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Introduction

These notes are an adjunct to the open source text for the course MATH 120 Introductory Calculus,
Calculus, Volume 12 from OpenStax3 They summarize the key ideas, examples and results from each
section of that text that we will cover, along with additional examples and recommended homework
exercises.
We start by restating some key ideal and objectives from the syllabus; see there for more about
course organization, important dates, assessment, and so on.

Course Objectives and Student Learning Outcomes. The main goal of this course is for students
to learn the basic concepts and skills of solving mathematical and scientific problems described
by functions that vary "smoothly" (with no jumps, breaks or sharp corners in their graphs), and
to solve problems whose solutions can at best only be approximated with algebra, geometry and
trigonometry (like the areas of most regions), but can be solved exactly with the methods of calculus.
Applications include the description of motion in terms of velocity and acceleration, models of pop-
ulation growth, chemical reaction rates and growth of the value of an investment, and optimization
problems such as minimizing the cost of a task or maximizing what can be achieved with a fixed
amount of resources. This material is covered in the first five chapters of the text, with a few sections
omitted or left until Calculus 2 (Math 220).
Students are expected to do not only the quizzes, assignments and class exercises, but also to review
each section of the text after it has been covered in class and to attempt the exercises set for each
section. This is because, more broadly, a majority of the learning in this or any college course comes
through students’ efforts outside of class meetings.
By the end of the course, students should be able to:

• Calculate a wide variety of limits, including derivatives using the limit definition and limits
computed using l’Hospital’s rule;

• Demonstrate understanding of the main theorems of one-variable calculus (including the
Intermediate and Mean Value Theorems, and the Fundamental Theorem of Calculus) by using
them to answer questions;

• Compute derivatives of functions with formulas involving elementary polynomial, rational,
trigonometric, inverse trigonometric, exponential and logarithmic functions;

• Use information about the derivative(s) or antiderivative of a function (in graphical or symbolic
form) to understand a function’s behavior and sketch its graph;

• Construct models and use them to solve related rates and optimization problems;
• Recognize functions defined by integrals and find their derivatives;
• Approximate the values of integrals geometrically or by using Riemann sums; and

2openstax.org/details/books/calculus-volume-1/
3openstax.org
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• Evaluate integrals by finding simple antiderivatives and by applying the method of substitu-
tion.

These outcomes will be assessed on the final exam.

General Education Student Learning Outcomes. This course can be used to satisfy some general
education requirements, for which there are some standard goals. Students are expected to display a
thorough understanding of the topics covered. In particular, upon completion of the course, students
will be able to

1. model phenomena in mathematical terms,
2. solve problems using these models, and
3. demonstrate an understanding of the supporting theory behind the models apart from any

particular application.
These outcomes will be assessed on the final exam.

Calculators. It might be useful to have a graphing calculator, and the standard recommendation
is the Texas Instruments TI-84 Plus. However, many choices of free "calculating device" can work
too, including websites, phone apps and computer software, and I will demonstrate some of them.
One of my favorites is the Desmos Graphing Calculator4; in addition to that website interface, this is
available as a free app for iPhones, iPads5, and Android6 devices.
There are also several other tools at the Desmos7 website, such as a Scientific Calculator.
Such tools may be used for some homework and in-class exercises, but not on tests or the final
exam.

4www.desmos.com/calculator/
5apps.apple.com/us/app/desmos-graphing-calculator/id653517540
6play.google.com/store/apps/details?id=com.desmos.calculator
7www.desmos.com
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Chapter 1

Functions and Graphs

This chapter is mostly a review of pre-calculus. In class we cover just some topics from the last two
sections: exponentials, inverse functions, and logarithms. Also, within those two section we skip
some topics for now:

• Inverse trigonometric functions will be reviewed when we encounter them in Section 3.7.
• Hyperbolic functions and their inverses are left till MATH 220, Calculus 2.

However, if you have not seen some of these omitted topics for a while, or are curious, you can
review them; the three earlier sections of the chapter are:

• Section 1.1. Basic Classes of Functions1

• Section 1.2. Review of Functions2

• Section 1.3. Trigonometric Functions3

References.
• OpenStax Calculus Volume 1, Chapter 14, Sections 4 and 5.
• Calculus, Early Transcendentals by Stewart, Chapter 1, Sections 4 and 5.

