter 5

Multiple Integration

References.
• OpenStax Calculus Volume 3, Chapter 5.1

• Calculus, Early Transcendentals by Stewart, Chapter 15.

Introduction. This Chapter is under construction.

5.1 Double Integrals over Rectangular Regions, and Iterated Integrals
Revised on March 17.

References.
• Section 5.1 of OpenStax Calculus Volume 31.
• Sections 15.1 and 15.2 of Calculus, Early Transcendentals by Stewart.

Introduction. The simplest extension of the idea of the definite integral
∫ b

a
f(x) dx over interval a ≤ x ≤ y

is to try to ”combine” or ”integrate” all values of a function f(x, y) for arguments a ≤ x ≤ b, c ≤ y ≤ d.
That is, we consider the function on a rectangular domain

R = [a, b]× [c, d] = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}

which has the same role as the interval I = [a, b] for the definite integral
∫ b
a f(x) dx.

5.1.1 Double Integrals over Rectangles

The simplest extension of the idea of the definite integral
∫ b

a
f(x) dx over interval a ≤ x ≤ y is to try to

”combine” or ”integrate” all values of a function f(x, y) for arguments a ≤ x ≤ b, c ≤ y ≤ d. That is, we
consider the function on a rectangular domain

R = [a, b]× [c, d] = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}

which has the same role as the interval I = [a, b] for the definite integral
∫ b
a f(x) dx.

1openstax.org/books/calculus-volume-3/pages/5-introduction
1openstax.org/books/calculus-volume-3/pages/5-1-double-integrals-over-rectangular-regions
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The Definite Integral and Area Under the Graph of f(x). Recall the definition
∫ b

a
f(x) dx = lim

n→∞

n∑

i=1

f(x∗
i )∆x

where the points x∗
i each lie in one of the n subintervals of interval [a, b] of width ∆x = (b− a)/n, and recall

that this is motivated as a calculation of the area between the curve y = f(x) and the x-axis over the interval
[a, b], at least if f(x) > 0, got from approximations with the sums of the area of many thin rectangles.
Likewise we will motivate the definition of the definite integral of f(x, y) over region R as the volume of
the solid region between the surface z = f(x, y) and the x-y plane over this rectangle, and start with
approximations with the sums of the volume of many thin thin rectangular boxes (”matchsticks”), each with
base a small rectangle and height given by f .

Double Integrals and Volume under the Graph of f(x, y). As before, the interval a ≤ x ≤ b is divided into
n equal subintervals [xi−1, xi], xi = a + i∆x, ∆x = (b − a)/n. Likewise we divide interval c ≤ y ≤ d is
divided into m equal subintervals [yj−1, yj ], yj = a+ j∆y, ∆y = (d− c)/m. This divides the region R into
nm little rectangles each of area ∆A = ∆x∆y, and in each of these we choose a point (x∗

ij , y
∗
ij) where f will

be evaluated, to give the height of a thin rectangular box.
The volume of each matchstick is f(x∗

ij , y
∗
ij)∆A, giving approximate volume for the whole solid as

V ≈
n∑

i=1

m∑

j=1

f(x∗
ij , y

∗
ij)∆A.

See Example 1 in OSC3 Section 5.12.

The Midpoint Rule. Perhaps most natural choice of these points is to put each one at the middle of the
rectangle:

x∗
ij = x̄i =

xi−1 + xi

2
= a+ (i− 1/2)∆x,

y∗ij = ȳj =
yj−1 + yj

2
= c+ (j − 1/2)∆y,

so that
V ≈

n∑

i=1

m∑

j=1

f(x̄i, ȳj)∆A.

This is indeed useful if you wish to approximate volumes numerically.

Exact Volume as a Limit. Given the above approximation of the volume, it is natural to define the exact
volume as the limit when the rectangles get ever smaller:

V = lim
m,n→∞

n∑

i=1

m∑

j=1

f(x∗
ij , y

∗
ij)∆A.

The Double Integral. The above idea is also useful in other contexts where the value of f need not be
non-negative, so more generally we use:
Definition 5.1.1 For function f continuous on rectangle R, the double integral of f over rectangle R is

∫∫

R

f(x, y) dA = lim
m,n→∞

n∑

i=1

m∑

j=1

f(x∗
ij , y

∗
ij)∆A

2openstax.org/books/calculus-volume-3/pages/5-1-double-integrals-over-rectangular-regions
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♦
This appears to depend on the choice of the values x∗

ij and y∗ij for each choice of n and m. However, it can
be proven that due to continuity, the result is the same for any choice.
In fact more is true: the spacing of the points xi and yj does not have to be equal, and the evaluation
points do not need to be the midpoints, they just need to lie in the relevant small rectangle: (x∗

ij , y
∗
ij) ∈

[xi−1, xi]× [yj−1, yj ].
What still matters is that all the intervals shrink to length zero: with

∆xi = xi − xi−1, ∆x = max
i

∆xi

∆yj = yj − yj−1, ∆y = max
j

∆yj

∆Aij = ∆xi∆yj

one can say that so when ∆x→ 0 and ∆y → 0,
n∑

i=1

m∑

j=1

f(x∗
ij , y

∗
ij)∆Aij →

∫∫

R

f(x, y) dA.

The sum appearing in this definition,
n∑

i=1

m∑

j=1

f(x∗
ij , y

∗
ij)∆Aij

is called a double Riemann sum, and includes the volume approximation above as an example. Thus it is
natural to define the volume of the solid over rectangle R and under the graph of a positive-valued function
f to be the value of this double integral.
We will see in Subsection 5.1.3, p. 67 how such integrals can sometimes be evaluated using results we already
know for integrals of functions of one variable.

5.1.2 Properties of Double Integrals Over Rectangles
Before learning how to evaluate such integrals, we note a few rather intuitive and familiar properties about
sums, constant multiples and comparisons.

∫∫

R

f(x, y) + g(x, y) dA =

∫∫

R

f(x, y) dA+

∫∫

R

g(x, y) dA. (5.1.1)

∫∫

R

kf(x, y)) dA = k

∫∫

R

f(x, y) dA for any k. (5.1.2)

If f(x, y) ≤ g(x, y) then
∫∫

R

f(x, y)) dA ≤
∫∫

R

g(x, y) dA (5.1.3)

when the first inequality holds for all points (x, y) in R.
Once we define double integrals over more general domains D ⊂ R2 in Section 5.2, p. 70 it will be noted in
Subsection 5.2.4, p. 71 that these properties all still hold.

5.1.3 Iterated Integrals
The essential idea of this section is one formula, which in a sense does for double integrals what the Funda-
mental Theorems of Calculus did for definite integrals, by allowing evaluation using anti-derivatives.
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Theorem 5.1.2 (Fubini). If f is continuous on the rectangle R = [a, b]× [c, d] then
∫∫

R

f(x, y) dA =

∫ b

x=a

[∫ d

y=c
f(x, y) dy

]
dx =

∫ d

y=c

[∫ b

x=a
f(x, y) dx

]
dy

In particular, all the integrals here exist.
More generally, if f is bounded on R and is continuous except except on a finite number of smooth curves,
all these integrals exist and are equal.

(Aside: Indicating the variable name for each integral with ”
∫ b
x=a” and ”

∫ d
y=c” is not mandatory, but it can

help with clarity, so I recommend it. It also follows the pattern of summation notation, ”
∑n

i=1”.)
The allowance for being discontinuous along curves will be important in the next section!

See Examples 2–7 and 9 in OSC3 Section 5.13.

The full proof of Fubini’s Theorem is not given here; it is dealt with in a more advanced calculus course.
Such as Math 311: Advanced Calculus

However, it is fairly easy to verify in the special case of
∫∫

R f(x)g(y)dA, as will be seen soon.
The main objective here is to explain iterated integrals and see how to evaluate them using familiar techniques
for definite integrals.
An iterated integral is one like the middle expression above:

∫ b

x=a

[∫ d

y=c
f(x, y) dy

]
dx

(which can be shortened as
∫ b
a

∫ d
c f(x, y) dy dx).

Evaluation of this iterated integral starts with the inside integral
∫ d

y=c
f(x, y) dy

which is what is sometimes called a partial integral: like a partial derivative, we focus on the variable y that
appears in the differential dy (and sometime in the limits of integration, as a reminder!), and treat x as a
constant.

Evaluating Partial Integrals. For any given x value (in the range a ≤ x ≤ b) this definite integral gives a

number, but since that number depends on x, the overall result is a function of x:
∫ d

y=c
f(x, y) dy = G(x),

and so ∫ b

x=a

∫ d

y=c
f(x, y) dy dx =

∫ b

a
G(x) dx

So once the partial integral is evaluated, what remains is a familiar definite integral in variable x.
This then gives a number (not a function of x or y), which by Fubini’s Theorem is also the value of the
double integral.

A Product Rule. One useful special case is when the integrand is a product of two functions, one in each
variable: ∫∫

R

f(x)g(y) dA =

∫ b

x=a

∫ d

y=c
f(x)g(y) dy dx

3openstax.org/books/calculus-volume-3/pages/5-1-double-integrals-over-rectangular-regions
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In the inner integral, x is effectively a constant, so f(x) is a constant factor, and can be moved outside of
this inner, y integral:

∫ b

x=a

∫ d

y=c
f(x)g(y) dy dx =

∫ b

x=a
f(x)

[∫ d

y=c
g(y) dy

]
dx

Now, the whole integral
∫ d
y=c g(y) dy gives a constant, so can be moved outside the outer x integral:

∫ b

x=a
f(x)

[∫ d

y=c
g(y) dy

]
dx =

∫ d

y=c
g(y) dy

∫ b

x=a
f(x) dx

All together, the double integral of a product has been broken into a product of ”single” integrals:
Proposition 5.1.3 A Product Rule.

∫∫

R

f(x)g(y) dA =

∫ b

x=a

∫ d

y=c
f(x)g(y) dy dx =

∫ b

a
f(x) dx

∫ d

c
g(y) dy (5.1.4)

Note well: this is about the only situation where the integral of a product is a product of integrals! Intuitively,
it relies on the differential dA itself being like a product dA = dx dy, so that it can also be factored into a
differential for use in each of the two one dimensional integrals at right.
Note that the double integral of any polynomial in two variables can be broken up into a sum of product
integrals like this.

Note 5.1.4 At this point, OpenStax Calculus Volume 3, Section 5.14 defines the average value of a function
over a rectangle; these notes instead postpone that to Equation (5.2.14) in Section 5.2, p. 70, where the idea
can be applied to the average value over more general regions in the plane.

Iterated Integrals Over Other Regions. In an iterated integral, the dummy variable of the outer integral is
fixed in the inner integral: that is, the inner integral is evaluated once for each value of the ”outer” variable.
Thus, it makes sense for the limits of the inner integral to depend on the that outer variable. This leads to
integral of the forms

∫ x=b

x=a

∫ y=T (x)

y=B(x)
f(x, y) dy dx and

∫ y=d

y=c

∫ x=R(y)

x=L(y)
f(x, y) dx dy.

In the first of these, the set of all x and y values in R2 involved are those between the vertical lines x = a
and x = b, bounded above and below by a top curve y = T (x) and a bottom curve y = B(x), and the inner
integral gives

G(x) =

∫ y=T (x)

y=B(x)
f(x, y) dy.

Similarly, in the second, the set of all x and y values are those between the horizontal lines y = c and y = d,
bounded at the sides by a left curve x = L(y) and a right curve x = R(y).
Such integrals will be part of our strategy for evaluating integrals over more general regions.

Study Guide. Study Section 5.1 of OpenStax Calculus Volume 35; in particular
• All the Definitions and Theorems.
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• Iterated integrals, and Fubini’s Theorem, which is the key to how most integral will actually be evalu-
ated.

• Examples 2 to 9 (and the corresponding Checkpoints).
• One or several exercises from each of the the groups 11 & 12, 13–20, 21–34.

5.2 Double Integrals over General Regions
Revised on March 17.

References.
• Section 5.2 of OpenStax Calculus Volume 31.
• Section 15.3 of Calculus, Early Transcendentals by Stewart.

5.2.1 The Double Integral Over a Bounded Domain
Consider the problem of calculating the volume of the solid that sits above the bounded region D in the
plane, and under the surface z = f(x, y). Since the region is bounded, one can surround it with a rectangle
R, and then extend the solid with a zero volume sheet covering the part of R outside D.
The resulting solid is the one over R and under the graph of the extended function

F (x, y) =

{
f(x, y) for (x, y) ∈ D,
0 for (x, y) in R but not in D.

Thus it seems reasonable to define the volume of this solid as
∫∫

R F (x, y) dA, and to define the double
integral of f over D as the integral of this extended function over the extended domain R:
Definition 5.2.1 Integral over a bounded domain D. For any rectangle R = [a, b]× [c, d] containing bounded
region D ∫∫

D

f(x, y) dA :=

∫∫

R

F (x, y) dA (5.2.1)

♦
(Note the notation ”x := y” for ”x is defined to be y”.)

Does This Integral Exist? However, at the boundary of the domain, F is likely to be discontinuous, jumping
to value zero outside D, so does this integral even exist?
Fubini’s Theorem gives an answer: so long as the boundary of D is made up of a finite set of smooth curves,
F is continuous everywhere except on those curves, and that is enough for its double integral to exist (and
to be computable using iterated integrals.)
Theorem 5.2.2 If f is continuous on a bounded domain D except on a finite number of smooth curves, and the
boundary of D is made up of a finite number of smooth curves, then

∫∫
D f(x, y) dA as defined in Equation

(5.2.1) above exists.

5.2.2 Iterated Integrals over Non-rectangular Regions
Type I Regions. Double integrals are easiest when the domain can be described by inequalities such as a
domain of Type I (which I also like to call ”Type dy dx”, because as we will see, that indicates the order in
which the integrations are done):

D = {(x, y)|a ≤ x ≤ b,B(x) ≤ y ≤ T (x)}
1openstax.org/books/calculus-volume-3/pages/5-2-double-integrals-over-general-regions
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This region is bounded above and below by curves y = T (x), y = B(x), and at left and right by vertical
lines x = a and x = b.
Thus the domain divides into a collection of vertical line segments, and the integral can be done first along
each such line (integral in y with fixed x) and then integrating the resulting value over x:

∫∫

D

f(x, y) dA =

b∫

a

T (x)∫

B(x)

f(x, y) dy dx

=

b∫

x=a

⎡

⎢⎣

T (x)∫

y=B(x)

f(x, y) dy

⎤

⎥⎦ dx (5.2.2)

Note: I suggest labeling the variable in the limits of integration, as with
∫ b
x=a, even when not strictly

necessary; this can provide more clarity in some later calculations.

Type II Regions. Reversing the roles of x and y gives a domain of Type II (which I also call ”Type dx dy”):

D = {(x, y)|c ≤ y ≤ d, L(y) ≤ x ≤ R(y)}

This is the collection of horizontal lines bounded below by y = c, above by y = d, to the left by curve
x = L(y),and to the right by x = R(y), and the integral can be evaluated as

∫∫

D

f(x, y)dA =

d∫

y=c

⎡

⎢⎣

R(y)∫

x=L(y)

f(x, y) dx

⎤

⎥⎦ dy (5.2.3)

See Example 11 in OSC3 Section 5.22.
Theorem 5.2.3 (Fubini’s Theorem, Strong Form). The above formulas (5.2.2) and (5.2.3) are valid for regions
of Type I and Type II respectively.
See Examples 12 and 13 in OSC3 Section 5.23.

5.2.3 A Strategy for Evaluating Double Integrals
In setting up double integrals as iterated integrals, the first question to ask is:
Can the minimum and maximum allowed values of one variable be specified as functions of the other?
If so, the integral is done over the variable whose values are so described, and then over the other variable.
The integral done last must have numerical lower and upper limits, not depending on another variable.
Note well: If the upper or lower limit on one of the iterated integrals depends on another dummy variable
of integration, this integral must be inside the integral over that other variable, because that other dummy
variable only has a specific variable inside the integral over that variable.

5.2.4 Properties of Double Integrals
The three properties stated in Subsection 5.1.2, p. 67 for double integrals over a rectangle apply to all double
integrals; they are worth updating here for the more general case, and adding some more.

1. ∫∫

D

f(x, y) + g(x, y) dA =

∫∫

D

f(x, y) dA+

∫∫

D

g(x, y) dA. (5.2.4)

2openstax.org/books/calculus-volume-3/pages/5-2-double-integrals-over-general-regions
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2. ∫∫

D

kf(x, y)) dA = k

∫∫

D

f(x, y) dA for any k. (5.2.5)

3.
If f(x, y) ≤ g(x, y) then

∫∫

D

f(x, y)) dA ≤
∫∫

D

g(x, y) dA (5.2.6)

when the first inequality holds for all points (x, y) in D.
4. Further, a domain can be cut into pieces and the integrals over the pieces added:

Proposition 5.2.4 If domain D is the union of two domains D1 and D2 with no overlap except possibly
on their boundaries, then

∫∫

D

f(x, y)dA =

∫∫

D1

f(x, y)dA+

∫∫

D2

f(x, y)dA. (5.2.7)

There is now a natural definition of the area of a region D as a double integral, by identifying it as the
volume of the cylinder of height 1 over that region:
Definition 5.2.5 The area of region D is

A(D) =

∫∫

D

1 dA (5.2.8)

♦
Exercise 5.2.6 Verify that this gives the area of the rectangular region R = [a, b] × [c, d] to be A(R) =
(b− a)(d− c).
The easy way to do this is via a simple iterated integral, but as a further exercise one can also calculate this
using the original definition in terms of limits of sums, Definition 5.1.1, p. 66.
Exercise 5.2.7

1. Sketch the triangular region between the lines y = 0, x = 3 and y = 2x
2. Show that it is both of Type I and Type II, and set up iterated integral expressions for its area in the

corresponding ”dx dy” and ”dy dx” forms.
3. Use one or both of these integrals to calculate its area.
4. Check your answer with geometry.

See Example 8 in OSC3 Section 5.14 and Example 18 in OSC3 Section 5.25.

Combined with the inequality of Double Integral Property 3, p. 72 in (5.2.6),
Proposition 5.2.8 if m ≤ f(x, y) ≤M for all points in D,

m A(D) ≤
∫∫

D

f(x, y)dA ≤M A(D) (5.2.9)

5.2.5 Domains of More Complicated Shapes: Divide and Conquer
Not all domains fit the types seen so far.
For other domain shapes, often the best hope is to seek a way to divide the domain into several pieces, each
of one of the types above. For a region whose boundary consists of one or more smooth curves, vertical cuts
through each point on the boundary with a vertical tangent will (usually) divide it into a collection of Type
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I regions. (Likewise cutting on each horizontal tangent will divide it into Type II regions, and sometimes a
mixture of both can give simpler pieces.)
Then the total integral is the sum of the integral over these pieces, using Double Integral Property 4, p. 72
as in Equation (5.2.7).
Sometimes, the formulas for the curves at the top and bottom (and/or at left and right) change at certain
points; then a few extra vertical (and/or horizontal) cuts at these transition points give smooth curves and
a single formula for the limits on each piece.
This strategy is not quite universal —it assumes for example that there are only a finite number of boundary
points with vertical (resp. horizontal) tangents— but it is widely useful.
Exercise 5.2.9 Draw some regions with ”meandering boundaries” (not of either Type I or Type II) and see
what these vertical and/or horizontal tangent line cuts do.

See Example 14 in OSC3 Section 5.26.

5.2.6 Changing the Order of Integration
Unlike with double integrals over rectangles, one cannot simply swap the order of the integrals in an iterated
integral when the limits of the inner integral depend on the variable in the outer one. For example, the
upper half of the unit disk is of both Type I and Type II and an integral over it is given by

∫ 1

x=−1

∫ √
1−x2

y=0
dy dx (5.2.10)

but swapping those limits gives
∫ √

1−x2

y=0

∫ 1

x=−1
dx dy

which is nonsensical, because the limits on the outer integral cannot depend on the ”inner”, dummy variable
x.
Instead, swapping requires several steps:

1. Check that the domain is of both Type I and Type II; if not, divide it into pieces tht are.
2. Work out the full range of possible values that can be attained by the inner variable over all possible

values of the outer variable, by looking at the extreme possible values, which correspond to values on
the boundary of the domain: these become the limits of the new outer integral.

3. For each value of this new outer integral variable, solve for the allowable values of the new inner one:
these will now (in general) depend on the new outer variable, and become the limits of the new inner
integral.

For this, it helps to express the domain in terms of inequalities, and then solve the corresponding equations
to descibe the boundary of the domain: those equations describe the relation between x and y that applies
at the two limits of the inner integral.
It can also be very helpful to sketch the domain!
Example 5.2.10 For an integral over the unit disk, the Type I form is as above in (5.2.10), and the domain is

D = {(x, y)|− 1 ≤ x ≤ 1, 0 ≤ y ≤
√

1− x2}

(Note that the variables are always listed ”from the outside inward”.)
Considering all allowable value for x the highest allowable value of y is 1, occuring for x = ±1 and the lowest
value is simply 0.
Thus 0 ≤ y ≤ 1 is the overall range, giving the outer integral

∫ 1
y=0 . . . dy

6openstax.org/books/calculus-volume-3/pages/5-2-double-integrals-over-general-regions

https://openstax.org/books/calculus-volume-3/pages/5-2-double-integrals-over-general-regions


CHAPTER 5. MULTIPLE INTEGRATION 74

Next, the boundary consists of all points at the limits of the inner integral:

y = 0 and y =
√
1− x2

Each of these can be solved for x:
1. y = 0 adds no constraints on x other than the overall restriction −1 ≤ x ≤ 1.
2. y =

√
1− x2 gives the extremities x2 = 1− y2 and thus the solutions x = −

√
1− y2 and x =

√
1− y2,

limiting points in the domain to −
√
1− y2 ≤ x ≤

√
1− y2.

3. The combination of these restriction is just the latter, so for a given value of y, the values of x in the
domain are −

√
1− y2 ≤ x ≤

√
1− y2

4. That is, the domain is

D = {(x, y)|− 1 ≤ y ≤ 1,−
√
1− y2 ≤ x ≤

√
1− y2}

which means that the Type II iterated integral form (slicing the half-disk horizontally) is

∫ 1

y=0

∫ √1−y2

x=−
√

1−y2

dx dy (5.2.11)

"
Exercise 5.2.11 Make sketches to illustrate this: first the vertical slicing of Type I and then the horizontal
slicing of Type II.
Example 5.2.12 The iterated integral ∫ 1

y=0

∫ 1

x=y
sin(x2) dx dy (5.2.12)

can not be evaluated in this order in terms of elementary functions, because there is no elementary anti-
derivative of sin(x2). However, it can be evaluated by first changing the order of integration.
Firstly, y ≤ x ≤ 1 and 0 ≤ y ≤ 1 gives the range of all possible values of x as 0 ≤ x ≤ 1.
Then for a given value of x, the extremes of y come from y ≤ x and y = 0: that is, 0 ≤ y ≤ x, giving the
new iterated integral form

∫ 1

x=0

∫ x

y=0
sin(x2) dy dx,=

∫ 1

x=0

[
]

∫ x

y=0
dy

]
sin(x2) dx. (5.2.13)

The inner integral is now easy: ∫ x

y=0
dy =

[
y
]x
y=0

= [x− 0] = x,

so the iterated integral (5.2.13) gives ∫ 1

x=0
x sin(x2) dx

Finally, the substitution u = x2, du = 2xdx gives
∫ 1

u=0
sin(u)du

2
=

[
− cos(u)

2

]1

u=0

=
− cos(1)− (− cos(0))

2
=

1− cos(1)
2

.

"
See Examples 15 and 16 in OSC3 Section 5.27.
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5.2.7 The Average Value of a Function over a Region
The average value of a function f(x) over interval [a, b] was defined as the definite integral over that interval
divided by the ”size” of the interval, measured by its length b− a. This is the natural choice of size, because
it ensures that the average of a constant function equals its value.
Similarly, it makes sense to define the average value of a function over region R as the integral divided by
the area A(R) of the region:

fave = f =

∫∫

R

f(x, y) dA

A(R)
=

∫∫

R

f(x, y) dA

∫∫

R

dA
(5.2.14)

For the case of rectangle R = [a, b]× [c, d], A(R) = (b− a)(d− c), so

fave = f =

∫∫

R

f(x, y) dA

(b− a)(d− c)
.

Now that we have some practice describing domains in both Type I and Type II styles, also review Examples
17, 18 and 19 in OSC3 Section 5.28.

5.2.8 Optional Topic: Improper Double Integrals
We can make sense of an integral over an infinite ”corner” region like

D = {(x, y)|a ≤ x ≤ ∞, c ≤ y ≤ ∞}

as a double limit in both the upper limits:
∫∫

D

f(x, y) dA = lim
(b,d)→(∞,∞)

b∫

x=a

d∫

y=c

f(x, y) dy dx (5.2.15)

= lim
(b,d)→(∞,∞)

d∫

y=c

b∫

x=a

f(x, y) dx dy (5.2.16)

Example 5.2.13 For domain D = [0,∞)× [0,∞)

∫∫

D
xye−(x2+y2)dA = lim

(b,d)→(∞,∞)

∫ b

x=0

∫ d

y=0
xye−(x2+y2) dy dx

=

(
lim
b→∞

∫ b

0
xe−x2

dx

)(
lim
d→∞

∫ d

0
ye−y2

dy

)
=

(
lim
b→∞

∫ b

0
xe−x2

dx

)2

The single integral can be evaluated using the substitution u = x2, du = 2xdx as

1

2
lim

B→∞

∫ B

0
e−u du =

1

2
lim

B→∞
[−e−u]Bu=0 =

1

2
lim

B→∞
(−e−B + e−0) = 1/2,

so the double integral is
∫∫

D
xye−(x2+y2)dA = 1/4. "

Study Guide. Study Section 5.2 of OpenStax Calculus Volume 39 up to the subsection on Calculating
Volumes, Areas, and Average Values; that is, omitting the final topic of Improper Double Integrals (However,
study it if interested: such integrals come up in physics and mathematical probability.) In particular
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• Theorems 3 to 7.
• The Definitions of Type I and Type II regions, and how to visualize them.
• The strategy for changing the order of integration, by converting between a ”Type I description” and

a ”Type II description”.
• Examples 11–18, and the Checkpoints following each.
• Exercises 61–63 (They go together.)
• Exercises 66 and 67. (They go together.)
• Exercise 72 or 73.
• One or more of Exercises 74 to 77.
• Exercise 78 and/or 79.
• One or more of Exercises 80 to 85.

5.3 Double Integrals in Polar Coordinates
References.

• Section 5.3 of OpenStax Calculus Volume 31.
• Calculus, Early Transcendentals by Stewart, Section 15.4.

Introduction. After rectangles, perhaps the single most common shape for a domain in two dimensions is a
disk, and other domains with some radial symmetry are common too.
Calculations are often easiest if one uses an approach that emphasizes the symmetry of the domain: using
polar coordinates based at the center of the disk. It is simple enough to chose coordinates with origin at the
center of the disk, so we work with cartesian coordinates x and y and polar coordinates r and θ as seen in
Section 1.3, p. 7:

x = r cos θ, y = r sin θ, so that r2 = x2 + y2, tan θ = y/x.

5.3.1 Disks, Annuli, Sectors, and Polar Rectangles
The disk of radius R, {(x, y) : x2 + y2 ≤ R2}, is described in polar coordinates as

D = {(r, θ)|0 ≤ r ≤ R, 0 ≤ θ ≤ 2π},

which is a type of polar rectangle.
In general, a polar rectangle is a set

{(r, θ)|a ≤ r ≤ b,α ≤ θ ≤ β}, , , , constants. (5.3.1)

See Example 24 in OSC3 Section 5.32.

This includes annuli and sectors of disks:
• An annulus is a polar rectangle covering all angles: α = 0, β = 2π.
• A sector is a polar rectangle that includes the origin: a = 0.
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5.3.2 Integration Over a Polar Rectangle
Integration over a polar rectangle can be done by starting again from approximations, as in Section 5.1, p. 65.
(In Section 5.7, p. 85 we will see another method: changing coordinates, as with substitution.)
Consider approximations using the midpoint rule.
First subdivide the r and θ values into

a = r1 < r2 < · · · < rn = b and α = θ1 < θ2 < · · · < θm = β

with spacing ri − ri−1 = ∆r, θi − θi−1 = ∆θ.
Then find the midpoints r∗i = (ri−1 + ri)/2, θ∗i = (θi−1 + θi)/2: this divides the domain into many small
polar rectangles

Rij = {(r, θ)|ri−1 ≤ r ≤ ri, θj−1 ≤ θ ≤ θj},

each with a ”midpoint” (r∗i , θ
∗
j ).

Next, we can approximate the integral of f(r, θ) over each small polar rectangle as f(r∗i , θ
∗
j )A(Rij), with

A(Rij) the area of each polar rectangle.
The area of a sector is {(r, θ)|0 ≤ r ≤ b,α ≤ θ ≤ β} is (β − α)b2/2, so by subtraction,

A(Rij) = (θi − θi−1)(r
2
i − r2i−1)/2 = ∆θr∗i∆r

Summing all these approximations and taking the limit leads to
∫∫

D

f(r, θ)dA = lim
n,m→∞

n∑

i=1

m∑

j=1

f(r∗i , θ
∗
j )r

∗
i ∆r∆θ.

This is simply the double integral in variables r and θ of function f(r, θ)r:
∫∫

D

f(r, θ)dA =

∫ β

θ=α

∫ b

r=a
f(r, θ) r dr dθ (5.3.2)

In effect, the infinitesimal area is now expressed as dA = r dr dθ with polar coordinates, in place of dA = dx dy
with cartesian coordinates.
See Examples 25, 26 and 27 in OSC3 Section 5.33.

5.3.3 Integrals in Polar Coordinates Over Other Domains
Polar coordinates can be useful for integrals over domains of other shapes, like annuli and sectors. Just as
with the Type I and Type II domains seen in Section 5.2, p. 70 with cartesian coordinates, there are two
special cases where it is worth converting to polar coordinates:

• For a domain D = {(r, θ)|α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ)},
∫∫

D

f(x, y) dA =

∫ β

θ=α

∫ r2(θ)

r=r1(θ)
f(r cos θ, r sin θ) r dr dθ (5.3.3)

• For a domain D = {(r, θ)|a ≤ r ≤ b, θ1(r) ≤ θ ≤ θ2(r)},
∫∫

D

f(x, y) dA =

∫ b

r=a

∫ θ2(r)

θ=θ1(r)
f(r cos θ, r sin θ) dθ r dr (5.3.4)
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See Example 28 in OSC3 Section 5.34.

The former is more common in practice.

5.3.4 Calculating Areas and Volumes using Polar Coordinates
One basic use of double integrals is computing areas, and this sometimes involved polar integrals: if a region
D is a polar rectangle as in Equation (5.3.1), or a more general polar analogue of a Type I or Type II region
as in Equations (5.3.3) and (5.3.4), The area is A(D) =

∫∫
D dA is no given by the appropriate choice of

A(D) =

∫ β

θ=α

∫ r2(θ)

r=r1(θ)
r dr dθ

or
A(D) =

∫ r2

r=r1

∫ θ2(r)

θ=θ1(r)
dθ r dr

For area calcuations, see Examples 33 and 34 in OSC3 Section 5.35.

Also, the volume over such a region between the x-y plane and the surface z = f(x, y) is as usual given by
the corresponding polar integral of function f .

For volume calcuations, see Examples 29 to 32 in OSC3 Section 5.36.

5.3.5 Optional Topic: Improper Double Integrals Using Polar Coordinates
Improper double integrals over the whole plane of radially symmetric functions (and even some others with
a still simple polar form) are often best evaluated using polar coordinates. This requires a variant of the
”expanding rectangles” approach seen in Subsection 5.2.8, p. 75, instead using expanding discs to cover the
whole plane: with BR = BR((0, 0)) the disc of radius R centered at the origin

∫∫

R2

f(x, y)dA = lim
R→∞

∫∫

BR

f(x, y)dA = lim
R→∞

∫ R

r=0

∫ 2π

θ=0
f(x, y) r dr dθ (5.3.5)

One interesting application of this is evaluating the integral associated with the Gaussian distribution,

I =

∫ ∞

−∞
e−x2

dx =
√
π (5.3.6)

First,
I =

∫ ∞

−∞
e−x2

dx,=

∫ ∞

−∞
e−y2

dy

Multiplying these two forms and using the product rule backwards:

I2 =

∫ ∞

x=−∞

∫ ∞

y=−∞
e−x2

e−y2

dy dx

=

∫∫

R2

e−(x2+y2) dA

=

∫ ∞

r=0

∫ 2π

θ=0
e−r2r dr dθ

=

∫ ∞

r=0
e−r2r dr

∫ 2π

θ=0
dθ

4openstax.org/books/calculus-volume-3/pages/5-3-double-integrals-in-polar-coordinates
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The θ integral is simple:
∫ 2π
θ=0 dθ = 2π. The improper r integral is

∫ ∞

r=0
e−r2r dr = lim

R→∞

∫ R

r=0
e−r2r dr

= lim
R→∞

∫ R2

u=0
e−u du

2
using u = r2, du = 2rdr

= lim
R→∞

[
−e−u

2

]R2

u=0

= lim
R→∞

(
−e−R2

+ e0

2

)
=

1

2

Thus I2 = 1
22π = π, confirming Equation (5.3.6).

An aside on the normal (Gaussian) distribution of statistics. A change of variables gives the form usually
seen in statistics: ∫ ∞

−∞
e−x2/2 dx =

√
2π (5.3.7)

so that ∫ ∞

−∞

e−x2/2

√
2π

dx = 1 (5.3.8)

meaning that φ(x) = 1√
2π

e−x2/2 is a probability distribution: a non-negative function with integral over its
whole domain being one.
In fact this is the standard normal distribution, or unit normal distribution; the reason for the factor of 1/2
can be verified in this (somewhat challenging) exercise.
Exercise 5.3.1 The standard deviation of the standard normal distribution is one. Confirm that the standard
normal distribution 1√

2π
e−x2/2 has variance 1 and therefore its standard deviation (the square root of the

variance) is also 1. That is, verify ∫ ∞

−∞
x2e−x2/2 dx =

√
2π

The mean of the standard normal distribution,

µ :=

∫∞
−∞ xφ(x) dx
∫∞
−∞ φ(x) dx

=

∫ ∞

−∞
xφ(x) dx =

∫∞
−∞ xe−x2/2 dx

√
2π

is zero due to the oddness of the integrand, and then a change of variables shows that the more general
distribution

φµ,σ(x) =
1

σ
√
2π

e−((x−µ)/σ)2/2 (5.3.9)

has integral one and so it is also probability density, with mean
∫ ∞

−∞
xφµ,σ(x) dx = µ

and standard deviation ∫ ∞

−∞
x2φµ,σ(x) dx = σ

This is the Normal Distribution of mean µ and standard deviation σ, sometimes denoted N (µ,σ2); it is
probably the most important distribution in mathematical statistics.

Study Guide. Study Section 5.3 of Calculus Volume 37; in particular
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• The definition of a double integral in polar coordinates.
• Theorem 5.8, expressing these double integrals as iterated integrals.
• Examples 24–32 and the Checkpoints following each.
• One or several exercises from each of the following ranges: 122–127, 128–131, 144–147, 148–151, 153–

157, 158–159.
It might help to review polar coordinates in Section 7.3 of Section 5.3 of Calculus Volume 28, and their
application to computing areas in the following Section 5.49.

5.4 Triple Integrals
Revised on March 17.

References.
• Section 5.4 of OpenStax Calculus Volume 31.
• Section 15.6 of Calculus, Early Transcendentals by Stewart.

Introduction. The ideas used to define double integrals and then evaluate then in terms of iterated integrals
can be extended to triple integrals for functions of three variables: as usual, getting from one dimension to
two has taken care of most the hard work and new ideas.

5.4.1 Triple Integrals over a Box
In place of rectangles in the plane, we start with integrals over boxes in space:

B = {(x, y, z)|a ≤ x ≤ b, c ≤ y ≤ d, r ≤ z ≤ s} = [a, b]× [c, d]× [r, s]

Then we divide this into many small boxes, by first dividing the ranges of x, y and z values into sub-intervals.
Using l x-subintervals of length ∆x = (b− a)/l, m y-subintervals of length ∆y = (d− c)/m, n z-subintervals
of length ∆z = (s− r)/n, the boxes are

Bijk = [xi−1, xi]× [yj−1, yj ]× [zk−1, zk]

with
xi = a+ i∆x, yj = c+ j∆y, zk = r + k∆z.

Choosing a point (x∗
ijk, y

∗
ijk, z

∗
ijk) in each box, the integral is approximated by the triple Riemann sum for

function f on box B:
l∑

i=1

m∑

j=1

n∑

k=1

f((x∗
ijk, y

∗
ijk, z

∗
ijk)∆V, ∆V = ∆x∆y∆z.

One natural choice of the evaluation points is again the mid-points

(x∗
ijk, y

∗
ijk, z

∗
ijk) = (x̄i, ȳj , z̄k) =

(
xi−1 + xi

2
,
yj−1 + yj

2
,
zk−1 + zk

2

)
.
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Definition 5.4.1 Triple Integral over a Box. The triple integral of f over box B is
∫∫∫

B

f(x, y, z) dV = lim
l,m,n→∞

l∑

i=1

m∑

j=1

n∑

k=1

f((x∗
ijk, y

∗
ijk, z

∗
ijk)∆V ,

if this limit exists. ♦
As you can probably guess, triple integrals can be expressed in terms of three nested integrals, over the three
variables:
Theorem 5.4.2 Fubini’s Theorem for Triple Integrals. If f is continuous on the rectangular box [a, b]× [c, d]×
[r, s] then ∫∫∫

B

f(x, y, z) dV =

∫ b

x=a

∫ d

y=c

∫ s

z=r
f(x, y, z) dz dy dx (5.4.1)

In particular, this triple integral exists, as do all the integrals on the right-hand side. Also, the order in
which the variables of f are listed does not matter, so the same result is given by any of the six possible
orderings of the three integrals.

For most practical purposes, this iterated integral could be used as the definition of the triple integral over
a rectangular box.

See Examples 36 and 37 in OSC3 Section 5.42.
Note that Example 37 shows the natural extension of the product rule to triple integrals. Also, Example 36
can be broken up into several applications of that product rule, as can any integral of a polynomial.

5.4.2 Triple Integrals over Bounded Regions
For a region E in R3 that is bounded, and with its boundary a finite collection of smooth surfaces, we can
define the triple integral with the same method as in Subsection 5.2.1, p. 70: define the function outside
region E to have value zero, and integrate this extended function over a box containing E.
In practice, the most manageable regions are ones akin to the Type I and Type II regions in the plane. Just
as Type I regions were described as ”Type dy-dx” in Subsection 5.2.2, p. 70, indicating the order in which
the iterated integrals can easily be done, this jargon can be extended to three dimensional regions as ”Type
dz-dy-dx” (as with the order in Equation (5.4.1)) and so on.
That is, a type dz-dy-dx region E is one of the form

E = {(x, y, z)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), u1(x, y) ≤ z ≤ u2(x, y)} (5.4.2)

(As described in the text, this is a type I region in space, sitting over a type I region D in the plane.)

5.4.3 Iterated Integral Form for Type dz-dy-dx Regions in Space
The triple integral over such a region is given by

∫∫∫

E

f(x, y, z) dV =

∫ b

x=a

∫ g2(x)

y=g1(x)

∫ u2(x,y)

z=u1(x,y)
f(x, y, z) dz dy dx

See Examples 38 and 39 in OSC3 Section 5.43.
Example 5.4.3 Integration over a Ball. The ball E = {(x, y, z)|x2 + y2 + z2 ≤ R2}, can be described by the
inequalities −R ≤ x ≤ R, −

√
1− x2 ≤ y ≤

√
1− x2, −

√
1− x2 − y2 ≤ z ≤

√
1− x2 − y2.

2openstax.org/books/calculus-volume-3/pages/5-4-triple-integrals
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Thus, the integral over such a ball is

∫∫∫

x2+y2+z2≤R2

f(x, y, z) dV =

R∫

x=−R

√
R2−x2∫

y=−
√
R2−x2

√
R2−x2−y2∫

z=−
√

R2−x2−y2

f(x, y, z) dz dy dx

(or any of five similar reorderings).
However, we will soon see a better approach in Section 5.5, p. 83, explointng the radial symmetry.

"

5.4.4 Changing the Order of Integration
With iterated triple integrals there are six possible order for the integrals, and just as seen with Type I and
Type II regions for double integrals, not all are possible for all domains. Also, some choices of order might
make the differnce between an easier integral, a harder one, or one that cannot not be evaluated using known
antiderivatives.
Thus, it can be useful to seek to change the order of integrals, and again one key is solving equations for the
boundary of the domain, which then give the inequalities describing the limits of each integral.
An important point is that, as in Equation (5.4.2) and in Equations (5.2.2) and (5.2.3) fot Type I and Type
II double integrals, the limits of integration of each integral might depend on the variable of an integral
”outside” it (integral sign to the left) but cannot refer to the variable in another integral ”inside it” (integral
sign to the right).

See Examples 40 and 41 in OSC3 Section 5.44.

5.4.5 Volumes and Averages
Just as area can be computed in terms of a double integral, a bounded region E in R3 has volume

V (E) =

∫∫∫

E

1 dV, often abbreviated
∫∫∫

E

dV

and it should be no surprise that the average of a function f(x, y, z) over region E is defined as

f̄ =

∫∫∫
E f(x, y, z) dV

V (E)
.

See Example 42 in OSC3 Section 5.45.

Study Guide. Study Section 5.4 of Calculus Volume 36; in particular
• The definition of a triple integral.
• Fubini’s Theorem for triple Integrals (Theorem 5.9), expressing triple integrals as iterated integrals.
• Theorem 5.10, expressing a triple integral over a general region in terms of iterated integrals.
• Examples 36–39 and above all, Examples 40 and 41. (Plus as usual the Checkpoints following each).
• One or several exercises from each of the following ranges: 181–184, 185–188, 191–194, 195–198, and

211 and/or 212.
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5.5 Triple Integrals in Cylindrical and Spherical Coordinates
Revised on March 18.

References.
• Section 5.5 of OpenStax Calculus Volume 31.
• Sections 15.7 and 15.8 of Calculus, Early Transcendentals by Stewart.

5.5.1 Preview: Double Integrals in Polar Coordinates Revisited
To evaluate double integrals in cartesian coordinates x,y and in plane polar coordinates r,θ, we use the
iterated integral forms

∫∫

D

f dA =

∫∫

D

f(x, y) dx dy =

∫∫

D

f(r cos θ, r sin θ)r dr dθ

The basic geometrical idea is embodied in the formula

dA = dx dy = r dr dθ (5.5.1)

which intuitively speaking describes the area of an infinitesimal roughly rectangular region in terms of the
infinitesimal ranges of the coordinates over that region.
Let us re-derive these formulas for the infinitesimal area dA in a heuristic, geometrical way, to prepare for
the 3D versions.
For cartesian coordinates, it is clear that increasing x by up to dx and y by up to dy sweeps out a rectangle
of sides dx and dy and thus of area dA = dx dy.
For plane polar coordinates, changing r by dr (without changing θ) moves to a point a distance dr away,
along a line through the origin, but instead changing the angle θ by amount dθ (without changing r) moves
a distance r dθ along a circle around the origin, so at right angles to the first movement.
Thus increasing r and θ by amounts of up to dr and dθ respectively sweeps out a roughly rectangular region
of sides dr and rdθ, and so of area dA = r dr dθ.

5.5.2 Triple Integrals in Cylindrical Coordinates
Recall cylindrical coordinates, introduced in Subsection 2.7.1, p. 26, and in particular the change of coordi-
nates formulas (2.7.1)
To express triple integrals in terms of three iterated integrals in these coordinates r, θ and z, we need to
describe the infinitesimal volume dV in terms of those coordinates and their differentials dr, dθ and dx.
This is easy using the above results for plane polar coordinates, because varying the r and θ coordinates by
amounts of up to dr and dθ again sweep out a horizontal area of r dr dθ, and varying z by up to dz creates
a ”cylinder” of height dz over this region, thus having volume

dV = r dr dθ dz. (5.5.2)

For a domain E of ”Type dr-dθ-dz” — meaning one described by inequalities a ≤ z ≤ b, f1(z) ≤ θ ≤ f2(z),
g1(θ, z) ≤ r ≤ g2(θ, z) — the triple integral in cylindrical coordinates is given by ”summing” over these
pieces:

∫∫∫

E

f(x, y, z)dV =

1openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
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∫ b

z=a

∫ f2(z)

θ=f1(z)

∫ g2(θ,z)

r=g1(θ,z)
f(r cos θ, r sin θ, z) r dr dθ dz. (5.5.3)

See Example 43 in OSC3 Section 5.52.