1.1 Exponential Functions

References

• OpenStax Calculus Volume 1, Section 1.5 (the first part).1

• Calculus, Early Transcendentals by Stewart, Section 1.4.
A function like f(x) = 2x is called exponential because the argument x is the exponent in the formula.
Exponential functions are the most basic and common transcendental functions, and are probably the
most important functions in mathematics and science after polynomials.
We will see how exponential functions can be defined to have graphs that are continuous, unbroken
curves with well defined slopes, rather being only a collection of separate points for integer values
of x.

1openstax.org/books/calculus-volume-1/pages/1-1-review-of-functions
2openstax.org/books/calculus-volume-1/pages/1-2-basic-classes-of-functions
3openstax.org/books/calculus-volume-1/pages/1-3-trigonometric-functions
4openstax.org/books/calculus-volume-1/pages/1-introduction
1openstax.org/books/calculus-volume-1/pages/1-5-exponential-and-logarithmic-functions

1

https://openstax.org/books/calculus-volume-1/pages/1-1-review-of-functions
https://openstax.org/books/calculus-volume-1/pages/1-2-basic-classes-of-functions
https://openstax.org/books/calculus-volume-1/pages/1-3-trigonometric-functions
https://openstax.org/books/calculus-volume-1/pages/1-introduction
https://openstax.org/books/calculus-volume-1/pages/1-5-exponential-and-logarithmic-functions
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Natural number powers of 2. With basic algebra, exponential functions are defined first for
positive integer arguments, by formula

2n = 2 · 2 · 2 · · · 2, the product of n copies of 2.

Then to satisfy the rule 2n+m = 2n · 2m for the case m = 0 requires

20 = 1

so all non-negative integers n are covered.

Negative integer powers of 2. For a negative integer n, |n| = ≠n is positive, and to satisfy the rule
2n · 2m = 2n+m we must have 2n.2≠n = 2n+(≠n) = 20 = 1, and so dividing by 2≠n = 2|n|,

2n = 1
2≠n

= 1
2|n| for n a negative integer.

Rational powers of 2. Next we can make sense of exponentials for rational exponents. To get the
exponential 2r for any rational number r start with exponent 1/q, q a positive integer. To satisfy
the rule (2a)b = 2ab requires (21/q)q = 2q/q = 21 = 2, so taking the q-th root of both sides of this
equation,

21/q = q
Ô

2 (the q-th root of 2) for q a positive integer.

Finally, any rational number can be written as r = p/q with p an integer, q a positive integer, and the
same rule requires

2p/q = ((2p)1/q) = q
Ô

2p.

Irrational powers of 2 (so all power of 2). The graph of 2x for all rational x looks like a dense
collection of dots along a curve which increases to the right. Can we fill in the gaps at irrational
values of x and get a smooth, uninterrupted curve? For example, can we make sense of an irrational
power like 2

Ô
3?

A number like
Ô

3 = 1.73205 . . . is approximated by a succession of decimal fractions 1, 1.7, 1.73,
1.732, 1.7320, 1.73205 and so on: it is the limit of this sequence of rational numbers.
Raising 2 to each of these powers gives the following new sequence of numbers (everything rounded
to five decimal places):

21 = 2 < 21.7 = 3.24900 < 21.73 = 3.31727 < 21.732 = 3.32188 < 21.73205 = 3.32200 . . .

All of these should be less that 2
Ô

3 since the values are increasing as the exponent increases and
Ô

3
is greater than each of these exponents.
On the other hand if we round up the decimal approximations of

Ô
3, the exponentials should all be

greater than 2
Ô

3:

22 = 4 > 21.8 = 3.48220 > 21.74 = 3.34035 > 21.733 = 3.32418 > 21.7321 = 3.32211 > 21.73206 = 3.32202 . . .

It appears that
21.73205 = 3.32200 < 2

Ô
3 < 3.32202 = 21.73206,

so that 2
Ô

3 rounded to four decimal places is 3.3220. We could continue with either sequence to
compute a value for 2

Ô
3 to as many decimal places as we wish.