Other domain shapes can be handled with other orders of the integrals. For the rest of this section details
of domains and the limits of the three iterated integrals are omitted, and dV is loosely replaced by the form
in Equation (5.5.2), or any of the five other versions got by reordering the differentials. For example,

∫∫∫

E

f(x, y, z)dV =

∫∫∫

E

f(r cos θ, r sin θ, z) dz rdr dθ.

See Example 44 in OSC3 Section 5.53.
See Examples 45 and 46 in OSC3 Section 5.54.

Note that in each of these volume calculations there is another way to do things, due to the radial symmetry:
factoring out the θ integral first to get a factor of 2π, leaving just a double integral.

5.5.3 Triple Integrals in Spherical Coordinates
Next we revisit spherical coordinates, introduced in Subsection 2.7.2, p. 26, and in particular the change of
coordinates formulas (2.7.4) and (2.7.5)
First, consider the volume of the small region near the point with spherical coordinates (ρ,φ, θ) that is swept
out by varying the coordinates by up to dρ, dφ and dθ respectively.

• Changing ρ by dρ moves a distance dρ along a line through the origin, perpendicular to the sphere of
radius ρ.

• Changing φ by dφ moves on that sphere ”southward” along a curve of longitude, of radius ρ, so the
distance moved is ρdφ.
This movement is perpendicular to the above movement due to changing ρ.

• Changing θ by dθ moves on that sphere ”eastward” along a circle of latitude of radius r = ρ sinφ, so
the distance moved is r dθ = ρ sinφ dθ.
This movement is perpendicular to both of the previous movements.

Altogether, changes in the three coordinates sweep our a region that is roughly a rectangular box of dimen-
sions dρ by ρdφ by ρ sinφ dθ, and of infinitesimal volume

dV = dρ (ρ dφ) (ρ sinφ dθ) = ρ2 sinφ dρ dφ dθ (5.5.4)
and so ∫∫∫

E

f(x, y, z) dV =

∫∫∫

E

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφ dρ dθ dφ (5.5.5)

Again there can be reordering of the three differentials to get various iterated integrals appropriate to various
shapes of domain.

See Examples 47 to 51 in OSC3 Section 5.55.

Study Guide. Study Section 5.5 of OpenStax Calculus Volume 36; in particular
2openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
3openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
4openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
5openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
6openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates

https://openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
https://openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
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• The two new forms of Fubini’s Theorem.
• All the Examples (and the Checkpoints following each).
• One or several exercises from each of the following ranges and pairs: 241–246, 249–252, 253–256, 267

& 268, 269–272.

5.6 Calculating Centers of Mass and Moments of Inertia (Omitted)
References.

• Section 5.5 of OpenStax Calculus Volume 31.
• Section 15.6. of Calculus, Early Transcendentals by Stewart.

Physics: Mass and Center of Mass. Two related physical quantities are the mass and center of mass of an
object occupying the region E with density ρ(x, y, z). The mass is

m =

∫∫∫

E

ρ(x, y, z) dV

The center of mass is the point (x̄, ȳ, z̄) which is the ”density weighted average” location of the mass of a
body, with components given by

x̄ =

∫∫∫
E xρ(x, y, z) dV

m
=

∫∫∫
E xρ(x, y, z) dV∫∫∫
E ρ(x, y, z) dV

, ȳ =

∫∫∫
E yρ(x, y, z) dV

m
, z̄ =

∫∫∫
E zρ(x, y, z) dV

m
.

Physics: Moments of Inertia. Coming later.

5.7 Change of Variables in Multiple Integrals
Revised on March 20.

References.
• Section 5.7 of OpenStax Calculus Volume 31.
• Section 15.9 of Calculus, Early Transcendentals by Stewart.

Introduction. The main new challenge in multiple integrals is dealing with domains of shapes other that
rectangles.
Iterated integrals with the limits of ”inner” integrals depending on ”outer” variables help in some cases, as
do polar, cylindrical and spherical coordinates, but we now develop a more general strategy.
As usual we deal with two-dimensional integrals befoer going on to thre dimensions, but in fact we first revisit
one-dimensional integrals with modified notation that fits better with what happens in multiple dimensions.

5.7.1 Changing Variables in 1D Integrals
Inverse Substitution. To extend changes of variables in multiple integrals beyond those seen for polar,
cylindrical and spherical coordinates, let us first review and rephrase the 1D version.

1openstax.org/books/calculus-volume-3/pages/5-6-calculating-centers-of-mass-and-moments-of-inertia
1openstax.org/books/calculus-volume-3/pages/5-7-change-of-variables-in-multiple-integrals

https://openstax.org/books/calculus-volume-3/pages/5-6-calculating-centers-of-mass-and-moments-of-inertia
https://openstax.org/books/calculus-volume-3/pages/5-7-change-of-variables-in-multiple-integrals
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Consider a function f(x) defined on an interval [a, b]. The idea is to change from the original variable x to a
new variable u related by a function x = g(u) where g is one-to-one on the interval [a, b], so that g is either
increasing or decreasing there.
Note: we express the ”old” variable as a function of the ”new” one, the inverse substitution approach seen
with the use of trigonometric substitutions like x = a sin θ for integrals in involving

√
a2 − x2; see Section

3.3 of OpenStax Calculus Volume 22.
Let F (x) be an anti-derivative of f(x), so that F ′(x) = f(x). Then

d

du
F (g(u)) = F ′(g(u))g′(u) = f(g(u))g′(u).

Integrating with respect to u gives (in reversed order)
∫

f(g(u))g′(u) du = F (g(u)) + C = F (x) + C

The last expression is the indefinite integral of f , so reversing order again
∫

f(x) dx =

∫
f(g(u))g′(u) du. (5.7.1)

Changing the Domain in 1D Definite Integrals. When one changes variables in a definite integral, the
domain is changed. In the 1D case, this is just changing the upper and lower limits of integration:

∫ b

x=a
f(x) dx =

∫ d

u=c
f(g(u))g′(u) du, a = g(c), b = g(d) (5.7.2)

One catch here is that given the original domain a ≤ b, the endpoints of the new domain must be found
by equation solving or with inverses: c = g−1(a), d = g−1(b). Usually this will not be a problem because
the change of variables will be chosen precisely for the sake of getting a known, simple domain for the new
integral. (This idea was irrelevant with functions one variable, where the domain of integration is always
equally simple: an interval.)

Integrals over Intervals Considered as Domains. To mimic the notation for multiple integrals over domains,
it is convenient to express an definite interval as being over an interval I = [a, b]. Thus,

∫

[a,b]

f(x) dx means
∫ b

a
f(x) dx, where we must have a ≤ b.

If function g is increasing, the Substitution Rule can be written as
∫

[a,b]

f(x) dx =

∫

[c,d]

f(g(u))g′(u) du. (5.7.3)

or ∫

I

f(x) dx =

∫

J

f(g(u))g′(u) du. (5.7.4)

where the domain for u is J = [c, d].
2openstax.org/books/calculus-volume-2/pages/3-3-trigonometric-substitution

https://openstax.org/books/calculus-volume-2/pages/3-3-trigonometric-substitution
https://openstax.org/books/calculus-volume-2/pages/3-3-trigonometric-substitution
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Integrals over Intervals with Decreasing g (g′ < 0). However, if function g is decreasing, a < b leads to
c > d, so the new interval is J = [d, c], not [c, d]. Thus

∫

[a,b]

f(x) dx =

∫ b

a
f(x) dx =

∫ d

c
f(g(u))g′(u) du = −

∫ c

d
f(g(u))g′(u) du = −

∫

[d,c]

f(g(u))g′(u) du

Since g is decreasing, g′(u) < 0 and so −g′(u) = |g′(u)|, giving
∫

[a,b]

f(x) dx =

∫

[d,c]

f(g(u))|g′(u)| du. (5.7.5)

The Substitution Rule for Intervals as Domains. Equation (5.7.5) for x = g(u) decreasing and the version
in Equation (5.7.2) for x = g(u) increasing take the common form

∫

I

f(x) dx =

∫

J

f(g(u))|g′(u)| du,=
∫

J

f(x)

∣∣∣∣
dx

du

∣∣∣∣ du (5.7.6)

with the appropriate versions of interval J .

This is the form that we will now mimic for multiple integrals: finding the replacement for g′(u) = dx

du
is the

key step.

5.7.2 Transformations: Changes of Coordinates in 2D (and then 3D)
We have seen how a double integral is changed by one change of variables, from cartesian coordinates to
polar coordinates as described by

(x, y) = T (r, θ) = (r cos θ, r sin θ) (5.7.7)

A function like T that takes points in the plane R2 to other points in the plane is called a transformation.
We now consider more general transformations to new variables u and v,

(x, y) = T (u, v) = (g(u, v), h(u, v)) or x = g(u, v), y = h(u, v).

where we want both g and h to be differentiable, (so all four first partial derivatives exist and are continuous):
these are called C1 transformations.
In this notation ”C” refers to being continuous, and the ”1” means that the first derivatives also exist and

are continuous.
Similarly, C0 is sometimes used to denote continuous functions, and C2 means functions with all the first
and second derivatives existing and being continuous.

Images and One-to-One Transformations. If T (u1, v1) = (x1, y1), the point (x1, y1) is called the image of
(u1, v1). The set of all such images is the range, also called the image of the domain of the transformation.
With polar coordinates, we tried to have unique values of r and θ for each point (x, y) in the plane.
A transformation that achieves this uniqueness is one-to-one: no two points in its domain have the same
image. For example, the transformation from polar coordinates to cartesian coordinates is one-to-one on any
domain on which r > 0 and −π < θ ≤ π, which is the same as excluding the origin.

See Examples 65 and 66 in OSC3 Section 5.73.

(To include the origin too, one could allow only θ = 0 when r = 0.)
3openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
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The Inverse of a One-to-One Transformation. If a transformation is one-to-one, then for any point (x, y)
in its range, there is only only point (u, v) with T (u, v) = (x, y), so this point (u, v) is the inverse of (x, y)
under T , and there is an inverse transformation T−1,

T−1(x, y) = (u, v).

For T the transformation in Equation (5.7.7) from polar to cartesian coordinates, and on a domain with
r > 0 and −π < θ ≤ π,

T−1(x, y) = (r(x, y), θ(x, y)),

is given by the equations (1.3.3) in Section 1.3, p. 7.

5.7.3 Transformations and Double Integals
Consider a double integral

∫∫

R

f(x, y) dA and a transformation (x, y) = T (u, v) such that the domain R in

the (x, y) plane is the image of a domain S in coordinates (u, v). This is sometimes expressed as R = T (S).
One example we have seen is when the new coordinates are polar coordinates r and θ, R is a polar rectangle,
so S is the rectangular domain a ≤ r ≤ b, α ≤ θ ≤ β.
We want to get an expression for this integral as an integral in the new variables u and v, such as

∫∫

D

f(x, y)dA =

∫ b

a

∫ β

α
f(r cos θ, r sin θ) r dθ dr (5.7.8)

for that case.
The key to deriving this formula for polar coordinates was looking at a small rectangle of values of r and θ,
of dimensions ∆r and ∆θ, and computing the area of the corresponding region of (x, y) values.
Look at a small rectangle S of (u, v) values with one corner (u0, v0) and adjacent corners (u0 +∆u, v0) and
(u0, v0 +∆v). Its image under transformation T is roughly quadrilateral, with one corner A of coordinates
(x0, y0) = T (u0, v0) = (g(u0, v0), h(u0, v0)).
The image B of the adjacent corner (u0 +∆u, v0) has coordinates (g(u0 +∆u, v0), h(u0 +∆u, v0)) and these
are given approximately by linearizations of g and h respectively:

g(u0 +∆u, v0) ≈ g(u0, v0) + gu(u0, v0) ·∆u+ gv(u0, v0) · 0,
h(u0 +∆u, v0) ≈ h(u0, v0) + hu(u0, v0) ·∆u+ hv(u0, v0) · 0,

since the change in the v argument is 0.
Thus, this edge of this region in the (x, y) plane is described by vector

−−→
AB ≈ gu(u0, v0)∆u ı̂+ hu(u0, v0)∆u ȷ̂ = [gu(u0, v0) ı̂+ hu(u0, v0) ȷ̂ ]∆u

Similarly, the image C of the other adjacent corner (u0, v0 +∆v) leads to
−→
AC ≈ (gv(u0, v0) ı̂+ hv(u0, v0) ȷ̂ )∆v

and the final corner D opposite A is reached by edge
−−→
CD ≈ gu(u0, v0 +∆v) ı̂∆u+ hu(u0, v0 +∆v) ȷ̂∆u

≈ [gu(u0, v0) + (gu)v(u0, v0)∆v]∆u ı̂+ [hu(u0, v0) + (hu)v(u0, v0)∆v]∆u ȷ̂

= [gu(u0, v0) ı̂+ hu(u0, v0)ȷ̂ ]∆u

+ [guv(u0, v0)̂ı+ huv(u0, v0)ȷ̂ ]∆v∆u

≈ [gu(u0, v0)̂ı+ hu(u0, v0)ȷ̂ ]∆u
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≈ −−→AB

where we have ignored far smaller terms proportional to ∆u∆v.
So the image R of a small rectangle S is roughly a parallelogram.

The Area Approximation and the Jacobian. The area ∆A of small region R can thus be approximated by
the cross product formula for parallelogram area:

∆A ≈
∣∣∣
−−→
AB ×−→AC

∣∣∣

≈
∣∣∣[gu(u0, v0)hv(u0, v0)− gv(u0, v0)hu(u0, v0)]∆u∆vk̂

∣∣∣

= |gu(u0, v0)hv(u0, v0)− gv(u0, v0)hu(u0, v0)|∆u∆v

The quantity inside the absolute value is the determinant of a 2 × 2 matrix, and is known as the Jacobian
of the transformation given by x = g(u, v), y = h(u, v), denoted

∂(x, y)

∂(u, v)
=

∣∣∣∣
gu gv
hu hv

∣∣∣∣ =

∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
. (5.7.9)

Beware the unfortunate double meaning of vertical bars: absolute value and determinant!
With this notation the image R = T (S) of small rectangle S is approximately a parallelogram of area

∆A ≈
∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣∆u∆v (5.7.10)

(c.f. Equation (2.4.7) for the area of a parallelogram in Subsection 2.4.3, p. 22), and for the ”infinitesimal
rectangle” of dimensions du by dv appearing in double integrals we get the change of coordinates formula
using

dA =

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ du dv. (5.7.11)

Note: The vertical bar notation is used here in two different ways: for the determinant in Equation (5.7.9)
defining the Jacobian, and the for the absolute value of that in

∣∣∣∂(x,y)∂(u,v)

∣∣∣. To avoid possible confusion, the
expression is sometimes written as

dA =

∣∣∣∣det
[

gu gv
hu hv

]∣∣∣∣ du dv.

That is, with appropriate approximations and limits as seen in Section 5.3, p. 76 for polar coordinates, we
get:

Theorem 5.7.1 Change of Coordinates in Double Integrals. For T a one-to-one C1 transformation and
R = T (S), ∫∫

R

f(x, y)dA =

∫∫

S

f(x(u, v), y(u, v))

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ du dv. (5.7.12)

The Jacobian does here what g′(u) =
dx

du
does in the one-dimensional case of Equation (5.7.6).

Example 5.7.2 Let us test this for the case of polar coordinates.
The Jacobian is

∂(x, y)

∂(r, θ)
=
∂x

∂r

∂y

∂θ
− ∂x

∂θ

∂y

∂r
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=
∂(r cos θ)

∂r

∂(r sin θ)
∂θ

− ∂(r cos θ)
∂θ

∂(r sin θ)
∂r

= cos θ r cos θ − (−r sin θ) sin θ
= r(cos2 θ + sin2 θ)

= r

so
∣∣∣∂(x,y)∂(r,θ)

∣∣∣ = r, giving the factor of r seen in Equation (5.7.8). "

See also Example 69 in OSC3 Section 5.74.

Note: using the order (θ, r) gives Jacobian

∂(x, y)

∂(θ, r)
= −r,

so the absolute value is necessary to get the same final result for the integral.

See Examples 70 and 71 in OSC3 Section 5.75.

5.7.4 Triple Integals
The ideas above extend fairly routinely to transformations in three variables and triple integrals.

Definition 5.7.3 A C1 transformation (x, y, z) = T (u, v, w) is a function of the form

x = g(u, v, w), y = h(u, v, w), z = k(u, v, w)

with all three functions differentiable. ♦
The Jacobian of such a transformation is the determinant

∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣

Theorem 5.7.4 For T a one-to-one C1 transformation and R the image of region S under T (i.e. R = T (S)),
∫∫∫

R

f(x, y, z) dV

=

∫∫∫

S

f(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣
∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw (5.7.13)

Exercise 5.7.5 Cylindrical and Spherical Coordinates.

See also Example 72 in OSC3 Section 5.76.
Use the above formula to derive the formulas (5.5.3) and (5.5.5) for integrals in cylindrical and spherical
coordinates seen in Section 5.5, p. 83.
Note the importance of the absolute value in Equation (5.7.13) for the case of spherical coordinates (ρ, θ,φ)s:
this is because they are left-handed whereas the caretesion coordinates (x, y, z)s are right-handed.

4openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
5openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
6openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
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See Example 73 in OSC3 Section 5.77.

Study Guide. Study Section 5.7 of OpenStax Calculus Volume 38, including
• All the Definitions, Theorems, and Examples (and Checkpoints).
• One or several exercises from each of the following ranges and pairs: 365–361, 362–367, 368–373,

374–377, 378–387, 388 & 389, 390–393, 399 & 400, 404 & 405.

Chapter Review. When reviewing this chapter, also look at the end of chapter review material in OpenStax
Calculus Volume 3, including Key Terms9, Key Equations10 and Key Concepts11.

7openstax.org/books/calculus-volume-3/pages/5-5-triple-integrals-in-cylindrical-and-spherical-coordinates
8openstax.org/books/calculus-volume-3/pages/5-7-change-of-variables-in-multiple-integrals
9openstax.org/books/calculus-volume-3/pages/5-key-terms

10openstax.org/books/calculus-volume-3/pages/5-key-equations
11openstax.org/books/calculus-volume-3/pages/5-key-concepts
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Vector Calculus

Revised on April 21.

References.
• Chapter 6 of OpenStax Calculus Volume 3.1

• Chapter 16 of Calculus, Early Transcendentals by Stewart.

6.1 Vector Fields
Revised on March 27.

References.
• OpenStax Calculus Volume 3, Section 6.11.
• Calculus, Early Transcendentals by Stewart, Section 16.1.

6.1.1 Definitions
Many physical quantities are described by vectors (like velocity, force) and depend on position in space or
on a surface. The mathematical description of these is a vector field:

Definition 6.1.1 2D Vector Field. For D a set in R2 (a plane region), a vector field on R2 is a function F⃗
that assigns to each point (x, y) in D a two-dimensional vector F⃗ (x, y).
Such a vector field can be described with component functions as F⃗ = P ı̂+Qȷ̂; that is

F⃗ (x, y) = P (x, y)̂ı+Q(x, y)ȷ̂ = ⟨P (x, y), Q(x, y)⟩

♦
See Examples 1 to 6 in Section 6.1 of OSC32.

Scalar valued functions of several variables like P and Q are sometimes called scalar fields to distinguish
them from vector fields.
There is an unsurprising 3D version:

1openstax.org/books/calculus-volume-3/pages/6-introduction
1openstax.org/books/calculus-volume-3/pages/6-1-vector-fields
2openstax.org/books/calculus-volume-3/pages/6-1-vector-fields
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Definition 6.1.2 3D Vector Field. For E a set in R3, a vector field on R3 is a function F⃗ that assigns to each
point (x, y, z) in E a three-dimensional vector F⃗ (x, y, z).
Again such a vector field can be described with component functions, so

F⃗ (x, y, z) = P (x, y, z)̂ı+Q(x, y, z)ȷ̂+R(x, y, z)ȷ̂.

♦
See Examples 7 and 8 in Section 6.1 of OSC33.

6.1.2 Gradient Vector Fields, or Conservative Vector Fields
Vector fields often arise as the gradient of a scalar function: for a function f of two variables the gradient

Gradf(x, y) = ⟨fx, fy⟩ = fx(x, y)̂ı+ fy(x, y)ȷ̂ (6.1.1)

which is a vector field on R2, and likewise for f a function of three variables, its gradient is a vector field on
R3:

Gradf(x, y, z) = ⟨fx, fy, fz⟩ = fx(x, y, z)̂ı+ fy(x, y, z)ȷ̂+ fz(x, y, z)k̂. (6.1.2)

Two common short-hands for either of these are

Gradf = ∇f =
−→∇f (6.1.3)

where the symbol ∇ or −→∇ is the fake vector

∇f =
−→∇f = ⟨∂x, ∂y⟩ (6.1.4)

in the plane, and
∇f =

−→∇f = ⟨∂x, ∂y, ∂z⟩ (6.1.5)
in space.
The second ”vector” form of this notation will be more important later, from Section 6.5, p. 109, Divergence
and Curl onward.
Definition 6.1.3 A vector field F⃗ is called a gradient vector field or conservative vector field if it is the gradient
of some scalar function; that is, if there is a function f such that ∇f = F⃗ .
Function f is then called a potential function for F⃗ . ♦
See Examples 9 to 11 in Section 6.1 of OSC34.

6.1.3 The Cross-Partial Property and Non-Conservative Vector Fields
For a conservative 2D vector field F⃗ = ⟨P,Q⟩ ,= ⟨fx, fy⟩, look at the cross partial derivatives:

Py = (fx)y = (fy)x = Qx

(recalling Clairaut’s Theorem 4.3.2, p. 46 from Section 4.3, p. 43)
This can be extended to 3D vector fields, and can be written in a suggestive mock-determinant notation that
we will see more of in Section 6.5, p. 109:
Theorem 6.1.4 The Cross-Partial Property of Conservative Vector Fields. For a 2D conservative vector field
F⃗ = ⟨P,Q⟩,

Qx − Py =

∣∣∣∣
∂x ∂y
P Q

∣∣∣∣ = 0 (6.1.6)

3openstax.org/books/calculus-volume-3/pages/6-1-vector-fields
4openstax.org/books/calculus-volume-3/pages/6-1-vector-fields
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For a 3D conservative vector field F⃗ = ⟨P,Q,R⟩,

Qx − Py = Rx − Pz = Ry −Qz = 0, (6.1.7)

which has the menomonic mock-determinant form
∣∣∣∣∣∣

ı̂ ȷ̂ k̂
∂x ∂y ∂z
P Q R

∣∣∣∣∣∣
(6.1.8)

Note: Here I start using the alternative compact notation for partial derivatives introduced in (4.3.3) and
(4.3.4) in Subsection 4.3.3, p. 44.