In this way, we can make sense of, and compute, any power of 2, rational or irrational, so we have
made sense of the exponential function f(x) = 2x for all real arguments x.
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Any power of any positive number. There is nothing special about the base 2 used above except
that it is positive: we could do the same thing with any positive real number a, to compute the
exponential function f(x) = ax. The graphs for the different functions vary mostly in that they are

• increasing for a > 1, and increase faster for larger values of a,
• decreasing for 0 < a < 1 and decrease faster for smaller values of a,
• and in the borderline case of a = 1, the graph is a constant: 1x = 1.

Rules for exponential functions. The familiar rules for exponentials still hold just as with with
rational exponents: for a and b positive and any real numbers x and y,

• ax+y = ax · ay , and ax≠y = ax/ay

• (ax)y = ax·y

• (a · b)x = ax · bx

Applications of exponential functions.

Example 1.1.1 Bacterial Growth. See Example 1.33 on Bacterial Growth in Section 1.52 of our text,
OpenStax Calculus Volume 1. ⇤

Example 1.1.2 Radioactive Decay. The half-life of strontium-90, 90Sr, is 25 years. This means that
half of any given quantity of 90Sr will disintegrate in 25 years.

1. If a sample of 90Sr initially has a mass of 24mg, find an expression for the mass m(t) that
remains after t years.

2. Find the mass remaining after 40 years, correct to the nearest milligram.
3. Use a graphing device to graph m(t) and use the graph to estimate the time required for the

mass to be reduced to 5 mg.
⇤

The number e. Of all possible choice of the base a of an exponential function ax, one is most
convenient for mathematics because it makes the slope of the graph simplest: the number called e,
with value approximately e ¥ 2.71828.
The graphs of all exponential functions pass through the point P (0, 1) on the y-axis, but the bigger a
is, the faster the function value grows as x increases, so the greater the slope is at this point. The
slope is zero for a = 1, when the function is constant, and increases as a increases.
Experimenting with a graphing calculator suggests that the slope is less than 1 for 2x, but greater
than 1 for 3x. So it seems that by increasing a to somewhere between 2 and 3, the slope will be 1 at
P (0, 1), with the slope greater than 1 for greater values of a, less than 1 for lesser values. That is,
there is one special value for the base that gives slope 1: this is the value called e.
We have already seen that e lies between 2 and 3, and with ever more careful computation of slopes
we could calculate the more accurate value given above.
We will soon see that any other exponential function can be written in terms of ex, and this is very
convenient in calculus, making this particular exponential function so important that it is often
called simply “the exponential function”.
There is another way to see the origins of this special number in terms of continuous growth,
discussed in Section 1.53 of the text using the example of continuously compounded interest.

2openstax.org/books/calculus-volume-1/pages/1-5-exponential-and-logarithmic-functions
3openstax.org/books/calculus-volume-1/pages/1-5-exponential-and-logarithmic-functions

https://openstax.org/books/calculus-volume-1/pages/1-5-exponential-and-logarithmic-functions
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Exercises

Study Calculus Volume 1, Section 1.54, Exercises 233, 235, 239, 243, 278, 279, 299, 301, and 305(a) [we
will get to part (b) soon].

1.2 Inverse Functions

References

• OpenStax Calculus Volume 1, Section 1.4.1

• Calculus, Early Transcendentals by Stewart, Section 1.5 (the first part).

Equation solving and inverse functions. In part (c) of Example A of the previous section, we
knew that the value of the function m(t) (mass of Strontium-90 remaining) was 5 mg, and wanted to
know the corresponding value of its argument t (the time).
More generally it would be useful to have a formula giving time t as a function of mass m, t = g(m).
A function like this that takes values “backwards” compared to the function is the inverse of that
function.
For example, with y = f(x) = x3, we get back from a y value to the corresponding x value by
treating y as known and solving y = x3 for the unknown x: this gives x = 3

Ô
y. Thus the cube root

function is the inverse of the cube function, and we write x = f≠1(y) = 3
Ô

y.
It is often convenient to go back to using the name x for the argument of this new function too,
writing f≠1(x) = 3

Ô
x.