Exercise 6.1.5 A non-conservative vector field. Verify that F⃗ (x, y) = ⟨−y, x⟩ is not conservative.

See Example 12 and 13 in Section 6.1 of OSC35.
Exercise 6.1.6 A non-conservative vector field that has the cross-partial property. Verify that the vector
field

F⃗ (x, y) =

〈
− y

x2 + y2
,

x

x2 + y2

〉

has the cross-partial property (6.1.6).
However, it will be seen in Section 6.3, p. 99 that is not a gradient vector field on its natural domain of all
points in R2 except for the hole at the origin.

Study Guide. Study Section 6.1 of Calculus Volume 36; in particular
• The Definition and Theorems.
• Examples 1–5 and 10–13, and the Checkpoints following each.
• The following exercises (for ranges, do at least one in each range): 1, 2, 15–20, 22–24.

6.2 Line Integrals
Revised on April 2.

References.
• Section 6.2 of OpenStax Calculus Volume 31.
• Section 16.2 of Calculus, Early Transcendentals by Stewart.

Introduction. It is often useful to ”sum” (integrate) a quantity along a curve. One example is computating
the total change along a curve from a variable charge density. Another physical example is the summation
of increments of work done by or against a force to get the total work done as an object moves along a curve.
These ”charge” and ”work” examples are different in an important way: the first involves integrating a scalar
quantity with respect to increments in arc length, ds, whereas the second involves a vector quantity, the
force, acting in relation to increments in spatial coordinates like dx.

5openstax.org/books/calculus-volume-3/pages/6-1-vector-fields
6openstax.org/books/calculus-volume-3/pages/6-1-vector-fields
1openstax.org/books/calculus-volume-3/pages/6-2-line-integrals
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6.2.1 Scalar Line Integrals: Integrating With Respect to Arc Length Along a Curve
6.2.1.1 Scalar Line Integrals in The Plane
If a plane curve C is given parametrically as

x = x(t), y = y(t), a ≤ t ≤ b (6.2.1)

or in vector form r⃗(t) = x(t)̂ı+ y(t)ȷ̂, then one can start by considering sums of the form
n∑

i=1

f(x∗
i , y

∗
i )∆si

where the interval [a, b] of t values is divided into n subintervals [ti−1, ti], 1 ≤ i ≤ n, each point (x∗
i , y

∗
i ) =

(x(t∗i ), y(t
∗
i )) is given by some t∗i in [ti−1, ti] and so lies on the i-the sub-arc, and ∆si is the length of that

sub-arc.
A now familiar limit process turns these approximations into an integral along the curve:
Definition 6.2.1 If f is defined at each point of a smooth curve C given by Equation (6.2.1) then the line
integral of f along C is ∫

C
f(x, y) ds = lim

n→∞

n∑

i=1

f(x∗
i , y

∗
i )∆si (6.2.2)

This is also called the line integral of f along C with respect to arc-length. ♦

Next, we can express this in terms of an integral in variable t over the interval [a, b].
For f(x, y) = 1, the limit in Equation (6.2.2) is the definition of arc-length as in Section 3.3, p. 31 and it was
seen there that in effect,

ds =
√
dx2 + dy2

=

√(
dx

dt

)2

+

(
dy

dt

)2

dt, (6.2.3)

=

∥∥∥∥
dr⃗

dt

∥∥∥∥ dt, with r⃗ = ⟨x, y⟩ (6.2.4)

The same argument here gives:
∫

C
f(x, y) ds =

∫ b

t=a
f(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt (6.2.5)

See Example 14 and Checkpoint 13 in Section 6.2 of OSC32.

6.2.1.2 Scalar Line Integrals in Space
The above concepts extend easily to space curves C, given parametrically as

x = x(t), y = y(t), z = z(t), a ≤ t ≤ b (6.2.6)

or in vector form, r⃗(t) = x(t)̂ı+ y(t)ȷ̂+ z(t)k̂.
We again define the line integral of f along C with respect to arc-length as

∫

C
f(x, y, z) ds = lim

n→∞

n∑

i=1

f(x∗
i , y

∗
i , z

∗
i )∆si

2openstax.org/books/calculus-volume-3/pages/6-2-line-integrals
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where in the sum, the interval [a, b] is divided into n (equally long) subintervals with ∆si the distance between
the endpoints of the corresponding part of the curve, and (x∗

i , y
∗
i , z

∗
i ) some point in that part of the curve.

Also as above, we use the Fundamental theorem of Calculus to turn this limit of a sum into a definite integral
over interval [a, b]:

∫

C
f(x, y, z)ds =

∫ b

t=a
f(x(t), y(t), z(t))

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

=

∫ b

t=a
f(r⃗(t))

∣∣∣∣
dr⃗

dt

∣∣∣∣ dt. (6.2.7)

See Example 20 in Section 6.2 of OSC33.

The last vector form is convenient as it covers both the 2D ad 3D versions.
The simple and important special case f = 1 gives a compact formula for the arc length of the curve,

∫

C
ds =

∫ b

t=a

∣∣∣∣
dr⃗

dt

∣∣∣∣ dt.

See Example 17 in Section 6.2 of OSC34.

6.2.1.3 Integrals Along Paths: Piecewise Smooth Curves
A path is another name for a piecewise smooth curve C: a collection of smooth curves C1, C2, . . . Cm that
join end to end.
This is sometimes denoted C = C1 + C2 + · · ·+ Cm.
The path integral along a path C is simply the sum of the line integrals along each smooth piece.

6.2.2 Vector Line Integrals: Integrating With Respect to Position Coordinates
6.2.2.1 Line Integrals in the Plane with Respect to the Coordinates, x and y

In some situations, the quantity to be summed is f(x, y)∆x or f(x, y)∆y: for example if f is a force acting
on an object in the x direction, f(x, y)∆x is the work done by that force when the object moves distance
∆x in that direction (no work is associated with movement perpendicular to the force).
Limits of sums give the work done by such a force in the x-direction as an object moves along curve C to be

∫

C
f(x, y) dx = lim

n→∞

n∑

i=1

f(x∗
i , y

∗
i )∆xi (6.2.8)

called the line integral of f along C with respect to x. Likewise the line integral of f along C with respect
to y is ∫

C
f(x, y) dy = lim

n→∞

n∑

i=1

f(x∗
i , y

∗
i )∆yi (6.2.9)

Much as with Equation (6.2.5), these line integrals can be computed with
∫

C
f(x, y) dx =

∫ b

t=a
f(x(t), y(t))

dx

dt
dt (6.2.10)

∫

C
f(x, y) dy =

∫ b

t=a
f(x(t), y(t))

dy

dt
dt (6.2.11)

However, the absence of the square root term can make these new integrals easier to work with.
3openstax.org/books/calculus-volume-3/pages/6-2-line-integrals
4openstax.org/books/calculus-volume-3/pages/6-2-line-integrals
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See Example 18 in Section 6.2 of OSC35.

6.2.2.2 Line Integrals in Space Coordinates
Line integrals with respect to each of the space coordinate variables x, y and z can be defined similarly, so
that for example

∫

C
f(x, y, z)dz = lim

n→∞

n∑

i=1

f(x∗
i , y

∗
i , z

∗
i )∆zi =

∫ b

a
f(x(t), y(t), z(t))

dz

dt
dt (6.2.12)

6.2.2.3 Paired (and Tripled) Line Integrals and Vector Line Integrals
One often gets a sum of line integrals in the plane in both x and y, and these can be abbreviated

∫

C
P (x, y) dx+

∫

C
Q(x, y) dy =

∫

C
P (x, y) dx+Q(x, y) dy (6.2.13)

This combination has a concise vector form, called a Vector Line Integral:
∫

C
P (x, y) dx+Q(x, y) dy =

∫

C
⟨P (x, y), Q(x, y)⟩ · ⟨dx, dy⟩ (6.2.14)

=

∫

C
F⃗ · dr⃗ (6.2.15)

where F⃗ = ⟨P (x, y), Q(x, y)⟩ and for the position vector r⃗ = ⟨x, y⟩, we use the short-hand

dr⃗ = d ⟨x, y⟩ = ⟨dx, dy⟩ .

When P and Q are the components in the x and y directions of a force vector F⃗ , this gives the total work
done by the force as the object traverses curve C.
Likewise, integrals of the form

∫

C
P (x, y, z) dx+

∫

C
Q(x, y, z) dy +

∫

C
R(x, y, z) dz =

∫

C
P dx+Q dy +R dz (6.2.16)

arise—in particular for the example of the work done by a force—and they have the same vector form (6.2.15),
now with F⃗ = ⟨P,Q,R⟩.

See Example 20 in Section 6.2 of OSC36, and for the application of calculating work, see Examples 23 and
26.
For a more completely vector notation form, describe the path C as ⟨r⟩ (t), a ≤ t ≤ b and express each line
integral above in terms of this: The integral in Equation (6.2.16) has the form

∫

C
P dx+Q dy +R dz =

∫ b

a

[
P (r⃗(t))

dx

dt
+Q(r⃗(t))

dy

dt
+R(r⃗(t))

dz

dt

]
dt =

∫ b

a
F⃗ ( ⃗r(t)) · dr⃗

dt
dt (6.2.17)

and in practice evaluation of
∫
C F⃗ · dr⃗ is done via this form, with the formal substutution dr⃗ =

dr⃗

dt
dt: this

is sometimes called the line integral of F⃗ along C.

This integral
∫

C
F⃗ · dr⃗ can instead be defined rigorously by the familiar process of approximation by a sum

of terms F⃗ (r⃗(t∗i ))∆r⃗i and taking a suitable limit.
5openstax.org/books/calculus-volume-3/pages/6-2-line-integrals
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6.2.2.4 Vector Line Integrals in Terms of the Arc-length Differential ds: Circulation and Flux
Circulation Form. Recall from Equation (3.3.4) in Section 3.3, p. 31 that the unit tangent vector to C is
T⃗ = dr⃗/ds and thus ∫

C
F⃗ · dr⃗ =

∫ b

a
F⃗ (r⃗) · dr⃗

ds
ds =

∫

C
F⃗ · T̂ ds (6.2.18)

getting back to a line integral with respect to arc length as defined in Equation (6.2.2).

For the example of F⃗ being the velocity in a fluid, the dot product in this integral is the rate of flow along
the curve. Then for a closed curve, this integral measures the net flow around the curve: hence it is called
the circulation around the curve.

Flux Form. In the plane there is another useful version: T̂ = ⟨dx/ds, dy/ds⟩, so we can define a unit normal
vector

N̂ = ⟨dy/ds,−dx/ds⟩ , (6.2.19)

which is the rotation of T̂ a quarter turn clockwise. Thinking of T̂ as the ”forward direction”, this choice of
unit normal points to the right of the curve.
(Note that this is not necessarily the same as the the principle unit normal vector defined in Equation (3.3.7)
in Section 3.3, p. 31, which can be to the left or the right depending on which way the curve is turning.)
In the plane, this new choice has the advantage of always being defined, even at an ”inflection point” where
dT̂/dt = 0⃗, and always continuous so long as T̂ is.

The integral of F⃗ · N̂ along a curve is the integral of the component of F⃗ normal to the curve; for example
if F⃗ is the velocity in a fluid, this measures the rate of flow across the curve: it is thus known as the flux of
F⃗ across C.
This equals the circulation of G⃗ = ⟨−Q,P ⟩, which is F⃗ rotated a quarter turn anti-clockwise:

∫

C
F⃗ · N̂ ds =

∫

C
⟨P,Q⟩ ·

〈
dy

ds
,−dx

ds

〉
ds

=

∫

C

(
P
dy

ds
−Q

dx

ds

)
ds

=

∫

C
−Q dx+ P dy

=

∫

C
⟨−Q,P ⟩ · T̂ ds (6.2.20)

This connection will be useful in Section 6.4, p. 104, where both the circulation and flux around a closed
curve in the plane are related to a double integral over the region ”inside” the curve, and also in later sections
where these ideas are extended to integrals over surfaces and regions in space.

6.2.3 Reversing the Orientation of a Curve
A curve C described by a parameterization of a curve x = f(t), y = g(t), a ≤ t ≤ b has an orientation,
meaning a direction of motion from initial point (x(a), y(a)) to final point (x(b), x(b)).
If we reverse the orientation, for example with new parameterization u = −t so that x = f(−u), y = g(−u),
−b ≤ u ≤ −a, the new curve is denoted −C.
This reverses the order of limits on integration so that

∫

−C
f(x, y) dx = −

∫

C
f(x, y) dx, (6.2.21)
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and so on, and for a vector line integral
∫

−C
F⃗ · dr⃗ = −

∫

C
F⃗ · dr⃗ (6.2.22)

which of course is equally valid in the 3D case.

See Example 19 in Section 6.2 of OSC37.

For the physical example where this integral gives the work done by force F⃗ on an object as it moves along
the curve C, this says naturally that going in the opposite direction negates the amount of work done.
However, scalar line integrals are not changed by this reversal:

∫

−C
f(x, y) ds =

∫

C
f(x, y) ds. (6.2.23)

Compare this to Equation (6.2.20) for a line integral: there the integrand changes sign, due to T̂ negating
when the orientation is reversed.
This is because ∆si remains positive in Equation (6.2.2) whereas ∆xi and ∆yi in Equations (6.2.8) and
(6.2.9) change sign.

6.2.4 Properties of Vector Line Integrals

Vector line integrals have many properties in common with definite integrals
∫ b
a f(x) dx in one dimension:

Theorem 6.2.2 For any continuous vector fields F⃗ and G⃗

1.
∫

C
(F⃗ + G⃗) · dr⃗ =

∫

C
F⃗ · dr⃗ +

∫

C
G⃗ · dr⃗

2.
∫
C kF⃗ · dr⃗ = k

∫
C F⃗ · dr⃗, and as already seen

3.
∫

−C
F⃗ · dr⃗ = −

∫

C
F⃗ · dr⃗

and these apply equally for path integrals, along piecewise smooth curves.

In comparison, scalar line integrals behave more like integrals over domains in two or three dimensions seen
in Chapter 5, p. 65, and like the one dimensional versions

∫

[a,b]

f(x) dx introduced in Subsection 5.7.1, p. 85.

Study Guide. Study Section 6.2 of Calculus Volume 38; in particular:
• The Definitions and Theorems.
• Examples 14–21, and according to your scientific interests, some of the application examples 22, 23

and 26 (and as usual, the Checkpoints following each).
• The true/false exercises 39–43.
• The following exercises (for ranges, do at least one in each): 49–53, 54, 55–58, 65–69.

6.3 Conservative Vector Fields
Revised on April 11.

References.
• OpenStax Calculus Volume 3, Section 6.31.
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6.3.1 The Fundamental Theorem for Path Integrals
For a function of a single variable f(x), the Fundamental Theorem of Calculus says that its definite integral
over interval [a, b] can be evaluated by finding an anti-derivative F (i.e. a function whose derivative is f)
and the simple calculation: ∫ b

a
f(x) dx = F (b)− F (a) = [F (x)]ba

This can be extended first to line integrals of a vector field F⃗ along a smooth curve, with the role of the
anti-derivative now played by a potential f :

Theorem 6.3.1 (The Fundamental Theorem for Path Integrals). For a conservative vector field F⃗ , so that
∇f = F⃗ for some scalar function f , then for the smooth curve C given by r⃗(t), a ≤ t ≤ b,

∫

C
F⃗ · dr⃗ =

∫

C
∇f · dr⃗ = f(r⃗(b))− f(r⃗(a)) =

[
f(r⃗(t))

]b
a

(6.3.1)

Proof. This comes from results in Section 6.2, p. 94 along with the Chain Rule.
For the 3D case, and a smooth curve C,

∫

C
∇f · dr⃗ =

∫ b

a
∇ f(r(t)) · dr⃗

dt
dt

=

∫ b

a

[
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt

]
dt

=

∫ b

a

d

dt
f(r⃗(t))dt =

[
f(r⃗(t))

]b
a

For integrals along paths (piecewise smooth curves) we get the same result by adding up the integrals over
each of the smooth pieces. For example, if smooth curve C1 goes from point A1 [position vector r⃗1] to A2

[r⃗2] and smooth curve C2 goes from point A2 to A3 [r⃗3], they combine to form a path C = C1 +C2 from A1

to A3, and

∫

C
∇f ds =

∫

C1

∇f ds+

∫

C2

∇f ds

= f(r⃗2)− f(r⃗1) + f(r⃗3)− f(r⃗2)

= f(r⃗3)− f(r⃗1),

which is still the change in the value of f between the initial and final points, as advertised. #
See Examples 28 and 29 in Section 6.3 of OSC32.

6.3.2 Independence of Path for Integrals of Gradient Fields
The above results says that the value of the path integral of a gradient field depends only on the endpoints,
not the curve used to connect those points. Thus for any other path P2 with the same initial and final points,
the path integral of ∇f has the same value.

Definition 6.3.2 We say that
∫
C F⃗ · dr⃗ is independent of path in domain D if this path integral has the same

value for any two paths with the same initial and final points that stay within D. ♦

In this case we can write ∫ B

A
F⃗ · dr⃗

for the common value of the integral along any path in D from point A to point B.
2openstax.org/books/calculus-volume-3/pages/6-3-conservative-vector-fields
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See Example 30 in Section 6.3 of OSC33.

6.3.3 Closed Paths
One simple and important case is that of a closed path C: one whose initial and final points are the same,
so that it is a ”loop”.
An integral

∫
C around a closed path is also denoted

∮
C to emphasize this property of the path.

See Example 27 in Section 6.3 of OSC34.

Clearly the path integral of a gradient field over a closed path is zero. In fact,

Theorem 6.3.3
∫
C F⃗ · dr⃗ is independent of path in domain D if and only

∮
C F⃗ · dr⃗ = 0 for all closed paths in

D.
Proof. If the integral of F⃗ around any closed path in D is zero and C1, C2 are two paths in D from point A
to point B, then the path consisting of C1 followed by −C2 is a closed path in D, going from A to B and
back again.
Thus the integral around this path is 0, and so

0 =

∫

C1

F⃗ · dr⃗ +
∫

−C2

F⃗ · dr⃗ =

∫

C1

F⃗ · dr⃗ −
∫

C2

F⃗ · dr⃗.

So the integral is the same along either path: path independence.
Conversely, suppose the integral is path independent in D.
For any closed path C in D its initial and final point is the same.
The path integral on C is the same as on the path C2 which just stays at that point.
Clearly the path integral along this ”trivial” path C2 is zero, so the integral along the closed path C is also
zero. #

6.3.4 Independence of Path Implies that a Field is Conservative
Not only are the path integrals of a conservative field path independent, but the converse is also true, at
least in domains that are open and where any two points can be connected by a path.

Definition 6.3.4 A set in R2 or R3 is connected (or path connected) if any two points in the set are connected
by a path that stays within that set. ♦

Theorem 6.3.5 The path integrals of a vector field F⃗ on an open connected domain D are path independent
if and only if the field is conservative: that is, if it is of the form F⃗ = ∇f for some function f .
Proof. We already know one half of this, so it only remains to show that path independence implies existence
of such an f , which is is like finding an anti-derivative for F⃗ .
For simplicity of notation this will be done only in 2D, so F⃗ (x, y) = ⟨F1(x, y), F2(x, y)⟩. (As usual nothing
much changes in 3D.)
Taking some point A(a, b) as a ”starting point”, then for any suitable function f

f(x, y)− f(a, b) =

∫ (x,y)

A
∇f · dr⃗ =

∫ (x,y)

A
F⃗ · dr⃗

for any path C from A to P (x, y).
Such paths exist due to connectedness, and any such path gives the same value due to path independence.
Choosing f to have value zero at A (this is a like choosing a constant of integration), the only possibility is

f(x, y) =

∫ (x,y)

A
F⃗ · dr⃗

3openstax.org/books/calculus-volume-3/pages/6-3-conservative-vector-fields
4openstax.org/books/calculus-volume-3/pages/6-3-conservative-vector-fields
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But does this function have the correct partial derivatives?
Consider such a path that ends by coming in to point P from the left parallel to the x-axis, so the last part
of the path is the straight line segment from (c, y) to (x, y) for some c < x.
Parameterizing the final straight part as r⃗(t) = (t, y), c ≤ t ≤ x,

f(x, y) =

∫ (c,y)

A
F⃗ · dr⃗ +

∫ (x,y)

(c,y)
F⃗ · dr⃗

= K(y) +

∫ x

c
F⃗ (t, y) · dr⃗(t)

dt
dt, with K(y) =

∫ (c,y)

A
F⃗ · dr⃗

= K(y) +

∫ x

c
⟨F1(t, y), F2(t, y)⟩ · ⟨1, 0⟩ dt

= K(y) +

∫ x

c
F1(t, y) dt

Differentiating with respect to x, and using Part 1 of the Fundamental Theorem of Calculus gives

∂f

∂x
= F1(x, y).

Similarly, ∂f
∂y

= F2(x, y), so ∇f = ⟨F1, F2⟩ = F⃗ , as needed. #

See Examples 31 to 33 in Section 6.3 of OSC35.

6.3.5 Testing if a Vector Field is Conservative
Revised on April 11.It would be nice to be able to check if a vector field is conservative without computing
an infinite number of path integrals! Fortunately this can be done: here only the 2D case will be described.
First, there is a simple condition that must be true for F⃗ to be conservative.

Theorem 6.3.6 If F⃗ = P ı̂ + Qȷ̂ is conservative and both components are differentiable, then it satisfies the
cross-partials condition

∂P

∂y
=
∂Q

∂x
(6.3.2)

By Theorem 6.3.5, p. 101 and Theorem 6.3.3, p. 101 above, the cross-partials condition is then also implied
by the path-independence of

∫
C F⃗ · dr⃗ on all paths in the domain and by having

∮
C F⃗ · dr⃗ = 0 on any closed

path in D.

Proof. If F⃗ is conservative, P =
∂f

∂x
, Q =

∂f

∂x
, so using Clairaut’s Theorem,

∂P

∂y
=

∂f

∂y∂x
=

∂f

∂x∂y
=
∂Q

∂x
.