The Horizontal Line Test [HLT] and one-to-one functions. Graphically, one gets the graph of the
inverse function x = f≠1(y) by flipping the graph of y = f(x) along the diagonal line y = x. Since
the role of the x and y values are swapped, the domain of the inverse is the range of the original
function, and vice versa.
However, this flipping does not always give the graph of a function. The graph of any function must
pass the vertical line test that no vertical line intersects it more than once, and for the flipped graph to
pass, the original graph must have no horizontal line intersects it more than once.
This is the Horizontal Line Test [HLT], and is exactly what is needed for a function to have an inverse.
Algebraically, this means that no two different arguments x1 and x2 give the same value of the
function:

Definition 1.2.1 Function f is one-to-one if for any x1 ”= x2, f(x1) ”= f(x2). ⌃

Example 1.2.2 Is the function f(x) = x3 one-to-one? This passes the HLT, since the function is
increasing and so passes through any horizontal line just once and never returns. In fact, any
function that is always increasing passes the HLT (same if it is always decreasing) ⇤

Example 1.2.3 Is the function g(x) = x2 one-to-one? No; this fails the HLT: the horizontal line y = 1
intersects for both x = 1 and x = ≠1. In fact every line y = a for positive a intersects at two x values,Ô

a and ≠
Ô

a. ⇤

Inverse functions. One-to-one functions are exactly the ones that have inverses:

Definition 1.2.4 (Inverse). If function f is one-to-one, if has an inverse, denoted f≠1, and defined by
x = f≠1(y) being given by the solution x of the equation f(x) = y. ⌃

4openstax.org/books/calculus-volume-1/pages/1-5-exponential-and-logarithmic-functions
1openstax.org/books/calculus-volume-1/pages/1-4-inverse-functions

https://openstax.org/books/calculus-volume-1/pages/1-5-exponential-and-logarithmic-functions
https://openstax.org/books/calculus-volume-1/pages/1-4-inverse-functions
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If a function is not one-to-one, this equation has several solutions for some values of y, so does not
determine the value x; thus the inverse is not defined.

Domain and range of the inverse. The domain of f≠1 is the range of f [the “y-values” in the above
equation], and the range of f≠1 is the domain of f [the “x-values”].

Caution: changing domain gives a different function. How do we reconcile f(x) = x2 not being
one-to-one with it having an inverse, the square root function?
Be careful: we are talking about two different functions here, even though they are described using
the same formula y = x2! When we use the formula with domain all the real numbers, it is not
one-to-one, and has no inverse, but when we change the domain to non-negative real numbers, that
is a different function, with inverse

Ô
x. The difference with this smaller domain is that the graph is

only the right half of a parabola, which is increasing and so satisfies the HLT.
Algebraically, for any given value y, the equation x2 = y has only one non-negative solution x.

Example 1.2.5 If f(1) = 5, f(3) = 7 and f(8) = ≠10, find f≠1(≠10), f≠1(5) and f≠1(7). ⇤

Notation warning: inverses are not reciprocals! Beware of a possible confusion:
y = f≠1(x) [the inverse of function f applied to x]
is not the same as
y = [f(x)]≠1 = 1

f(x) [the reciprocal of f(x)].

Example 1.2.6 Find the inverse function of f(x) = x3 + 2. ⇤

Exercises

Study Calculus Volume 1, Section 1.42, Exercises 183, 185, 189, 193, 195, 197, 201, 203, 217.

1.3 Logarithmic Functions

References

• OpenStax Calculus Volume 1, Section 1.5 (the second part).1

• Calculus, Early Transcendentals by Stewart, Section 1.5 (the second part).
Does an exponential function y = f(x) = ax have an inverse?
For a > 1, the value of ax increases as x increases: the graph is increasing, which is enough to pass
the HLT and ensure existence of an inverse.
For 0 < a < 1, the graph is decreasing and so again passes the HLT, giving an inverse. (For a = 1,
there is no inverse, and the function is boring: f(x) = 1.)
This inverse should be familiar: the number x for which ax = y is called the logarithm of y base a,
written loga y, so the inverse of the exponential function f(x) = ax is the logarithmic function base
a, f≠1(x) = loga x.
An exponential function for a ”= 1 is defined for all real numbers (its domain) and its values (range)
are all positive numbers. Thus the logarithmic functions loga have domain all the positive numbers,
range all the reals: only positive numbers have logarithms.
Note that this simple domain and range for logarithms depends on exponential functions being
defined for all real arguments, not just all rational arguments.

2openstax.org/books/calculus-volume-1/pages/1-4-inverse-functions
1openstax.org/books/calculus-volume-1/pages/1-5-exponential-and-logarithmic-functions

https://openstax.org/books/calculus-volume-1/pages/1-4-inverse-functions
https://openstax.org/books/calculus-volume-1/pages/1-5-exponential-and-logarithmic-functions
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Rules for logarithms. Logarithms satisfy the following rules, all following from the rules for
exponentials in Section 1.5; For any positive number a except 1, and any positive numbers x and y,

1. loga(x · y) = loga x + loga y

2. loga(x/y) = loga x ≠ loga y

3. loga(xp) = p loga x for any real power p.

Natural logarithms. Since ex is the most commonly used exponential function, its inverse loge is
the most important logarithmic function: it is called the natural logarithm, and has the special name
ln (from the initials of “logarithm” and “natural”):

ln x = loge x.

Our first use of the natural logarithm is to put any exponential function ax in terms of ex. Using the
properties of exponentials and the fact that eln a = a,

ax = (eln a)x = e(ln a)x.

It can also be shown that
loga x = ln x

ln a
,

so we can also put all logarithmic functions in terms of natural logarithms.
Thus we mostly need just one exponential function, ex, and just one logarithmic one: its inverse, the
natural logarithm.
For now we omit the topic Inverse trigonometric functions; instead we will review those when we
encounter them in Section 3.7.

Exercises

Study Calculus Volume 1, Section 1.52, Exercises 247, 251, 255, 261, 265, 271, 273, 277, 283, 285, 287,
and 305(b).

2openstax.org/books/calculus-volume-1/pages/1-5-exponential-and-logarithmic-functions

https://openstax.org/books/calculus-volume-1/pages/1-5-exponential-and-logarithmic-functions


Chapter 2

Limits

This chapter introduces the fundamental idea of calculating limits in order to calculate the tangent
slope of a curve, the instantaneous velocity of a moving object, the instantaneous rate of growth of a
population, and other rates of change.
The second key concept is continuity of a function: a nice property of many but not all common
functions that makes limits easy to compute.

References.
• OpenStax Calculus Volume 1, Chapter 2.1

• Calculus, Early Transcendentals by Stewart, Chapter 2, Sections 1–6.

2.1 A Preview of Calculus

References.
• OpenStax Calculus Volume 1, Section 2.11. (The last topic The Area Problem and Integral Calculus

can be skipped for now; we return to it later in the semester.)
• Calculus, Early Transcendentals by Stewart, Section 2.1.

One of the beauties of mathematics is that often, several problems that seem to be quite different
turn out to have very similar mathematical representations and solutions, so that there is a common
way to solve them.
Two such problems are:

• Making sense of the slope at a point on a curve.
• Finding the velocity of a moving object from knowing its position as a function of time.

The Tangent Problem. We know how to compute the slope of a straight line, and how this is
related to, say, the slope of an inclined plank when the graph describes height as a function of
horizontal position. It is very useful to extend to this idea to calculating the slopes of curves. The
slope can vary from point to point along a curve, so what we will calculate is the slope at each point
of a curve. The geometrical idea is that near a point on a curve, the curve is very close to a certain
straight line: the tangent line to that point.

1openstax.org/books/calculus-volume-1/pages/2-introduction
1openstax.org/books/calculus-volume-1/pages/2-1-a-preview-of-calculus

7

https://openstax.org/books/calculus-volume-1/pages/2-introduction
https://openstax.org/books/calculus-volume-1/pages/2-1-a-preview-of-calculus


CHAPTER 2. LIMITS 8

Example 2.1.1 A tangent line to a parabola. Find an equation of the tangent line to the parabola
y = x2 at the point P (2, 4). ⇤

Tangent lines at each point of a curve. We often want the tangent slope or tangent line at multiple
points on the curve, or at all of them, and then it is more efficient to proceed as follows:

Example 2.1.2 Tangent lines to a cubic curve. Find an equation of the tangent line to the cubic
y = x3 at the point P (a, a3) for any value a.
First we approximate the slope by the slope mP Q of the secant line between this point P and a
nearby point Q(x, x3) for x near a,

mP Q = x3 ≠ a3

x ≠ a
.