#
See Examples 34 to 36 in Section 6.3 of OSC36.

We will see soon that the converse is also true under a restriction on the shape of the domain, but it is not
true in every situation, as this exercise shows.
Exercise 6.3.7 Consider

F⃗ (x, y) = P ı̂+Qȷ̂ =
−y

x2 + y2
ı̂+

x

x2 + y2
ȷ̂

5openstax.org/books/calculus-volume-3/pages/6-3-conservative-vector-fields
6openstax.org/books/calculus-volume-3/pages/6-3-conservative-vector-fields
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on its natural domain, all of R2 except the origin.
Show that this satisfies the cross-partials condition Equation (6.3.2) but its path integral along the circle of
radius one going anti-clockwise around the origin is not zero, so F⃗ is not conservative.

The above cross-partials condition Equation (6.3.2) does guarantee that a vector field is conservative under
the restriction that, loosely speaking, the domain has no holes in it.
This excludes the domain in Exercise 6.3.7, p. 102 which has a hole at the origin.
More precisely, we say a domain is simply connected if for any closed path, all the point inside the path are
in the domain D.
See Checkpoint 25 in Section 6.3 of OSC37.

Then
Theorem 6.3.8 Cross-partials condition. If F⃗ = P ı̂+Qȷ̂ has simply connected domain D and P and Q are
differentiable, then F⃗ is conservative if and only if it satisfies the cross-partials condition ∂P

∂y
=
∂Q

∂x
.

Again Theorem 6.3.5, p. 101 and Theorem 6.3.3, p. 101 thus show that on a simply connected domain, these
two properties are also equivalent to the path-independence of

∫
C F⃗ · dr⃗ on all paths in the domain, and to

having
∮
C F⃗ · dr⃗ = 0 on any closed path in the domain.

The proof can only be sketched in this course, and this will be done in Subsection 6.4.6, p. 107.

Example 6.3.9 For the vector field F⃗ in the previous exercise, but restricted to domain x > 0, note that this
domain is simply connected and verify that F⃗ is the gradient of arctan(y/x) on that domain.
Thus, the integrals of this vector field around any closed path in this domain is zero. In fact the same is
true so long as the path does not go around the hole at the origin. Roughly, the function f is the angle θ
in polar coordinates, and the integral along a path is the change in this angle between the endpoints of the
path. For a closed path that loops around the origin, this can be any multiple of 2π.
(Aside: the value of this integral along a closed path divided by 2π is called the winding number of the path
around the origin.) "

6.3.6 Conservation of Energy
Perhaps the most important example of path integrals is the work done by a force F⃗ as an object moves
along a path C given by r⃗, a ≤ t ≤ b,

W =

∫

C
F⃗ · dr⃗

This force also produces an acceleration r⃗”, with F⃗ (r⃗) = mr⃗”, so the work done by the force as the object
moves along the path is

W =

∫

C
F⃗ · dr⃗ =

∫ b

a
mr⃗′′ · r⃗′dt = m

2

∫ b

a

d

dt
(r⃗′ · r⃗′) dt = m

2

[
r⃗′ · r⃗′

]b
a
=

m|v(b)|2

2
− m|v(a)|2

2

Here v⃗ = r⃗′ is the velocity so |v⃗| is the speed and m|v(t)|2

2
is half the mass times the speed squared: the

kinetic energy. Thus, the work done by the force is the change in the kinetic energy of the object.
If the force is conservative, it is a gradient, so for a suitable function P , F⃗ = −∇P .
Note the different sign for the potential energy of physics compared to the mathematical ”potential” f

discussed above!
7openstax.org/books/calculus-volume-3/pages/6-3-conservative-vector-fields
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Thus work is also given by

W =

∫

C
F⃗ · dr⃗ =

∫

C
−∇P · dr⃗ = −[P (r⃗(b)− P (r⃗(a)],

so the change in the potential energy is −W .
Defining the total energy as kinetic energy plus potential energy, its change is the sum of these changes,
W + (−W ) = 0: The total energy is conserved.

See Example 37 in Section 6.3 of OSC38.

Study Guide. Study Section 6.3 of OSC39; in particular
• All the Definitions and Theorems.
• The Problem Solving Strategy for calculating a Potential for a vector field.
• All Examples (and the Checkpoints following each).
• The true/false exercises 99–102.
• The following exercises (for pairs and ranges, do at least one in each): 103, 106–111, 112&113, ,

126&129.

6.4 Green’s Theorem
Revised on April 11.

References.
• OpenStax Calculus Volume 3, Section 6.41.
• Calculus, Early Transcendentals by Stewart, Section 16.4.

Introduction. The Fundamental Theorem of Calculus in the form
∫

[a,b]

df

dx
dx = f(b)− f(a)

gives the integral of the derivative of a function over an interval in terms of the values of the function itself
at the ”edges” of that interval.
Green’s Theorem is one of three results that extend this idea to multiple integrals, where the ”edge” of a
domain becomes a curve for double integrals and a surface for triple integrals, so the values at the edge must
be integrated over such curves or surfaces.

6.4.1 Simple Closed Curves, Positive Orientation, and Green’s Theorem
The simplest case is for a double integral over a region whose boundary is a simple closed curve, where
simple means that the boundary curve does not intersect itself (except that its terminal point is the same
as its initial point).
The value of a path integral can depend on the direction of movement along the path, which for a simple
closed curve can be described as clockwise or anti-clockwise; to clarify, we specify a default direction of
rotation:

8openstax.org/books/calculus-volume-3/pages/6-3-conservative-vector-fields
9openstax.org/books/calculus-volume-3/pages/6-3-conservative-vector-fields
1openstax.org/books/calculus-volume-3/pages/6-4-greens-theorem

https://openstax.org/books/calculus-volume-3/pages/6-3-conservative-vector-fields
https://openstax.org/books/calculus-volume-3/pages/6-3-conservative-vector-fields
https://openstax.org/books/calculus-volume-3/pages/6-4-greens-theorem
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Definition 6.4.1 Positive Orientation. A simple closed curve has positive orientation if it is traversed anti-
clockwise (the ”trigonometric” direction).
Another way to think of this for a curve C that is the boundary of a region D is that when moving forward
along the curve, the interior of the region is to the left. ♦

Alternative Notation. The use of positive orientation for the integral around a simple closed curve is some-
times indicated by

∮
C and the boundary of D is sometime denoted ∂D, giving the alternative notations

∫

C
Pdx+Qdy =

∮

C
Pdx+Qdy =

∮

∂D
Pdx+Qdy

Theorem 6.4.2 Green’s Theorem (Circulation Form). Let D be a domain in the plane whose boundary can
be described by a positively oriented simple closed curve C = ∂D.
For f(x, y) a function that is continuous on D and on an open region surrounding D,

∮

∂D
f(x, y) dx = −

∫∫

D

∂f

∂y
dA (6.4.1)

and ∮

∂D
f(x, y) dy =

∫∫

D

∂f

∂x
dA (6.4.2)

Thus for F⃗ = ⟨P,Q⟩ continuous on D and on an open region surrounding D, the circulation around the
boundary of D is

∮

∂D
F⃗ · dr⃗ =

∮

∂D
F⃗ · T̂ ds =

∮

∂D
P dx+Q dy

=

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA (6.4.3)

6.4.2 Partial Proof of Green’s Theorem
Green’s Theorem can be verifed in several stages:

1. Verify Equation (6.4.1) on Type I regions. (This is where most of the work is.)
2. Verify it on a general region by dividing it into a collection of Type I regions, as done for double

integrals in Section 5.2, p. 70.
3. Verify (6.4.2) similarly, except starting with Type II regions.
4. Combine these with f = P in (6.4.1) and f = Q in (6.4.2) to get Equation (6.4.3).

6.4.3 Verifying Equation (6.4.1) on Type I regions
Consider a Type I domain D = {(x, y)|a ≤ x ≤ b,B(x) ≤ y ≤ T (x)}.
Its boundary is the oriented path ∂D = CB + CR + CT + CL where

1. CB = {(x,B(x)), a ≤ x ≤ b}, the bottom of D going left to right,
2. CR = {(b, y), B(x) ≤ y ≤ T (x)}, the vertical line at the right, if any,
3. CT = {(x, T (x)), b ≥ x ≥ a}, the top of D, going right to left, and
4. CL = {(a, y), T (x) ≥ y ≥ B(x)}, the vertical line at the left, if any.
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The ”side” integrals
∫
CL

f dx and
∫
CR

f dx are zero because x is constant on these paths, so
∮

∂D
f dx =

∫

CB

f dx+

∫

CT

f dx

=

∫ b

x=a
f(x,B(x)) dx+

∫ a

x=b
f(x, T (x)) dx

= −
∫ b

x=a
[f(x, T (x))− f(x,B(x))] dx

The Fundamental Theorem of Calculus gives
∫ T (x)

y=B(x)

∂f(x, y)

∂y
dy = f(x, T (x))− f(x,B(x))

leading to
∮

∂D
f dx = −

∫ b

x=a

∫ T (x)

y=B(x)

∂f

∂y
dy dx

= −
∫∫

D

∂f

∂y
dA

which is Equation (6.4.1).

6.4.4 Verifying Equation (6.4.1) on more general domains
As discusssed in Section 5.2, p. 70, integration over a more genereral domain in R2 can be done by cutting
the domain into a collection of Type I domains. One method is to cut along each of the vertical lines that
pass through points on the boundary where the tangent is vertical (which are the only points where there is
a problem descibing the boundary with y as a function of x, as needed for ”Type I”)
The double integral of the whole domain is just the sum of these double integrals. On the other side of the
equation, the boundaries of the new Type I pieces consist of:

• pieces of the boundary of the original domain, and
• the new edge pieces which arise in pairs on either side of each cut.

The first collection just add up to the original boundary curve, so give the desired path integral around the
original boundary.
The motion along the new ”internal” edges is still anticlockwise, so with the respective regions being on the
opposite side, keeping the ”inside” to the left requires that the motion be in the opposite direction on the
two members of a pair, and so the integrals from each pair cancel out as seen in Subsection 6.2.3, p. 98).

6.4.5 Verifying Equation (6.4.2)
The second integral is similar; I sketch enough detail to show where the sign change arises.
This time one starts with a Type II domain D = {(x, y)|c ≤ y ≤ d, L(y) ≤ x ≤ R(y)}, whose boundary path
is now ∂D = CR + CT + CL + CB with

1. CB = {(x, c), L(c) ≤ x ≤ R(c)},
2. CR = {(R(y), y), c ≤ y ≤ d}, the right boundary of D, going upward,
3. CT = {(x, d), R(d) ≥ x ≥ L(d)}, and
4. CL = {(L(y), y), d ≥ y ≥ c}, the left boundary of D, going downward.
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The top and bottom integrals vanish as the side integrals did above, leaving
∮

∂D
Q(x, y) dy =

∫

CR

Q(x, y) dy +

∫

CL

Q(x, y) dy

=

∫ d

y=c
Q(R(y), y) dy +

∫ c

x=d
Q(L(y), y) dy

=

∫ d

y=c
Q(R(y), y)−Q(L(y), y) dy

=

∫ d

y=c

∫ R(y)

x=L(y)

∂Q(x, y)

∂x
dx dy using the FTC again

=

∫∫

D

∂Q

∂x
dA.

6.4.6 An Application of Green’s Theorem: When the Cross-Partials Condition Implies That
A Vector Field is Conservative

The cross-partials condition for a vector field to be conservative on a simply connected domain, Theorem 6.3.8,
p. 103, was left unproven in Section 6.3, p. 99.
The inference in one direction is already given by Theorem 6.3.6, p. 102 so we only need to verify that the
cross-partials condition implies that the field is conservative.
We indicate why this is true by arguing that the cross-partials condition ensures that

∫
C F⃗ · dr⃗ = 0, which

was seen in Theorem 6.3.5, p. 101 to be equivalent to being conservative.
If a closed path C is simple, it surrounds a simply connected domain D′ within the simply connected domain
D, because if anything inside C were not part of D, there would be a ”hole” in D. (This is intuitive, but
not a rigorous proof).
Green’s theorem then gives

∫

C
F⃗ · dr⃗ =

∫

C
Pdx+Qdy =

∫

D′

∂Q

∂x
− ∂P

∂y
dA =

∫

D′
0 dA = 0.

Next, for a non-simple path, divide it into pieces that are simple closed curves by cutting at each point where
it crosses itself (again this is intuitive but not really proved here). The path integral around C is thus zero
because it is the sum of the integrals around each of these simple closed curves, and each of those integrals
is zero as argued above.

6.4.7 The Flux Form of Green’s Theorem
Theorem 6.4.3 Green’s Theorem, Flux Form. Let D be a domain in the plane whose boundary can be
described by a positively oriented simple closed curve C = ∂D. with the ”rightward unit normal” N̂ =
⟨dy/ds,−dx/ds⟩ as defined in Equation (6.2.19), which for a positively oriented closed curve is the outward
unit normal vector to the boundary curve: it points away from the domain.
For F⃗ = ⟨P,Q⟩ continuous on D and on an open region surrounding D, the flux across the boundary of D is

∮

∂D
F⃗ · N̂ ds =

∫∫

D

∂P

∂x
+
∂Q

∂y
dA (6.4.4)

(This is the form that will be generalized to triple integrals in Section 6.8, p. 123.)
The quantity

∮
C F⃗ · N̂ ds is called the flux across the curve, and for C = ∂D, it is the flux out of domain D.
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Proof. ∮

∂D
F⃗ · N̂ ds =

∮

∂D
⟨P,Q⟩ · ⟨dy/ds,−dx/ds⟩ ds =

∮

∂D
−Q dx+ P dy

Swapping names P → −Q, Q→ P in (6.4.3) gives
∮

∂D
F⃗ · N̂ ds =

∫∫

D

(
∂P

∂x
− ∂(−Q)

∂y

)
dA =

∫∫

D

∂P

∂x
+
∂Q

∂y
dA

#

6.4.7.1 Source-free Vector Fields and Their Stream Functions
Added on April 9.
Definition 6.4.4 A vector field with no flux across any closed curve C is called source-free. ♦

Just as having no circulation about all closed curves in a conected domain leads to a description of the vector
field in terms of a single function (a potential function), any source-free vector field on such a domain can
be described by single function:

Definition 6.4.5 For a vector field F⃗ = ⟨P,Q⟩, a function g satisfying

P =
∂g

∂y
and Q = −∂g

∂x
(6.4.5)

is a stream function for F⃗ . ♦
Theorem 6.4.6 A source-free vector field on a connected domain has a stream function.
Proof. This can be seen by noting that N̂ is got by rotating T̂ a quarter turn clockwise, so rotating F⃗ = ⟨P,Q⟩
a quarter-turn anticlockwise to define G⃗ = ⟨−Q,P ⟩ gives

G⃗ · T̂ ds = ⟨−Q,P ⟩ · ⟨dx, dy⟩ = P dy −Q dx = ⟨P,Q⟩ · ⟨dy,−dx⟩

= F⃗ · N̂ds

Thus the source-free condition on F⃗ gives
∮
C G⃗ · T̂ ds =

∮
C F⃗ · N̂ ds = 0. That is, by Theorem 6.3.5, p. 101,

G⃗ is conservative: there is a function g with −→∇g = ⟨gx, gy⟩ = G⃗ = ⟨−Q,P ⟩, so

P =
∂g

∂y
and Q = −∂g

∂x

#

6.4.8 Green’s Theorem for Non-simply Connected Domains
If a domain D has ”holes”, it can intuitively be considered as coming from a larger domain E by removing
one or more simply connected pieces H1, H2, etc., so that E = D ∪H1 . . ..
Then intuitively ∫∫

E

∂Q

∂x
− ∂P

∂y
dA =

∫∫

D

∂Q

∂x
− ∂P

∂y
dA+

∫∫

H1

∂Q

∂x
− ∂P

∂y
dA+ · · ·

or ∫∫

D

∂Q

∂x
− ∂P

∂y
dA =

∫∫

E

∂Q

∂x
− ∂P

∂y
dA−

∫∫

H1

∂Q

∂x
− ∂P

∂y
dA · · ·

All the integrals at right are over simply connected regions, so Green’s Theorem in the form of Equation
(6.4.3) allows each to be written as a circulation.
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This motivates
Theorem 6.4.7 For a region D consisting of an enclosing simply connected region E minus simply connected
”holes” H1 and so on, so that it has ”outer boundary” ∂E and inner boundaries around each hole,

∫∫

D

∂Q

∂x
− ∂P

∂y
dA =

∮

∂E

P dx+Q dy −
∮

∂H1

P dx+Q dy · · ·

That is, the integral of Qx −Py over region D is the circulation around the outer boundary curve minus the
circulation around each of the inner boundary curves.
Proof. The more careful proof of this is done by cutting with curves C1 and so on from the outer boundary
of D to each of the holes, giving a simply connection region whose boundary consists of

• The outer boundary ∂E, cut into several pieces.
• The boundary of each hole, but traversed clockwise, so that the pieces are −∂H1 and so on.
• The two sides of each of the cut curves: C1, −C1 and so on.

The cuts do not change what is in the region, so the double integral is unchanged. On the other hand, the
integrals along the two sides of each cut cancel out, leaving the boundary circulation integral as

∮

∂D
P dx+Q dy +

∮

−∂H1

P dx+Q dy ...

=

∮

∂D
P dx+Q dy −

∮

∂H1

P dx+Q dy ...

#
Because of this, the boundary of such a non-simply connected region is sometimes denoted

∂D = ∂E − ∂H1 . . .

and then Equation Theorem 6.4.2, p. 105 still holds.

Study Guide. Study Section 6.4 of OSC32; in particular
• The concept of a positively oriented curve in the plane (anti-clockwise rotation)
• Both versions of Green’s Theorem.
• All Examples and Checkpoints.
• One or several exercises from each of the following ranges: 146–151, 152–160, 161–169, 174–179.

6.5 Divergence and Curl
Revised on April 11.

References.
• OpenStax Calculus Volume 3, Section 6.51.
• Calculus, Early Transcendentals by Stewart, Section 16.5.

2openstax.org/books/calculus-volume-3/pages/6-4-greens-theorem
1openstax.org/books/calculus-volume-3/pages/6-5-divergence-and-curl

https://openstax.org/books/calculus-volume-3/pages/6-4-greens-theorem
https://openstax.org/books/calculus-volume-3/pages/6-5-divergence-and-curl
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6.5.1 Divergence
6.5.1.1 The Divergence of a Two Dimensional Vector Field

For two dimensional vector fields, the object ∇ or −→∇ introduced in Equation (6.1.4) of Section 6.1, p. 92 is
formally the vector −→∇ = ı̂

∂

∂x
+ ȷ̂

∂

∂y
, suggesting the dot product

−→∇ · F⃗ =

(
ı̂
∂

∂x
+ ȷ̂

∂

∂y

)
· (̂ıP + ȷ̂Q) =

∂P

∂x
+
∂Q

∂y

This is the two dimensional divergence, also denoted Div F⃗ , so the flux form of Green’s Theorem (6.4.4) can
be written as the Two Dimensional Divergence Theorem

∮

∂D
F⃗ · N̂ ds =

∫∫

D

−→∇ · F⃗ dA (6.5.1)

For the example of F⃗ describing fluid velocity, −→∇ · F⃗ is related to ”net outflow”, underlying the name
”divergence”.

Divergence-free fields.
Theorem 6.5.1 A source-free vector field in the plane is also divergence-free. That is, ”

∮
C ⟨P,Q⟩ · N̂ds = 0

implies Px +Qy = 0”.
Proof. From Theorem 6.4.6, p. 108 a source-free field has a stream function g: P = gy and Q = −gx. Thus
Clairault’s Theorem gives

Px +Qy = (gy)x + (−gx)y = 0.
#

As we have seen many times before, the converse is also true when the domain is also simply connected:
Theorem 6.5.2 Divergence Test for Source-Free Vector Fields. A continuous and differentiable vector field
F⃗ = ⟨P,Q⟩ on a simply connected domain is source-free if and only if it is divergence-free.
Proof. The main idea of the proof is conecting to the analogous Theorem 6.3.8, p. 103 by the strategy of
”rotating by a quarter turn” seen in the proof of The Flux form of Green’s Theorem 6.4.3, p. 107. #
See Example 50 in Section 6.5 of OSC32.

One important example is that magnetic fields are always descibed by divergence-free vector fields.

See Example 49 in Section 6.5 of OSC33.

6.5.1.2 The Divergence of a Three Dimensional Vector Field

For a vector field in three dimensions, F⃗ = P ı̂+Qȷ̂+Rk̂, the divergence of F is

Div F⃗ =
−→∇ · F⃗ =

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

See Example 48 in Section 6.5 of OSC34.

The extension of Equation (6.5.1) to three dimensions is the Divergence Theorem 6.8.1, p. 123 to be seen in
Section 6.8, p. 123.
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6.5.2 Curl
The first, ”circulation” form of Green’s Theorem Theorem 6.4.2, p. 105 suggests that the quantity ∂Q

∂x −
∂P
∂y

integrated measures (anti-clockwise) rotation in the vector field, perpendicur to the plane, and so around
the z-azis.
It is useful to think of this as a vector quantity

(
∂Q

∂x
− ∂P

∂y

)
k̂

and for vector fields in space, extending this to corresponding measures of rotation with respect to the x and
y axes. This lead to the quantity sometimes called the rotation, Rot F⃗ when the vector field describes the
velocity in a fluid, but now more often call the curl of a vector field on R3:

Definition 6.5.3 For a differentiable vector field F⃗ = P ı̂+Qȷ̂+Rk̂ on R3 its curl is given by

Curl F⃗ =

(
∂R

∂y
− ∂Q

∂z

)
ı̂+

(
∂P

∂z
− ∂R

∂x

)
ȷ̂+

(
∂Q

∂x
− ∂P

∂y

)
k̂ (6.5.2)

♦
See Examples 52 and 53 in Section 6.5 of OSC35.

This is an important quantity in the description not only of fluid flow but also electro-magnetic fields, and
it is related to whether the vector field is conservative.
For example, with a 2D vector field F⃗ = P (x, y)̂ı+Q(x, y)ȷ̂, this is just Curl F⃗ =

(
∂Q
∂x −

∂P
∂y

)
k̂, and so the

condition Curl F⃗ = 0⃗ is the cross-partials condition of Section 6.3, p. 99 related to F⃗ being conservative.
Using this 2D case of the curl, the original form of Green’s Theorem in Equation (6.4.3) can be put in the
form ∮

∂D
F⃗ · dr⃗ =

∮

∂D
F⃗ · T⃗ ds =

∫∫

D

(Curl F⃗ ) · k̂ dA (6.5.3)

This is sometimes also called the planar version of Stokes’ Theorem 6.7.2, p. 120 to be seen in Section 6.7,
p. 119.