This should approach the tangent slope m as x approaches a [x æ a], and to see how mP Q behaves
then, it helps to simplify first.
The numerator vanishes for x = a, so has a factor x ≠ a, and when we divide out this factor,
x3 ≠ a3 = (x ≠ a)(x2 + x · a + a2). This gives

mP Q = x3 ≠ a3

x ≠ a
= (x ≠ a)(x2 + x · a + a2)

x ≠ a
= x2 + x · a + a2, for x ”= a.

For x near a, this has values close to what we get by substituting a for x: mP Q gets close to a2 + a ·
a + a2 = 3a2. Thus, it seems that the tangent slope should be For x near a, this has values close to
what we get by substituting a for x: mP Q gets close to a2 + a · a + a2 = 3a2.
Thus the tangent slope should be

m = lim
xæa

mP Q = lim
xæa

x3 ≠ a3

x ≠ a
= lim

xæa
(x2 + xa + a2) = 3a2.

The point-slope formula then gives the tangent line at P (a, a3):

y = a3 + 3a2(x ≠ a).

Note that a is some constant, only x is variable, so this is a line, not a more complicated polynomial.
For example, at the point Q(2, 8) given by a = 2, the tangent line is y = 8 + 12(x ≠ 2). ⇤

The Velocity Problem. One exercise is enough to reveal that the solution to this problem comes
from the same calculations as seen above for computing tangent slopes:

Example 2.1.3 A falling object. Suppose that a ball is dropped from the upper observation deck of
the CN Tower in Toronto, 450m above the ground.
Find the velocity of the ball after 5 seconds.
Then find the velocity at any given time after the ball is dropped. ⇤

Recycling ideas and methods of calculation. This section on the velocity problem is very short
because in fact we have already solved the velocity problem by solving the tangent problem.
The ability to solve a few core problems, like the tangent problem, and then “recycle” the ideas and
computational methods discovered for them when solving various other problems, is one key to the
efficiency and utility of calculus. The single most central idea discovered so far is finding limits:
getting from various approximations to an exact answer, so we study that next.
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Exercises

Study Calculus Volume 1, Section 2.12, Exercises 4, 5, 6, 16, and 17.

2.2 The Limit of a Function

References.
• OpenStax Calculus Volume 1, Section 2.2.1

• Calculus, Early Transcendentals by Stewart, Section 2.2.
In computing tangent slopes, velocities and areas, there is a common step, new with calculus;

calculating a limit, like calculating that as x approaches 1,
x2 ≠ 1
x ≠ 1 approaches 2:

lim
xæ1

x2 ≠ 1
x ≠ 1 = 2.

We will now make this idea of limits more clear, and learn how to calculate them. With this key
new skill, most other calculations in this course can be handled with familiar algebra, geometry,
trigonometry and such.

Definition 2.2.1 Limit, informal version. For a function f and numbers a and L, we say that the
limit of f(x) as x approaches a is L if we can force the value of f(x) to be as close to L as we wish by
considering only values of x sufficiently close to a, but not equal toa. This is written as

lim
xæa

f(x) = L

Note that the value of f(a) is irrelevant: f need not even be defined for x = a. ⌃

Example 2.2.2 A limit where the formula gives 0/0. Guess the value that f(x) = x ≠ 1
x2 ≠ 1 approaches

as x approaches 1; that is, guess the value of lim
xæ1

x ≠ 1
x2 ≠ 1 .

Do this by trying x values that differ from 1 by 0.1, then 0.01 and so on.
Then try to corroborate your guess by simplifying the formula for f(x). ⇤

Example 2.2.3 Calculators can be fooled near 0/0. Investigate the behavior of
Ô

t2 + 9 ≠ 3
t2 as t

approaches 0.
First try x values ±1, ±0.5, ±0.1, ±0.05, ±0.01, and then the closer values ±0.0005, ±0.0001, ±0.00005, ±0.00001
etc.
Warning: Things are not as they first seem here!
The closer x values actually give a misleading result, due to the inability of a calculator to get
sufficiently accurate results in this case. The limit is actually 1/6, as suggested by the less close x
values!
Using a graph on the calculator and zooming shows some probably unexpected and implausible
behavior, revealing the accuracy limits of the calculator. ⇤

Example 2.2.4 (sin x)/x for x near 0. How does the function f(x) = sin x

x
behave as x approaches 0?