Curl and Rotation in a Fluid. The name ”curl” refers to a measure of rotation. For example, the vector field
F⃗ = −yı̂+ xȷ̂ describes velocity of a fluid (say) going anti-clockwise around the z-axis: it has Curl F⃗ = 2k̂
in which the direction k̂ indicates the axis of rotation, the positive value indicates anti-clockwise direction
as viewed from ”above” down that z-axis, and the uniform magnitude indicating the uniform angular rate
of rotation (which has period 2π).

The −→∇ Short-hand for the Curl. The formal −→∇ shorthands for the gradient Gradf =
−→∇f and the divergence

Divf =
−→∇ · F⃗ also have a counterpart for the curl, via the formal cross product:

−→∇ × F⃗

=

∣∣∣∣∣∣

ı̂ ȷ̂ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣

= ı̂

(
∂R

∂y
− ∂Q

∂z

)
+ ȷ̂

(
∂P

∂z
− ∂R

∂x

)
+ k̂

(
∂Q

∂x
− ∂P

∂y

)

= Curl F⃗ .

Hence we sometimes use −→∇ × F⃗ as mnemonic notation for Curl F⃗ .
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6.5.3 Some Connections Between Div, Curl and Grad
Added on April 11.

Gradients are ”Curl Free”, and vice versa on Simply Conected Domains. The curl is involved in the 3D
version of the mixed partials condition in Section 6.3, p. 99:
Theorem 6.5.4

(1) The curl of a conservative vector field F⃗ = Gradf vanishes: that is

Curl(Gradf) = −→∇ × (
−→∇f) = (

−→∇ ×−→∇)f = 0⃗.

(The final form is given as a mnemonic: if you think of −→∇ as being a true vector, its cross product
with itself should be zero.)

(2) On a simply conected domain, the converse is also true: if Curl F⃗ = 0⃗ then F⃗ is a gradient.

See Example 56 in Section 6.5 of OSC36.
Proof of part (1). The verification of the first half is a straightforward calculation using Clairaut’s Theorem:
it is like three versions of the mixed partials condition for a conservative vector field in R2 seen in Section 6.3,
p. 99. #
Proof of part (2); postponed. The proof of the converse (2) is difficult; the main ideas will be sketched in
Section 6.7, p. 119, using Stokes’ Theorem, p. 120 from that section.
As a hint, in the plane this is the conclusion of Theorem 6.3.8, p. 103. #

Curls are ”Divergence Free”.
Theorem 6.5.5 If F⃗ = P ı̂ + Qȷ̂ + Rk̂ is a vector field on R3 and all components have continuous second
derivatives, then

Div Curl F⃗ =
−→∇ · (−→∇ × F⃗ ) = 0.

Proof. This can again be verified by straightforward calculation and using Clairaut’s Theorem. #
See Example 55 in Section 6.5 of OSC37.

The Laplacian of a Function and the Laplace Operator. There is one other very important combination of
divergence, curl and gradient:

Div Gradf =
−→∇ ·−→∇f =

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

This is the Laplacian of f often abbreviated as −→∇2f or ∆f . For functions of two variables this is

∆f =
−→∇2f =

−→∇ ·−→∇f =
∂2f

∂x2
+
∂2f

∂y2
.

This operation ∆ is called the Laplace operator, with the symbolic form

∆ =
−→∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

The Laplacian of a vector field is the vector field got by applying the Laplace operator to each component
in turn; that is:

∆F⃗ = ∆P ı̂+∆Q ȷ̂+∆R k̂
6openstax.org/books/calculus-volume-3/pages/6-5-divergence-and-curl
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Summary: All the Second Derivative Combinations. Here are fomulas for all the combinations of Div, Curl
and Grad that make sense:

• Div Gradf =
−→∇ ·−→∇f =

−→∇2f = ∆f

• Curl Gradf =
−→∇ ×−→∇f = 0⃗

• Div Curl F⃗ =
−→∇ · (−→∇ × F⃗ ) = 0

• and the final ones combine in one formula:
Curl Curl F⃗ = Grad Div F⃗ −DivGradF⃗ ;

that is, −→∇ × (
−→∇ × F⃗ ) =

−→∇(
−→∇ · F⃗ )−−→∇2F⃗ .

6.5.4 Some Fundamental Differential Equations of Physics
The Laplacian arises in several of the fundamental equations for physics:

Laplace’s Equation ∆u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0

The Poisson Equation ∆u = f,

The Heat Equation ∂u

∂t
= ∆u,

The Wave Equation ∂2u

∂t2
= ∆u, and

The Schrödinger Equation ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ + V (x⃗)ψ

used in the description of fluid motion, electric fields, heat conduction, waves in water and in electro-magnetic
fields, and in quantum mechanics.

Study Guide. Study Section 6.5 of OSC38; in particular
• The definitions of divergence and of curl.
• The concept of a source-free vector field: a vector field F⃗ = ⟨P (x, y), Q(x, y)⟩ for which there is a stream

function g(x, y) for which P = gy, Q = −gx from Subsubsection 6.4.7.1, p. 108, and its connection to a
field being divergence-free: −→∇ · F⃗ = 0; see Theorems 14 and 15.

• Theorem 16: Div Curl F⃗ = 0, or −→∇ · (−→∇ × F⃗ ) = 0 (as if −→∇ were a real vector.)

• Theorem 17, which can be restated as (
−→∇ ×−→∇)f = 0 (again as if −→∇ were a real vector.)

• Theorem 18, a restatement of the cross-partial condition of Theorem 6.3.8, p. 103 in Section 6.3, p. 99.
• Examples 48–50, 52–56, and the Checkpoints following each.
• The T/F Exercises 207–211 and one or several exercises from each of the following ranges: 212–221,

222–231, 256, 257, 258.

6.6 Surface Integrals
Revised on April 18.

References.
• OpenStax Calculus Volume 3, Section 6.61.
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• Calculus, Early Transcendentals by Stewart, Section 16.7.

6.6.1 Parametric Surfaces
Just as not all plane curves can be conveniently described as the graph of a function y = f(x) and are instead
best described parametrically as r⃗(t) = x(t)̂ı+ y(t)ȷ̂, so surfaces are often decribed parametrically, but now
with two parameters:

r⃗(u, v) = x(u, v)̂ı+ y(u, v)ȷ̂+ z(u, v)k̂ (6.6.1)
for (u, v) in some domain D in R2.
The set of all points (x, y, z) in R3 given by this form is the parametric surface S, with the parametric
equations

x = x(u, v), y = y(u, v), z = z(u, v) (6.6.2)
See Examples 58 to 60 in Section 6.6 of OSC32.

Grid Curves: Curves on a Surface with Constant u or v. In visualizing and drawing surfaces it can be useful
to consider

1. lines with constant v value, v = v0, which are the parameterized curves r⃗(u) = r⃗(u, v0), and
2. lines with constant u value, u = u0: r⃗(v) = r⃗(u0, v).

These are grid curves.

Surfaces of Revolution. A familiar example is surfaces of revolution, given by rotating a curve around some
axis. The surface given by rotating the curve y = f(x), a ≤ x ≤ b about the x-axis can be described using
the two parameters x and the angle θ measuring rotation around that axis, starting at the y axis and going
towards the z-axis:

x = x, y = f(x) cos θ, z = f(x) sin θ, domain D = [a, b]× [0, 2π].

Tangent Planes. To find the tangent plane to S at the point P (x0, y0, z0) given by parameter values (u0, v0),
one can first find two tangent directions,so that their cross product is a normal to the surface and to the
tangent plane.
Natural choices are the tangent lines given by using the linearizations of x(u, v), y(u, v) and z(u, v)at this
point and varying one parameter while holding the other constant. Note that these are tangent lines to the
grid curves.
Varying u while fixing v = v0 gives linearizations

x = x(u0, v0) +

[
∂x

∂u
(u0, v0)

]
(u− u0),

y = y(u0, v0) +

[
∂y

∂u
(u0, v0)

]
(u− u0),

z = z(u0, v0) +

[
∂z

∂u
(u0, v0)

]
(u− u0).

This gives the tangent vector in the u direction

r⃗u =
∂x

∂u
(u0, v0)̂ı+

∂y

∂u
(u0, v0)ȷ̂+

∂z

∂u
(u0, v0)k̂
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Similarly, varying v with fixed u = u0 gives tangent vector

r⃗v =
∂x

∂v
(u0, v0)̂ı+

∂y

∂v
(u0, v0)ȷ̂+

∂z

∂v
(u0, v0)k̂

If the cross product r⃗u(u0, v0) × r⃗v(u0, v0) is non-zero then it is a normal vector to S at point P and the
tangent plane there is

(⟨x, y, z⟩ − ⟨x0, y0, z0⟩) · (r⃗u(u0, v0)× r⃗v(u0, v0)) = 0⃗

If the cross product r⃗u × r⃗v is non-zero for all (u, v) in D, this is caled a regular parameterization and the
surface S is called smooth: loosely, it has no corners or creases, and there is a well-defined tangent plane
everywhere on the surface.

See Example 61 in Section 6.6 of OSC33.

This is analagous to the condition r⃗′(t) ̸= 0⃗ in Section 3.2 for a curve to be smooth and with well-defined
tangent vector.

6.6.2 Surface Area of a Parametric Surface
The area of the surface S can now be defined, and the intuitive approach is to look at the area of the
infinitesimal part of the surface near a point with parameters (u, v) given by varying u by an infinitesimal
amount du and v by dv. This surface is an infinitesimal parallelogram with edges given by the above
linearization as r⃗udu and r⃗vdv, and so of infinitesimal area dS,

dS = ∥r⃗udu× r⃗vdv∥ = ∥r⃗u × r⃗v∥du dv (6.6.3)

Note that if the surface is a flat region in the x-y plane, so z(u, v) = 0, then

∥r⃗u × r⃗v∥ =
∥∥∥∥

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
k̂

∥∥∥∥ =

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣

and so this becomes the infinitesimal planar area dA of Equation (5.7.11) in Section 5.7, p. 85.
Combining these infinitesimal areas by integration motivates the following definition.
Definition 6.6.1 For a smooth parametric surface S given by

x = x(u, v), y = y(u, v), z = z(u, v)

with (u, v) in D, the surface area of S is

A(S) =

∫∫

D

dS =

∫∫

D

∥r⃗u × r⃗v∥ du dv =

∫∫

D

∥r⃗u × r⃗v∥ dA

where dA refers to area in the (u, v) plane. ♦
Exercise 6.6.2 Compute the surface area of a sphere, parameterizing it with spherical coordinates.
See Examples 62, 63 and 64 in Section 6.6 of OSC34.

Alternatively, one can start from the beginning: approximate the areas of small parts of the surface, sum
them, take a limit, and recognizing the limit as the above integral.

3openstax.org/books/calculus-volume-3/pages/6-6-surface-integrals
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The Surface Area of the Graph of a Function. In the case where the surface is the graph of a function
z = g(x, y), the parameters can be simply x and y, and straightforward calculations give

∥r⃗x × r⃗y∥ = ∥⟨−∂g/∂x,−∂g/∂y, 1⟩∥ =
√
1 + (∂g/∂x)2 + (∂g/∂y)2

so
dS =

√
1 + (∂g/∂x)2 + (∂g/∂y)2 dA (6.6.4)

Thus the surface area is

A(S) =

∫∫

D

dS =

∫∫

D

√
1 + (∂g/∂x)2 + (∂g/∂y)2 dx dy (6.6.5)

(Compare this to the formula (1.2.4) for the arc length of the graph of a function in Section 1.2, p. 4.)
Exercise 6.6.3 Compute the surface area of a sphere again, this time by considering a hemisphere as the
graph of a function.

6.6.3 Surface Integral of a Scalar-Valued Function
The formula for surface area seen in the previous section was based on the formula

dS = ∥r⃗u × r⃗v∥ dA

for the area dS of an infinitesimal fragment of a parametric surface r⃗(u, v) in terms of the corresponding
infinitesimal area dA = du dv in the (u, v) plane of the parameters. To integrate a function over a surface,
such as summing a density f = f(x, y, z) over the surface to compute a total mass, start with the idea that
the mass on a small fragment of the surface is density times area:

f dS = f∥r⃗u × r⃗v∥ dA

Thus the natural form for the integral of function f over surface S is
∫∫

S

f dS =

∫∫

D

f(r⃗(u, v))∥r⃗u × r⃗v∥ dA (6.6.6)

This can be taken as the definition of the integral over a surface, or one can define the integral in terms of
limits of sums and derive this result, as already seen in various cases in these notes.
The formula for surface area in the previous section is just the case of integrating the constant function
f = 1.

See Examples 66 and 67 in Section 6.6 of OSC35.

Surface Integrals for Graphs of Functions. When the surface is the graph of z = f(x, y) over domain D,
using the form for the infinitesimal area dS in Equation (6.6.4) and f(x, y, z) = f(x, y, g(x, y)) gives

∫∫

S

f dS =

∫∫

D

f(x, y, g(x, y))
√

1 + (∂g/∂x)2 + (∂g/∂y)2 dA

See Example 68 in Section 6.6 of OSC36.
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6.6.4 Oriented Surfaces
To integrate the normal component of a vector field over a surface, we need something like the outward unit
normal vector N̂ constructed for a positively oriented curve in Subsection 6.4.7, p. 107.
There are two choices of unit normal at each point of a smooth surface, and we need to make a consistent
choice over the whole surface which varies continuously, so that the normal can be considered as pointing
”outward”, or ”upward” for example.

Definition 6.6.4 A surface is oriented if there is a continuous function N̂ defined everywhere on the surface
whose value at each point is a unit vector normal to the tangent plane at that point. ♦

Note that for any oriented surface, there are two choices of orientation for the surface, since negating one
suitable N̂ gives another. The two-way choice here is akin to the choice of positive (anti-clockwise) orientation
for a curve.
See Example 69 in Section 6.6 of OSC37.

Non-orientable Surfaces: The Möbius Strip etc.. Not all surfaces are oriented: the Möbius strip is a famous
example of a surfaces where one can move from one side to the other by traveling along the surface, so
starting on the side indicated by a continuous unit normal, as you move around without jumping sides, the
normal should continue to point to your side, but you can move around returning to the same point but on
the opposite side, so the normal at the same point must now point in the opposite direction.
This makes it impossible to choose between the two possible unit normals at each point in a way that is
continuous over the whole surface.
Fortunately all the most familiar common types of surfaces are oriented: graphs of (differentiable) functions,
level sets of (differentiable) functions, and ones with a single overall parameterization.

Oriented Surfaces: Globally Parameterized Surfaces. Smooth surfaces that can be described by a single
”global” parametrization r⃗(u, v) with r⃗u × r⃗v ̸= 0⃗ describing the whole surface are oriented. This is because
that cross product is a continuous normal, giving unit normal

N̂ =
r⃗u × r⃗v
∥r⃗u × r⃗v∥

(6.6.7)

Note how the non-zero conditionfor smoothness is necessary and sufficient for this to make sense everywhere
on the surface.
Exercise 6.6.5 Compute this unit normal for the sphere or radius R parametrized with the spherical angular
coordinates φ, and θ, r⃗(ψ, θ) = R sinφ cos θı̂+R sinφ sin θȷ̂+R cosφk̂.
What happens if we call this r⃗(θ,ψ) instead?

Oriented Surfaces: Graphs of Functions. The surface given by the graph of a function z = g(x, y) is globally
parametrized by x and y, and so is oriented. Formula (6.6.7) applied to r⃗(x, y) = ⟨x, y, g(x, y)⟩ gives

N̂ =
r⃗x × r⃗y
∥r⃗x × r⃗y∥

=
⟨−∂g/∂x,−∂g/∂y, 1⟩√
1 + (∂g/∂x)2 + (∂g/∂y)2

(6.6.8)

Since the third component is always positive, this is the ”upward” unit normal.

Exercise 6.6.6 Compute this unit normal for the hemisphere given as the graph of z =
√
R2 − x2 − y2.
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Oriented Surfaces: Level Sets of Functions. More generally surfaces defined as a level set by an equation
f(x, y, z) = C, for C a constant, and with −→∇f ̸= 0⃗ everywhere on the surface are oriented. For then −→∇f is
a normal to the surface, and

N̂ =

−→∇f

∥−→∇f∥
(6.6.9)

is a suitable unit normal, pointing in the direction of increasing values of f .
It can be shown, using The Implicit Function Theorem in 3D, p. 56, that such a surface is the union of a
collection of parametric surfaces; indeed, as mentioned in that theorem, the parameters for each piece can
be two of the cartesian coordinates: each piece can be the graph of a function z = g(x, y), x = g(y, z) or
y = g(x, z).

Exercise 6.6.7 Compute this unit normal for the sphere given as the level set x2 + y2 + z2 = R2.

Choice of Orientation. Note that there are two choices of unit normal vector function for any oriented
surface, as we can always negate N̂ . Thus a particular choice of orientation has to be specified, such as
outwards from or into a domain D when S is the boundary of D.
It will be then convenient to combine the infinitesimal area dS at a point on the surface with the chosen
orientation N̂ of the surface there into the vector differential

dS⃗ = N̂dS (6.6.10)

For a parametrized surface we then have r⃗(u, v) dS = ∥r⃗u × r⃗v∥dA and choosing N̂ =
r⃗u × r⃗v
∥r⃗u × r⃗v∥

as above,

dS⃗ = N̂dS = (r⃗u × r⃗v) dA

For the case of the graph of a function z = g(x, y), combining Equation (6.6.8) for N̂ with Equation (6.6.4)
for dS gives

dS⃗ = N̂dS = ⟨−∂g/∂x,−∂g/∂y, 1⟩ dA (6.6.11)

Closed Surfaces and Their Outward Unit Normal. A surface S that is the boundary of solid region E is
called a closed surface, and then a natural choice of normal is outwards from the surface, which is called the
positive orientation.
This is easily specified when the region is given by an inequality f(x, y, z) ≤ k [or several such inequalities]
because then the boundary is the surface is given by f(x, y, z) = k [or several such equations], and the
outward normal is N̂ =

−→∇f

∥−→∇f∥
as seen above.

For example, the unit sphere centered at the origin considered as the boundary of the ball f(x, y, z) =
x2 + y2 + z2 ≤ 1 has outward unit normal N̂ = ⟨x, y, z⟩.

Exercise 6.6.8 Evaluate dS⃗ for the surface of the ball x2 + y2 + z2 ≤ R2.

6.6.5 Surface Integral of a Vector-Valued Function
The path integral

∮
C F⃗ · N̂ ds around an oriented closed curve has a three dimensional counterpart for

oriented surfaces:
Definition 6.6.9 For F⃗ a continuous vector field defined on an oriented surface S and N̂ a continuous unit
normal vector for S, the surface integral of F⃗ over S is

∫∫

S

F⃗ · N̂ dS,=

∫∫

S

F⃗ · dS⃗. (6.6.12)
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This is also called the flux of F⃗ over S. ♦
See Examples 70 and 71 in Section 6.6 of OSC38.

The Integral of a Vector Field over a Parametrized Surface. When surface S is parametrized as r⃗(u, v) for
(u, v) in domain D, we get a nice simplification:

dS⃗ = N̂ dS =
r⃗u × r⃗v
∥r⃗u × r⃗v∥

∥r⃗u × r⃗v∥ dA = (r⃗u × r⃗v) dA

and so the flux is ∫∫

S

F⃗ · N̂ dS =

∫∫

S

F⃗ · dS⃗ =

∫∫

D

F⃗ · (r⃗u × r⃗v) dA (6.6.13)

Avoiding the division and the square root in the formula for ∥r⃗u × r⃗v∥ can help when it comes to evaluating
the integral.
When the surface is the graph of a function z = g(x, y), Equation (6.6.11) gives the form

∫∫

S

F⃗ · dS⃗ =

∫∫

D

F⃗ · ⟨−∂g/∂x,−∂g/∂y, 1⟩ dA

=

∫∫

D

−P ∂g
∂x
−Q

∂g

∂y
+R dA (6.6.14)

Study Guide. Study Section 6.6 of OSC39; in particular
• All the Definitions.
• Examples 58–64 and 66–71, and the Checkpoints following each.
• The T/F Exercises 269–271 and one or several exercises from each of the following ranges: 273–278,

281–283, and 284–286.

6.7 Stokes’ Theorem
Revised on April 18.

References.
• OpenStax Calculus Volume 3, Section 6.71.
• Calculus, Early Transcendentals by Stewart, Section 16.8.

Green’s Theorem (Circulation Form), p. 105 says that for D a region in the plane and C its boundary, a
positively oriented simply connected curve,

∮

C
F⃗ · dr⃗ =

∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA (6.7.1)

Considering D as a surface in R3 that lies in the plane z = 0, it has unit normal vector N̂ = k⃗, and in the
notation of the previous section, k⃗ dS = N⃗ dS = dS⃗. Also, the integrand at right is the third component of

8openstax.org/books/calculus-volume-3/pages/6-6-surface-integrals
9openstax.org/books/calculus-volume-3/pages/6-6-surface-integrals
1openstax.org/books/calculus-volume-3/pages/6-7-stokes-theorem

https://openstax.org/books/calculus-volume-3/pages/6-6-surface-integrals
https://openstax.org/books/calculus-volume-3/pages/6-6-surface-integrals
https://openstax.org/books/calculus-volume-3/pages/6-7-stokes-theorem
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the curl of F⃗ = P ı̂+Qȷ̂. Thus, Equation (6.7.1) can be expressed as
∮

C
F⃗ · dr⃗ =

∫∫

D

Curl F⃗ · dS⃗.

Stokes’ Theorem extends this to the case where D is replaced by an oriented surface S in R3 with continuous
unit normal N̂ and bounded by the piecewise smooth curve C = ∂D, with the integral around C done with
an orientation that is compatible with the choice of the unit normal for S.
To do this, we need to extend the idea of ”anti-clockwise” or ”positive” orientation of a planar closed curve.