(See Example 2.4 in OpenStax Calculus).2

Setting x = 0 does not work as we get 0/0 again, but experiments on a graphing calculator suggest
2openstax.org/books/calculus-volume-1/pages/2-1-a-preview-of-calculus
1openstax.org/books/calculus-volume-1/pages/2-2-the-limit-of-a-function

https://openstax.org/books/calculus-volume-1/pages/2-1-a-preview-of-calculus
https://openstax.org/books/calculus-volume-1/pages/2-2-the-limit-of-a-function
https://openstax.org/books/calculus-volume-1/pages/2-2-the-limit-of-a-function
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that the value approaches 1. (Note: remember to always use radian mode in math courses!)
This time, there is no simple algebraic way to simplify this formula and avoiding the “0/0 problem”:
we see in Chapter 3 how to compute this limit. ⇤

Example 2.2.5 sin(fi/x). Explore how the function f(x) = sin fi

x
behave as x approaches 0,

• first with x = 1, 1/2, 1/3, 1/4, . . . ,

• then with x = 2, 2/3, 2/5, 2/7, 2/9, . . . ,

• and finally with many more values, by using a graphing calculator and zooming in.
Again we see that looking at only some nearby x values can be misleading. This time it seems that
there is no one value that f(x) gets near to: no matter how close x is to 0, f(x) can be anywhere from
≠1 to 1.
This function has no limit as x æ 0. ⇤
Note well: Limits do not always exist! This example again shows that it is important to consider all
values of x near a when studying a limit as x æ a, not just a selection.

Example 2.2.6 Measuring “closeness”. Show that limxæ1 f(x) = limxæ1
2x2≠2

x≠1 = 4.
We can simplify to f(x) = 2x + 2, valid for all x ”= 1.
Then we measure how close two numbers are by the absolute value of their difference. For example,
if x is within 0.001 of 1, |x ≠ 1| < 0.001, and so |f(x) ≠ 4| = |(2x + 2) ≠ 4| = |2x ≠ 2| = 2|x ≠ 1| which
is less than 0.002.
When we look only at x values ever closer to 1, in that |x ≠ 1| is ever smaller, |f(x) ≠ 4 = 2|x ≠ 1| is
ever smaller: f(x) gets ever closer to 4. For example, the value f(x) is sure to be within a tiny 10≠100

of 4 when we look at x values within 0.5 ◊ 10≠100 of 1.
So the limit is 4. ⇤
Example 2.2.7 A function with a jump. Consider the function f(x) given by

f(x) =
I

2x2≠2
x≠1 , x ”= 1
1, x = 1

What is the limit of f(x) as x approaches 1?
Since the limit as x æ a is based on values of f(x) for all x values near to a, but not equal to a, only the
formula (2x2 ≠ 2)/(x ≠ 1) matters! And since it is equal to 2x + 2 for all x values near 1, the value
is near 2 · 1 + 2 = 4 there, and the limit is 4: limxæ1 f(x) = 4, not 1. Note well: The limit of f(x) as x
goes to a does not always equal the value f(a), even when f(a) makes sense!The graph of this function
has a jump at x = 1, but the limit calculation ignores this, and treats the function as as if it were
“uninterrupted” or “continuous” there. ⇤

Another type of jump: the Heaviside function. In the physical description of sudden changes,
like turning on a power switch, the Heaviside Function is often useful:

H(t) = 0 for t < 0; H(t) = 1 for t Ø 0

For t near 0 and positive, H(t) is 1, suggesting a limit of 1. But for t near 0 and negative, H(t) is 0,
suggesting a limit of 0.
The limit cannot be both zero and one, so again this function has no limit as t æ 0, due to this jump
from one value to another, which breaks the graph at this point.