Orientation of a Surface and its Boundary Curve.
Definition 6.7.1 For an oriented surface with chosen continuous unit normal N̂ and whose boundary C = ∂S
is a smooth curve with unit tangent T̂ , the boundary is positively oriented with respect to the surface if
N̂ × T̂ points into the surface. ♦

For example, for a planar region with upward normal N̂ = k̂ and boundary curve parameterized with
T̂ = ⟨dx/ds, dy/ds⟩, the cross-product N̂ × T̂ = ⟨−dy/ds, dx/ds⟩, which is the vector got by rotating T̂ a
quarter turn anti-clockwise, or to the left relative to the direction T̂ : this is indeed ”into the surface” if the
curve is traversed anti-clockwise.
Intuitively, if one imagines walking around the edge C of region S in the direction of the parameterization
and with one’s ”up” direction as indicated by N̂ , then the surface S is to one’s left.
Alternatively, if one views the surface from the side indicated by N̂ , the boundary is traversed anti-clockwise,
matching our description of positive orientation for plane curves.
In the case where normal N̂ has positive z component, as when the surface is the graph of a function, positive
orientation is moving anti-clockwise around C as seen from ”above”, meaning from higher z values.
Theorem 6.7.2 Stokes’ Theorem. For a piecewise-smooth oriented surface S with positively oriented piecewise-
smooth boundary curve ∂S and outward unit normal N̂ ,

∮

∂S
F⃗ · T⃗ ds =

∫∫

S

Curl F⃗ · N̂ dS;

that is,
∮

∂S
F⃗ · dr⃗ =

∫∫

S

(
−→∇ × F⃗ ) · dS⃗ (6.7.2)

See Example 73 in Section 6.7 of OSC32.
Proof for the surface as the graph of a function. We start by proving this in the case that the surface is a
graph z = g(x, y), x = g(y, z) or y = g(x, z)), and then deal with the general case by dividing the surface
into a union of ”easy pieces” of these three types. This mimics the strategy used to prove Theorem 6.4.2,
p. 105, where the easy pieces were regions of Type I or Type II.
First, using Equation (6.6.14) for dS⃗ on the right-hand side,

∫∫

S

Curl F⃗ · N̂ dS

=

∫∫

S

Curl F⃗ · ⟨−∂g/∂x,−∂g/∂y, 1⟩ dA

=

∫∫

S

〈
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

〉
· ⟨−∂g/∂x,−∂g/∂y, 1⟩ dA

https://openstax.org/books/calculus-volume-3/pages/6-7-stokes-theorem
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=

∫∫

S

−
(
∂R

∂y
− ∂Q

∂z

)
∂g

∂x
−
(
∂P

∂z
− ∂R

∂x

)
∂g

∂y
+

(
∂Q

∂x
− ∂P

∂y

)
dA

=

∫∫

S

∂Q

∂z

∂g

∂x
+
∂R

∂x

∂g

∂y
+
∂Q

∂x
− ∂R

∂y

∂g

∂x
− ∂P

∂z

∂g

∂y
− ∂P

∂y
dA (6.7.3)

Next the contour integral along a parameterization x = x(t), y = y(t), z = g(x(t), y(t)), a ≤ t ≤ b of the
boundary curve, with (x(t), y(t)) going anti-clockwise in the x–y plane, is

∫

∂D
F⃗ · dr⃗

=

∫ b

a

(
P
dx

dt
+Q

dy

dt
+R

dz

dt

)
dt

=

∫ b

a

(
P
dx

dt
+Q

dy

dt
+R

(
∂g

∂x

dx

dt
+
∂g

∂y

dy

dt

))
dt

=

∫ b

a

((
P +R

∂g

∂x

)
dx

dt
+

(
Q+R

∂g

∂y

)
dy

dt

)
dt

=

∫ b

a

(
P +R

∂g

∂x

)
dx+

(
Q+R

∂g

∂y

)
dy

and by Green’s theorem this gives
∫

∂D
F⃗ · dr⃗

=

∫∫

D

[
∂

∂x

(
Q+R

∂g

∂y

)
− ∂

∂y

(
P +R

∂g

∂x

)]
dA

=

∫∫

D

[(
∂Q

∂x
+
∂Q

∂z

∂g

∂x
+
∂R

∂x

∂g

∂y
+
∂R

∂z

∂g

∂x

∂g

∂y
+R

∂2g

∂x∂y

)

−
(
∂P

∂y
+
∂P

∂z

∂g

∂y
+
∂R

∂y

∂g

∂x
+
∂R

∂z

∂g

∂y

∂g

∂x
+R

∂2g

∂y∂x

)]
dA

The two pairs of terms involving ∂R
∂z

∂g
∂x

∂g
∂y and R ∂2g

∂x∂y cancel, leaving
∫

∂D
F⃗ · dr⃗

=

∫∫

D

∂Q

∂x
+
∂Q

∂z

∂g

∂x
+
∂R

∂x

∂g

∂y
− ∂P

∂y
− ∂P

∂z

∂g

∂y
− ∂R

∂y

∂g

∂x
dA (6.7.4)

The right-hand side here is is the same as in (6.7.3), completing the verification for surfaces z = g(x, y): the
same verification strategy clearly works for the two other ”graph directions” x = g(y, z) and y = g(x, z). #
Proof sketch for the general case. For other surfaces, the basic idea is to cut the surface up into pieces, each
of which is a graph in one of the three directions. This will be described here for a parametric surface, or a
collection of parametric surface pieces.
As noted in Subsection 6.6.4, p. 117, Oriented Surfaces, p. 117, a smooth level surface G(x, y, z) = 0 with unit
normal N̂ =

−→∇G/∥−→∇G∥ defined everywhere can be described as a collection of parametric surface pieces,
(indeed, graphs of functions), so the result works there too.
Writing the normal as N̂ = ⟨nx, ny, nz⟩, The Implicit Function Theorem in 3D, p. 56 can be used to show
that if nz ̸= 0 at a point of the surface r⃗(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩, one can solve nearby for the
parameters u and v in terms of x and y, and thus get z in terms of x and y: this part of the surface is a
graph z = g(x, y), as handled in the first part of this proof.
Similarly, having either nx ̸= 0 or ny ̸= 0 at a point allows the surface to be descrbed as a graph in one of
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the other two directions.
Since N̂ ̸= 0 anywhere, at least one of these three conditions holds at every point on the surface, so every
part of the surface can be covered by at least one of these types of graph.
This huge collection of ”graph pieces” covers the surface many times over; then one can cut the collection
and the domains down to cover each point once, except for overlap along the edges of their domains.
Then the sum of the surface integrals over each piece is the total surface integral, while the sum of the
boundary integrals over the pieces is

• the integral around the boundary of the whole surface, plus
• various path integrals along the internal edges produced by cutting.

These internal edge path integrals come in pairs going in opposite directions (along the ”opposite sides” of
each cut), and so cancel out, leaving just that outside boundary integral, as needed. #
See Example 74 in Section 6.7 of OSC33, converting a surface integral into an easier line integral, and

Example 75 converting a line integral into an easier surface integral.

Velocity Fields, Circulation, and Curl. Stokes’ Theorem helps with the interpretion of the curl in the context
of the velocity field of a fluid, v⃗.
The circulation of a velocity field v⃗ around a curve C is the net flow around this curve in the direction of the
curve’s orientation, given by integrating the tangential part v⃗ · T⃗ of the velocity with respect to arc length:∮
C v⃗ · T⃗ ds.

Stokes’ Theorem says that for any oriented surface S with this curve as boundary, positively oriented, this
is ∮

C
v⃗ · T⃗ ds =

∮

C
v⃗ · dr⃗ =

∫∫

S
Curl v⃗ · N⃗dS,

so the circulation is given by integrating the part of the curl normal to the surface. (This shows a sense in
which the curl measures anti-clockwise rotation in a velocity vector field.)
If you are interested in applications to electric and magnetic fields, see the subsection Interpretation of Curl

at the end of Section 6.7 of OSC34 and Example 76 there.

CurlF⃗ = 0⃗ implies that F⃗ is conservative. Stokes’ Theorem is the main ingredient in proving the second,
converse half of Theorem 6.5.4, p. 112 in Section 6.5, p. 109; the part that requires a simply connected
domain.
The other ingredient is showing that for any closed curve C in the simply connected domain D, one can find
a surface S with C as its boundary.
Proving this takes some work: the main idea is the shrink the curve down to a point, sweeping out a surface
as you go. Being simply connected is the condition which ensures that this shrinking can be done without
getting stuck on a hole in the domain.
With these two ingredients, CurlF⃗ = 0⃗ ensures that

∮

C
F⃗ · dr⃗ =

∫∫

S
Curl F⃗ · dS⃗ = 0

for any closed curve C in the domain, and as seen in Theorem 6.3.5, p. 101 this zero integral around any
closed path is equivalent to F⃗ being conservative: there is a function f(x, y, z) with Gradf = F⃗ .

Study Guide. Study Section 6.7 of OSC35; in particular
• Stokes’ Theorem (of course).

2openstax.org/books/calculus-volume-3/pages/6-7-stokes-theorem
3openstax.org/books/calculus-volume-3/pages/6-7-stokes-theorem
4openstax.org/books/calculus-volume-3/pages/6-7-stokes-theorem
5openstax.org/books/calculus-volume-3/pages/6-7-stokes-theorem
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• Examples 73–75, and the Checkpoints following each.
• One or several exercises from each of the ranges 326–331 and 332–335.

6.8 The Divergence Theorem
Revised on April 21.

References.
• OpenStax Calculus Volume 3, Section 6.81.
• Calculus, Early Transcendentals by Stewart, Section 16.9.

Theorem 6.8.1 The Divergence Theorem. Let E a region in R3 (of appropriate shape as discussed below), ∂E
with its boundary S being smooth and with outward unit normal N̂ , and F⃗ a vector field whose components
all have continuous partial derivatives on E and an open region containing it.
Then the outward flux of F⃗ through S is

∫∫

∂E

F⃗ · N̂ dS =

∫∫∫

E

Div F⃗ dV

or in alternate notation,
∫∫

∂E

F⃗ · dS⃗ =

∫∫∫

E

−→∇ · F⃗ dV (6.8.1)

See Example 77 in Section 6.8 of OSC32.

Verifying the Divergence Theorem for a Simple Solid Region. For what sort of domains is this true?
It is easiest to verify for domains that are of all three types 1, 2, and 3 discussed in Section 5.4 on triple
integrals. That is, any line parallel to any of the three axes that passes through the region does so in a single
line segment, entering and leaving exactly once. In other words, the boundary can be divided into a ”top”
and a ”bottom”, and into a ”left” and a ”right”, and into a ”front” and a ”back”.
Such regions are called simple solid regions.
For F⃗ = P ı̂+Qȷ̂+Rk̂ and with the unit normal written as N̂ = nx ı̂+ ny ȷ̂+ nz k̂, the Divergence Theorem
expanded in components is

∫∫

S

Pnx +Qny +Rnz dS =

∫∫∫

E

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
dV

This can be broken into a sum of three parts, and is verified by verifying each of
∫∫∫

E

∂P

∂x
dV =

∫∫

S

P ı̂ · N̂dS,

∫∫∫

E

∂Q

∂y
dV =

∫∫

S

Qȷ̂ · N̂dS,

∫∫∫

E

∂R

∂z
dV =

∫∫

S

Rk̂ · N̂dS.

The verification for each is done in the same way, so let us look at just the last,
∫∫∫

E

∂R

∂z
dV =

∫∫

S

Rk̂ · N̂dS =

∫∫

S

Rk̂ · dS⃗ (6.8.2)

1openstax.org/books/calculus-volume-3/pages/6-8-the-divergence-theorem
2openstax.org/books/calculus-volume-3/pages/6-8-the-divergence-theorem
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Since the domain E is of type 1, the boundary surface S consists of a top T given by z = t(x, y) and a
bottom B given by z = b(x, y), each over the domain D ∈ R2 of all possible (x, y) pairs occurring in D, and
the solid can be described as

E = {(x, y, z)|(x, y) ∈ D, b(x, y) ≤ z ≤ t(x, y)}.

The triple integral in Equation (6.8.2) becomes
∫∫∫

E

∂R

∂z
dV =

∫∫

D

[∫ z=t(x,y)

z=b(x,y)

∂R

∂z
dz

]
dA

The integral in brackets can be evaluated with the Fundamental Theorem of Calculus (which is the one
dimensional little brother of the Divergence Theorem) so

∫∫∫

E

∂R

∂z
dV =

∫∫

D

R(x, y, t(x, y))−R(x, y, b(x, y)) dA (6.8.3)

Starting at the other end, dividing the surface integral in Equation (6.8.3) into integrals over the top and
bottom parts gives ∫∫

S

Rk̂ · dS⃗ =

∫∫

T

Rk̂ · dS⃗ +

∫∫

B

Rk̂ · dS⃗ (6.8.4)

For the top surface T , the outward unit normal is the upward unit normal for the graph z = t(x, y) and the
integral can be evaluated using the formula in Section 6.7, p. 119

∫∫

S

F⃗ · dS⃗ =

∫∫

D

(
−P ∂g

∂x
−Q

∂g

∂y
+R

)
dA

for the current simple case with P = Q = 0,
∫∫

T

Rk̂ · dS⃗ =

∫∫

T

⟨0, 0, R(x, y, t(x, y)⟩ · dS⃗ =

∫∫

D

R(x, y, t(x, y)) dA (6.8.5)

On the bottom, the outward normal to E is the downward normal to the graph z = b(x, y), so the sign is
reversed: ∫∫

B

Rk̂ · dS⃗ =

∫∫

D

−R(x, y, b(x, y)) dA (6.8.6)

Combining Equations (6.8.3), (6.8.4), (6.8.5) and (6.8.6) gives Equation (6.8.2), the ”z” part of the divergence
theorem for simple solids. As said above, the other two parts are verified similarly.

The Basic Idea for Other Domain Shapes. The Divergence Theorem formula extends to other regions, with
the basic idea being to ”dice” a solid region into a collection of simple solid regions; a strategy like that used
for the proofs of Green’s Theorem and Stokes’ Theorem.
The total volume integral is the sum of the volume integrals over each simple piece, and so is the sum of the
surface integrals over all the pieces.
This sum of surface integrals is the desired integral over the surface of the whole region plus extra integrals
over the new surfaces produced by the cutting into simple pieces.
These extra bits of surface come in pairs on either side of each cut, with the outward normal being in the
opposite direction on the two sides of the cut, so that the values of those extra surface integrals are negatives
of each other, and thus those pairs of extra surface integrals cancel out.
That leaves just the desired surface integrals over the boundary of the domain.
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See Example 78 in Section 6.8 of OSC33, and Example 79 for an application to fluid flow.

The Flux of an Electric Field Through a Surface. The electric field around a point charge of Q at the origin
of the coordinates is

E⃗(x⃗) =
Qx⃗

4πϵ0|x⃗|3
.

Using the Divergence Theorem, it can be shown (Exercise!) that

Q =

∫∫

∂D

ε0E⃗ · dS⃗. (6.8.7)

for any surface ∂D that is the boundary of a region D containing the origin (and thus containing this point
charge):

1. First compute the integral directly for the case of ∂D a sphere of radius a centered at the origin.
2. Then use the Divergence Theorem to get the general version.
3. Extend to a collection of point charges Q1 . . . Qn at locations x⃗1 . . . x⃗n inside region D, with the integral

then giving the total charge in the region.

See Example 80 Section 6.8 of OSC34.

Gauss’s Law. Equation (6.8.7) is a case of Gauss’s Law of Electrostatics. In general, Gauss’s Law says that
the above flux integral always gives the total charge inside a region with boundary the surface S: this allows
the charge within a region to be determined by measurements only at the boundary of the region.
Indeed, Gauss discovered the Divergence Theorem through his work on electrostatics.

See Theorem 21 and Example 81 Section 6.8 of OSC35.

Study Guide. Study Section 6.8 of OSC36; in particular
• The Overview of Theorems, covering all the main integration theorems going back to the Fundamental

Theorem of Calculus.
• The Divergence Theorem (of course).
• Examples 77 and 78, and the Checkpoints following each.
• If interested in physical applications, see Theorem 21 and Examples 79 and 80.
• One or several exercises from each of the ranges 385–388 and 390–394.

Chapter Review. When reviewing this chapter, also look at the end of chapter review material in OpenStax
Calculus Volume 3, including Key Terms7, Key Equations8 and Key Concepts9.
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6openstax.org/books/calculus-volume-3/pages/6-8-the-divergence-theorem
7openstax.org/books/calculus-volume-3/pages/6-key-terms
8openstax.org/books/calculus-volume-3/pages/6-key-equations
9openstax.org/books/calculus-volume-3/pages/6-key-concepts
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Appendix A

Rules for Derivatives and Integrals

A.1 Rules for Derivatives
Sums, differences, constant factors.

d

dx
(kf(x)) = k

df

dx
d

dx
(f(x)± g(x)) =

df

dx
± dg

dx

Products, Quotients and Compositions.

d

dx
(f(x)g(x)) =

df

dx
g(x) + f(x)

dg

dx

d

dx
(f(x)/g(x)) =

df

dx
g(x)− f(x)

dg

dx
g2(x)

d

dx
(f(g(x)) = f ′(g(x))

dg

dx
That is, with u = g(x), y = f(u),

dy

dx
=

dy

du

du

dx

A.2 Rules for Integrals
Sums, differences, constant factors.

∫
kf(x) dx = k

∫
f(x) dx

∫
f(x)± g(x) dx =

∫
f(x) dx±

∫
g(x) dx

Substitution.

If
∫

f(x) dx = F (x) + C
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then
∫

f(g(x))g′(x) dx = F (g(x)) + C

That is, with u = g(x),
∫

f(u(x))
du

dx
dx =

∫
f(u) du

Integration by Parts.
∫

u(x)
dv

dx
dx = u(x)v(x)−

∫
v(x)

du

dx
dx

That is,
∫

u dv = uv −
∫

v du



Appendix B

Reduction Formulas For Integrals

This is a collection of reduction formulas; for a more comprehensive list of integrals, see OpenStax Calculus
Volume 2, Appendix A: Table of Integrals.1

B.1 Integrals Involving Exponential or Trigonometric Functions
∫

uneau du =
1

a
uneau − n

a

∫
un−1eau du (B.1.1)

∫
sinn u du = − 1

n
sinn−1 u cosu+

n− 1

n

∫
sinn−2 u du (B.1.2)

∫
cosn u du =

1

n
cosn−1 u sinu+

n− 1

n

∫
cosn−2 u du (B.1.3)

∫
tann u du =

1

n− 1
tann−1 u−

∫
tann−2 u du (B.1.4)

∫
cotn u du =

−1
n− 1

cotn−1 u−
∫

cotn−2 u du (B.1.5)
∫

secn u du =
1

n− 1
tanu secn−2 u+

n− 2

n− 1

∫
secn−2 u du (B.1.6)

∫
cscn u du =

−1
n− 1

cotu cscn−2 u+
n− 2

n− 1

∫
cscn−2 u du (B.1.7)

∫
un sinu du = −un cosu+ n

∫
un−1 cosu du (B.1.8)

∫
un cosu du = un sinu− n

∫
un−1 sinu du (B.1.9)

∫
sinn u cosm u du =

∫
(1− cos2 u)k cosn u sinu du = −

∫
(1− v2)kvn dv, m = 2k + 1, v = cosu

(B.1.10)
∫

sinn u cosm u du =

∫
(1− sin2 u)k sinm u cosu du =

∫
(1− v2)kvm dv, n = 2k + 1, v = sinu

(B.1.11)
1openstax.org/books/calculus-volume-2/pages/a-table-of-integrals
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∫
sinn u cosm u du =

∫ (
1− cos 2u

2

)k1
(
1 + cos 2u

2

)k2

, n = 2k1, m = 2k2

(B.1.12)

∫
sinn u cosm u du = − sinn−1 u cosm+1 u

n+m
− n− 1

n+m

∫
sinn−2 u cosm u du, n ≥ 2 (B.1.13)

∫
sinn u cosm u du =

sinn+1 u cosm−1 u

n+m
+

m− 1

n+m

∫
sinn u cosm−2 u du, , m ≥ 2 (B.1.14)

B.2 Integrals Involving Inverse Trigonometric Functions

∫
un sin−1 u du =

1

n+ 1

[
un+1 sin−1 u−

∫
un+1du√
1− u2

]
, n ̸= −1 (B.2.1)

∫
un cos−1 u du =

1

n+ 1

[
un+1 cos−1 u+

∫
un+1du√
1− u2

]
, n ̸= −1 (B.2.2)

∫
un tan−1 u du =

1

n+ 1

[
un+1 tan−1 u+

∫
un+1du

1 + u2

]
, n ̸= −1 (B.2.3)

B.3 Integrals Involving
√
a+ bu

∫
un
√
a+ bu du =

2

b(2n+ 3)

[
un(a+ bu)3/2 − na

∫
un−1

√
a+ bu du

]
(B.3.1)

∫
un

√
a+ bu

du =
2un
√
a+ bu

b(2n+ 1)
− 2na

b(2n+ 1)

∫
un−1

√
a+ bu

du (B.3.2)
∫

1

un
√
a+ bu

du = −
√
a+ bu

a(n− 1)un−1
− b(2n− 3)

2a(n− 1)

∫
1

un−1
√
a+ bu

du (B.3.3)



Appendix C

Strategy for Evaluating Integrals

C.1 A few general tactics for integration
In trying to evaluate an integral with the collection of methods we have seen in Chapters 1 and 3, some
general ideas are worth keeping in mind:

Find
antiderivatives

first

It is often best to start by seeking any one antiderivative F (x) for the function involved
and deal later with the constant of integration in an indefinite integral and the limits
of a definite integral.
However when using substitutions on a definite integral, you can avoid substituting
back to the original variable by instead changing the limits of integration to the corre-
sponding values for the new variable.

Start with the
easiest

possibilities

Several techniques might apply to one integral, so start try the easiest first (recog-
nizing a previously known integral, from memory or tables) and work through to the
more sophisticated options (like inverse trigonometric substitutions and integration by
parts.)

Repeat as
necessary

All methods except recognizing a known integral give one or several new simpler inte-
grals, so the process needs to be applied repeatedly until every part of the answer is
found by reducing to a previously known integral.

C.2 A detailed strategy for integration
Here is one detailed approach to evaluating integrals. It is based on the discussion in Section 3.5 and covers
all the methods we have seen in class. For practice and test review, I strongly recommend selecting exercises
from Section 3.5, so that you must decide what methods to use as well as then applying the methods correctly:
that is the way integration is in real life.

C.2.1 Use tables of integrals and known integrals
The easiest approach is to recognize an integral as one you have already worked out how to evaluate. The
corollary of this is that you should memorize the most common integrals, and collect the ones that you
encounter often but have not memorized (yet) on a formula sheet. The formulas should be as flexible as
possible with adjustable constants to avoid routine substitutions: for example, not

∫
cosx dx = sinx + C

but instead ∫
cos ax dx =

1

a
sin ax+ C
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C.2.2 Do basic simplifications
Simplify first is a good strategy in many mathematical situations: try to simplify the function involved
before starting on the calculus itself.
The most general basic simplifications are breaking up sums and differences into separate integrals, taking
constant factors out in front of each integral (including division by constant factors), and rewriting roots as
fractional powers.
It is also often useful to eliminate divisions by rewriting powers in the denominator as negative powers in
the numerator, and using trig identities like converting a factor cosx in the denominator into a factor secx
in the numerator.

For example,
∫

x2

7
− 1

sin 2x
+

5x
3
√
1 + x2

dx could be rewritten as

1

7

∫
x2 dx−

∫
csc 2x dx+ 5

∫
x(1 + x2)−1/3 dx

One important special type of simplification is used with integrals of products of powers of trigonometric
functions, which will be discussed below.

C.2.3 Substitution
If the above steps do not give the solution, the easiest of the two most powerful general tools is substitution,
especially with some compositions and products. That is, finding a function u(x) so that the integrand is in
the form f(u)u′(x), or f(u)

du

dx
. Then you can use the ``cancellation of differentials’’ idea

∫
f(u)

du

dx
dx =

∫
f(u) du

to get a new, simpler integration problem.
That puts you back at the beginning with a new hopefully simpler integral. If the new integral is not
easier to evaluate, the substitution was not useful, so try something else: another substitution or a different
method.

C.2.4 Choosing a substitution function u(x)

As u will often appear inside a composition, one common choice is the function inside a power or other
composition. In the example above of 5x(1 + x2)−1/3, you could try u = 1 + x2.
You must then check if the rest of the term is the derivative of u, up to a constant factor. In the current
example du/dx = 2x and the remainder of the term apart from the power of u is 5x, which does match the
derivative up to a harmless constant factor of 5/2, so this substitution will work. (Exercise: complete this
integral.)
In general, you must look to see if the term to be integrated consists of just the derivative of u times some
expression that can be put in terms of u only (with no stray x terms.) For

∫
sin(x) cos(x) dx, the substitution

u = sin(x) gives ∫
u
du

dx
dx =

∫
u du =

u2

2
+ C =

1

2
sin2(x) + C

and also substitution u = cos(x) gives
∫
−udu

dx
dx = −

∫
u du = −u2

2
+ C = −1

2
cos2(x) + C

which despite initial appearances (“u2/2” vs “−u2/2”) agree, due to cos2(x) + sin2(x) = 1.
This shows that there can be more than one useful substitution.
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C.2.5 Integration by Parts
Our second and last general tool is Integration by Parts, as summarized by

∫
u dv = uv −

∫
v du.

Here u and v are both functions of the actual integration variable x, so that in more detail the rule is
∫

u(x)
dv

dx
dx = u(x)v(x)−

∫
v(x)

du

dx
dx

Note that if one does a definite integral directly, the formula becomes
∫ x=b

x=a
u dv =

[
uv
]x=b

x=a
−
∫ x=b

x=a
v du

The word “parts” refers to the fact that only one part of the integrand gets integrated, at least initially:
dv/dx is integrated to find v, while u gets differentiated. The main hint that this method might be useful
is that the function is a product of several functions and we know how to integrate at least one of them:
particularly, powers of x, trigonometric functions, exponentials, logarithms, and inverses of familiar functions.
There are always many different ways to choose which factor is to be the factor u to be differentiated (with all
the rest of the integrand going into the factor dv/dx to be integrated; or in other words into the differential
dv). Some guidelines are

• Try to integrate the most complicated part you can.
• It it necessary that you can integrate the function that goes into the differential dv.
• It is desirable for the function u to have a simple derivative, and three very common choices are positive

integer powers of x, logarithms, and any inverses of familiar functions.

C.2.6 Inverse Substitution, especially with trigonometric functions
All substitutions can be done in inverse form, where one specifies x = g(u), dx = g′(u)du instead of u = f(x),
du = f ′(x)dx: g is the inverse of f . This has the great advantage that the formulas for x and dx automatically
put everything in terms of the new variable u: there are never any stray x terms. Of course, the inverse
g might be a messier function to work with, so this method is at its best when f is itself the inverse of a
familiar function, and the most common examples are when the forward substitution function f is an inverse
trigonometric function, so that g is a basic trigonometric function: therefore, the new variable is traditionally
called θ instead of u. The three main cases are

• For an integral containing integer powers of
√
a2 − x2 and of x, use x = a sin θ, so dx = a cos θ dθ and√

a2 − x2 = a cos θ.
• For an integral containing integer powers of

√
a2 + x2 and of x, use\\ x = a tan θ, so dx = a sec2 θ dθ

and
√
a2 + x2 = a sec θ.

• For an integral containing integer powers of
√
x2 − a2 and of x, use\\ x = a sec θ, so dx = a sec θ tan θ dθ

and
√
x2 − a2 = a tan θ.

In each case, an appropriate right-triangle summarizes all the formulas needed. The resulting integrals
involve products of powers of trigonometric functions, and often the methods of section~F below are needed
to evaluate them. In that case you can get solutions involving sine and coinse on multiples of a new variable
θ. These can be put in erms of just sin θ and cos θ using the double angle formulas

sin 2θ = 2 sin θ cos θ, cos 2θ = 2 cos2 θ − 1, = 1− 2 sin2 θ
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C.2.7 Special simplifications and substitutions for products of trigonometric functions
It often helps to convert into an expression with just sines and cosines using tanx = sinx/ cosx and so on.
The example above of

∫
sinx cosxdx illustrates some important special trigonometric substitutions: With

products of integer powers of sine and cosine
• if there is an odd power of cosine one can gather a term like cosxdx at the end and use the substitution

sinx = u, cosx dx = du, leaving over an even power of cosx which can be written as an integer power
of cos2 x which in turn gets converted with

cos2 x = 1− sin2 x = 1− u2

Then all the remaining x terms are in terms of sinx, which becomes u, so you get an integral of a
polynomial (easy), or rational function if there were some negative powers (see below).

• if there is an odd power of sine, one can gather a term like sinxdx and use the substitution {\boldmath
cosx = u, sinx dx = −du}, and deal with the remaining even power of sinx using

sin2 x = 1− cos2 x = 1− u2.

• if there are products of even powers of both sine and cosine (including the case where only one of these
functions is present, like sin4 x), one can reduce the powers using the half-angle formulas

cos2 x =
1

2
(1 + cos 2x), sin2 x =

1

2
(1− cos 2x)

Then expand, simplify, and if necessary apply further trigonometric simplifications to some parts.
Eventually you will get an odd power of sine or cosine in each term, plus a constant. For example

sin2 x cos2 x =
1

2
(1− cos 2x)1

2
(1 + cos 2x)

=
1

4
(1− cos2 2x)

=
1

4
sin2 2x

=
1

4
· 1
2
(1− cos 4x)

=
1

8
− 1

8
cos 4x

C.2.8 Integration of rational functions (ratios of polynomials)

It is possible to integrate any rational function f(x) =
P (x)

Q(x)
if you can factorize the polynomial Q(x) in the

denominator into linear factors (x− r) from roots plus irreducible quadratic factors x2 + bx+ c. Irreducible
means that the quadratic has no real roots, which by the discriminant test means that b2 < 4c.
It is easy and convenient to divide P (x) and Q(x) by a constant so that the lead coefficient in Q(x) is one;
this form is assumed from now on.
Also, if the numerator has the same or higher degree as the denominator, the function should first be
simplified to the sum of a polynomial plus a proper rational function, one with numerator of lower degree
than the denominator. This is done by synthetic division of polynomials.
The integration is done by rewriting the rational function as the sum of a polynomial plus terms that can
be integrated with a few basic rules. The main integration rules needed are

∫
du

u− r
= ln |u− r|+ C
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∫

du

(u− r)n
=
−1

n− 1

1

(u− r)n−1
+ C, n > 1

∫
du

a2 + u2
=

1

a
arctan u

a
+ C

∫
u

a2 + u2
du =

1

2
ln(a2 + u2) + C

plus occasionally completing the square to get into the latter two forms.
1. The first step is to convert to the case of a proper rational function, one with the polynomial P (x) in

the numerator of degree less than Q(x), if this is not already true.
Example C.2.1

x3 + 3x+ 1

x2 − 4
=

x(x2 − 4) + 7x+ 1

x2 − 4
= x+

7x+ 1

x2 − 4
.

"
The polynomial part is easy to integrate, so I will deal from now on only with proper rational functions.

2. Next, factorize the denominator into linear and irreducible quadratic factors.
Example C.2.2 The denominator in Example 1 has roots 2 and -2, and so

7x+ 1

x2 − 4
=

7x+ 1

(x− 2)(x+ 2)
.

"
Sometimes the factorization will have to involve quadratic factors that have no real roots and so cannot
be written in terms of two linear factors. This is true if the discriminant b2 − 4c < 0.
For an irreducible quadratic factor x2 + bx + c, complete the square to get the form x2 + bx + c =
(x+ e)2 + a2, where e = b/2, a2 = c− b2/4.

Example C.2.3 13

x3 − 4x2 + 13x
. The denominator here has only one real root 0:

13

x3 − 4x2 + 13x
=

13

x(x2 − 4x+ 13)
=

13

x[(x− 2)2 + 32]
.

"
3. Next the rational function can be written as a sum of constant multiples of simple functions, for which

we know the integrals. The simple functions needed are as follows
• For a factor (x− r) in the denominator, a term like

A

x− r

• For a factor (x− r)n in the denominator, n terms

A1

x− r
,

A2

(x− r)2
, and up to An

(x− r)n
(the power in the original denominator)

• For an irreducible quadratic factor (x+ e)2+a2 in the denominator, two terms, which can be put
together as

A+Bx

a2 + (x+ b)2
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• For the most complicated case of a repeated irreducible quadratic factor like [a2 + (x+ b)2]n, put
together the previous two ideas: a succession of terms each with a linear factor like A + Bx on
top, and powers of a2 + (x + b)2 on the bottom, ranging up to the same n-th power as in the
original denominator.

Example C.2.4 For Examples 2 and 3,

7x+ 1

(x− 2)(x+ 2)
=

A

x− 2
+

B

x+ 2
.

and
13

x[(x− 2)2 + 32]
=

A

x
+

B + Cx

(x− 2)2 + 32

"
4. The constants in the expansion can be determined, and the first step is to clear the denominator:

multiply through by the denominator Q(x) of the original rational function to get an equation between
two polynomials.
Example C.2.5 For the two examples above we get

7x+ 1 = A(x+ 2) +B(x− 2)

and
13 = A[(x− 2)2 + 32] + (B + Cx)x.

"
5. To find the numerical values of the constants in this equation, one method (not my favorite) is to

expand out the right hand side into multiples of powers of x, including a constant, set the coefficients
of each power of x equal to those at left, and solve the resulting simultaneous equations for the constants
A, B, etc.
However this equation solving can be made easier or avoided entirely by the strategy of strategic
substitution: first looking at the easier equations you get by substituting each root of the denominator
Q(x) in for x.
When there are repeated factors or irreducible quadratic factors, this substitution method will only
give some of the constants. To get the others, one can seek other easy equations by substituting in a
few other “nice” integer values such as x = 0, 1,−1, . . ..
Example C.2.6 For the first example function above, x = −2 and x = 2 give

−13 = B(−4), 15 = A(4)

which immediately give B = 13/4, A = 15/4:

7x+ 1

(x2 − 4)
=

7x+ 1

(x− 2)(x+ 2)
=

15/4

x− 2
+

13/4

x+ 2
.

"
Example C.2.7 For the second example, x = 0 is the only root to substitute in, giving 13 = A[4 + 9] so
A = 1. Using this A value and substituting also x = 1 and x = −1 gives

13 = [1 + 9] + (B + C), 13 = [9 + 9]− (B − C)

or B + C = 3, B − C = 5, with the solution B = 4, C = −1:

13

x3 − 4x2 + 13x
=

13

x[(x− 2)2 + 32]
=

1

x
+

4− x

(x− 2)2 + 32
.
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The integral of this can be found using the four basic forms above plus a substitution u = x− 2. (You
get ln |x|+ arctan ((x− 2)2 + 32)− 1

2
ln((x− 2)2 + 32) + C.) "

6. Finally, you can evaluate the resulting integrals, using the four basic integrals above:
∫

7x+ 1

(x2 − 4)
dx =

∫
15/4

x− 2
+

13/4

x+ 2
dx =

15

4
ln |x− 2|+ 13

4
ln |x+ 2|+ C

and
∫

13

x3 − 4x2 + 13x
dx =

∫
1

dx
+

4− x

(x− 2)2 + 32
dx = ln |x|+arctan ((x− 2)2 + 32)−1

2
ln((x−2)2+32)+C

where the substitution u = x− 2 is needed for the last term.

C.2.9 Final steps: make sure that you answer the original question
Remember a few things that must be done before you are finished:

• Substitute if necessary to get the solution in terms of the original variable.
• For an indefinite integral, add the constant of integration: if F (x) is an antiderivative of f(x),

∫
f(x) dx = F (x) + C.

• For a definite integral, evaluate at the limits of integration:
∫ b

a
f(x) dx = [F (x)]ba = F (b)− F (a).

• For a definite integral using substitution u = g(x), you might instead do the evaluation in the new u
variable to avoid converting back to the original variable:

∫ x=b

x=a
f(g(x))g′(x) dx =

∫ u=d

u=c
f(u) du, c = g(a), d = g(b).

• Similarly, for a definite integral using inverse substitution x = h(t), you might do the evaluation in the
new variable using. ∫ x=b

x=a
f(x) dx =

∫ t=d

t=c
f(h(t))h′(t) dt,

But you have to solve equations to get the new limits, c from a and d from b: h(c) = a, h(d) = b.



Appendix D

Some Formulas Worth Knowing

It is worth knowing all the Differentiation Rules from the Reference Pages at the back of the text, and all
the Basic Forms for integrals, items 1 to 20 in the Table of Integrals in those Reference Pages. Appendix A
is a guide to checking your knowledge of these.
Beyond that, here are some important formulas, mostly integrals.
There are some useful formulas not given here but better reviewed in the notes where their usage is explained.
In particular see Section 7.4 on integrating rational functions and 7.8 on approximate (numerical) integration.

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
.

tanhx =
sinhx

coshx
, etc.

cos2(ax) = 1

2
[1 + cos(2ax)]

sin2(ax) =
1

2
[1− cos(2ax)]

sin(ax) cos(ax) = 1

2
sin(2ax)

1

1− x
=

∞∑

n=0

xn = 1 + x+ x2 + x3 · · · , |x| <; 1

The area between curves y = g(x) ≤ f(x), a ≤ x ≤ b. This has infinitesimal area differential

dA = (f(x)− g(x))dx

giving area integral

A =

∫
dA =

∫ b

x=a
(f(x)− g(x))dx

The solid produced by rotating curve y = f(x) about the horizontal axis. This solid can be sliced perpen-
dicular to the x-axis into disks with volume differential

dV = (disk area)dx = πr2dx = πy2dx

giving volume integral

V =

∫
dV =

∫ b

x=a
πr2dx =

∫ b

x=a
πy2dx =

∫ b

x=a
π[f(x)]2dx
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As always I recommend using the versions in terms of variables like x and y or geometric quantities like the
radius r, without using function names like f(x): you will know the formula for y, or be able to work out
the relevant formula for the radius r.

The solid produced by rotating the region g(x) ≤ y ≤ f(x), a ≤ x ≤ b about the horizontal axis. This can
be sliced perpendicular to the x-axis into annuli with volume differential

dV = (annulus area)dx = πR2 − πr2dx, R = f(x) > r = g(x)

giving volume integral

V =

∫
dV = π

∫ b

x=a
R2 − r2dx

The solid produced by rotating the region g(x) ≤ y ≤ f(x), 0 ≤ a ≤ x ≤ b about the vertical axis. This
can be sliced into cylindrical shells of volume differential

dV = (shell circumference)(shell height)dx = 2πr[f(x)− g(x)]dx = 2πx[f(x)− g(x)]dx

(since the radius of each shell is r = x ≥ 0) giving volume integral

V =

∫
dV =

∫ b

x=a
2πx[f(x)− g(x)]dx

The average value of the function f(x) on interval a ≤ x ≤ b.

f̄ = fave =
1

b− a

∫ b

x=a
f(x) dx

Substitution in a Definite Integral with u = g(x).
∫ b

x=a
f(u(x))

du

dx
dx =

∫ d

u=c
f(u)du, c = g(a), d = g(b)

Note that the limits of integration change, from x values to u values.

Integration by Parts.
∫

u dv = uv −
∫

v du or
∫

u(x)
dv

dx
= u(x)v(x)−

∫
v(x)

du

dx
dx

With definite integrals, this becomes
∫ b

x=a
u dv = [uv]bx=a −

∫ b

x=a
v du

Note that the limits of integration are still x values, as du and dv are shorthands du =
du

dx
dx and dv =

dv

dx
dx:

the dummy variable in the integration is still x.

For Integrals Involving the Square Root of a Quadratic.
• With

√
a2 − x2, try x = a sin θ so that

√
a2 − x2 = a cos θ, dx = a cos θ dθ.

• With
√
a2 + x2, try x = a tan θ so that

√
a2 + x2 = a sec θ, dx = a sec2 θ dθ.

• With
√
x2 − a2, try x = a sec θ so that

√
x2 − a2 = a tan θ, dx = a tan θ sec θ dθ.

For more general quadratics, first extract the coefficient of x2 as a common factor and then complete the
square

x2 + bx+ c = [x+ b/2]2 + c− (b/2)2

Then the substitution u = x+ b/2 is useful, and a2 = c− (b/2)2 or (b/2)2 − c, whichever is positive.
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For a Separable Differential Equation dy

dx
= f(x)g(y). Write in differential form

1

g(y)
dy = f(x)dx

and integrate, but beware of division by zero: check the case g(y) = 0.

The Arc Length of the Curve y = f(x), a ≤ x ≤ b. The arc length differential is

ds =
√
dx2 + dy2 =

√

1 +

(
dy

dx

)2

dx

so the total arc length is

L =

∫
ds =

∫ b

x=a

√

1 +

(
dy

dx

)2

dx

The parametric curve x = f(t), y = f(t). This has slope at point P (x(t), y(t)) given by

m =
dy

dx
=

dy/dt

dx/dt

but beware of division by zero, whihc happens at points where dx

dt
= 0. There, the above formula needs to

be simplified before using it.

The arc length of the above parametric curve.. For α ≤ t ≤ β the arc length differential is

ds =
√
dx2 + dy2 =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

so the total arc length is

L =

∫
ds =

∫ β

t=α

√(
dx

dt

)2

+

(
dy

dt

)2

dt

Polar coordinates. To convert between polar coordinates r, θ and cartesian (rectangular) coordinates x, y,
use

x = r cos θ, y = r sin θ,

r2 = x2 + y2, tan θ = y

x

with special handling of points on the y-axis: the ones with x = 0.

The polar curve r = f(θ). This is a case of parametric curve, with angle θ as the parameter and

x = r cos θ = f(θ) cos θ, y = r sin θ = g(θ) sin θ

The slope of polar curve r = f(θ). This is given by combining formulas above, but simplifies to

m =
dy

dx
=

dy/dθ

dx/dθ
=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ
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The area of the region inside polar curve r = f(θ), a ≤ θ ≤ b. This has area differential

dA =
1

2
r2dθ =

1

2
(f(θ))2dθ

so the area is
A =

∫
dA =

∫ b

θ=a

1

2
r2dθ =

1

2

∫ b

θ=a
(f(θ))2 dθ.

The arc length of the above polar curve. This can be derived using formulas above for parametric curves
but simplifies nicely: the arc length differential is

ds =

√

r2 +

(
dr

dθ

)2

dθ

so the total arc length is

L =

∫
ds =

∫ b

θ=a

√

r2 +

(
dr

dθ

)2

dθ.

Integral error bound for the series S =
∑

an with an = f(n), f positive and decreasing. The error RN for
the partial sum SN =

∑N
n=1 an as an approximation of S =

∑
an has a size limit

0 ≤ RN = S − SN ≤
∫ ∞

N
f(n) dn

The Taylor Series.
∞∑

n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2
(x− a)2 +

f (3)(a)

3!
(x− a)3 · · ·

and the N -the degree Taylor polynomial

TN (x) =
N∑

n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2
(x− a)2 · · · f

(N)(a)

N !
(x− a)N ,

the remainder
RN (x) = f(x)− TN (x)

has an upper size limit
|RN (x)| ≤ M

(N + 1)!
|x− a|N+1

if you have a number M such that |f (n)(x)| ≤M . If the later is only true for some x, |x− a| ≤ d, then the
limit on RN (x) is also only for these x values.
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Some Trigonometry

sin2 x+ cos2 x = 1

1 + tan2 x = sec2 x

cos2(ax) = 1

2
[1 + cos(2ax)]

sin2(ax) =
1

2
[1− cos(2ax)]

sin(ax) cos(ax) = 1

2
sin(2ax)

sin(x± y) = sinx cos y ± cosx sin y

cos(x± y) = cosx cos y ∓ sinx sin y

cosx cos y =
1

2
[cos(x− y) + cos(x+ y)]

sinx sin y =
1

2
[cos(x− y)− cos(x+ y)]

sinx cos y =
1

2
[sin(x− y) + sin(x+ y)]

Values at key angles. In the first two quadrants, the main values with simple forms are

θ 0(→)
π

6

π

4
(↗)

π

3

π

2
(↑) 2π

3

3π

4
(↖)

5π

6
π(←)

sin θ 0
1

2

1√
2

√
3

2
1

√
3

2

1√
2

1

2
0

cos θ 1

√
3

2

1√
2

1

2
0 −1

2
− 1√

2
−
√
3

2
−1

tan θ 0
1√
3

1
√
3 DNE −

√
3 −1 − 1√

3
0

When sketching curves, it can help to know some numerical values:
√
2 ≈ 1.4142 and

√
3 ≈ 1.7321

leading to
1√
2
≈ 0.7071,

1√
3
≈ 0.5774, and

√
3

2
≈ 0.8660.
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