2openstax.org/books/calculus-volume-1/pages/2-2-the-limit-of-a-function
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One-sided Limits. In the example above, we see that H(t) has “no limit” as t æ 0, but it is useful
also to describe what happens at times just before t = 0, and what happens at times just after t = 0:
what happens to one side or the other of a point on the graph.
We want to note that “as t approaches 0 from the right (t > 0), H(t) approaches 1.” We use the
notation t æ 0+, with a plus sign superscript indicating that only t values to the right are considered:
the relevant t values are “0 + something”.
The value approached is the right-hand limit, or the limit from the right, with short-hand notation

lim
tæ0+

H(t) = 1.

One-sided limits: the left-hand limit. Similarly the behavior for t near 0 and less than zero is
called the left-hand limit and we use a minus sign superscript, because the t value is “0 minus
something:”

lim
tæ0≠

H(t) = 0.

Note well: “t æ 0≠” is different from “t æ ≠0”, which would be a funny way of writing a normal
“two-sided” limit. And t æ 1≠ is very different than t æ ≠1; the former is about what happens for t
just below 1; the latter is about what happens for t near ≠1.

Using one-sided limits to compute [two-sided] limits. Sometime it is easier to compute each
one-sided limit at a and then use these to learn about the regular “two-sided” limit:

Theorem 2.2.8 If both one sided limits at a exist and are equal

lim
xæa≠

f(x) = lim
xæa+

f(x) = L

then that common value is also the limit there:

lim
xæa

f(x) = L

Otherwise, the latter limit does not exist.

Infinite limits. We have seen several ways that a function can fail to have a limit as x æ a, and
decided that sometimes, there is still something useful to say about how the function behaves for x
near a. Here is another case of that.

Example 2.2.9 Behavior of 1/x2 as x æ 0. Investigate the behavior of f(x) = 1/x2 as x approaches
0. Does it have a limit?We see that there is no numerical value that f(x) gets close to, but there is a
trend worth noting:The values of f(x) get larger and larger, with no upper bound.
Informally we could say that the value approaches infinity. ⇤
To describe cases like this, we introduce the symbol Œ for infinity and say that:

lim
xæ0

1
x2 = Œ

or in words, “as x approaches zero, the limit of 1/x2 is infinity.”

One-sided infinite limits. Finally, it is natural to combine the ideas of infinite limits and one-sided
limits.

Example 2.2.10 Describe how f(x) = 1
x≠2 behaves for x near 2, for the two cases x > 2 and x < 2

The values get large and positive on one side, large and negative on the other, so for x coming from
the right, “the value approaches Œ”, while from the left, “the value approaches ≠Œ”.
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Combining the above ideas and notation of one sided limits and infinite limits, we state this as

lim
xæ2≠

1
x ≠ 2 = ≠Œ, lim

xæ2+

1
x ≠ 2 = Œ.

But the limits from the two sides are different, so

lim
xæ2

1
x ≠ 2 Does Not Exist (DNE).

⇤

Exercises

Study Calculus Volume 1, Section 2.23, Exercises 30, 31, 35, 36, 37, 46–49, 77 and 79.

2.3 The Limit Laws

References.
• OpenStax Calculus Volume 1, Section 2.3.1

• Calculus, Early Transcendentals by Stewart, Section 2.3.
We now have the fundamental idea of limits, and are ready to learn how to compute limits
limxæa f(x) as easily as possible, and to use this to compute the tangent slopes of curves, in-
stantaneous velocities and such as easily as possible. Building this collection of calculational skills is
the main goal of the rest of this chapter, with some related ideas and applications mixed in.

Limits for Two Very Basic Functions. We start with two very simple and intuitive cases, which
are then surprisingly useful in handling other functions.
Firstly, the limit of a constant function f(x) = c is easy:
for any value of x, f(x) is extremely close to (in fact equal to!) c and so as x æ a the limit is c. That
is,

lim
xæa

c = c.

Next, almost as easy, is to note that for f(x) = x, as x approaches a, f(x) = x also approaches a since
it is the same quantity. That is,

lim
xæa

x = a.

Note: In each case, the limit is just the value of f(a), which is true for many "nice" functions, but not
for all functions: we have already seen some exceptions above. This is our first sighting of continuity,
which we will explore more in Section 2.4, p. 15.
These two results are the building blocks that allow us to easily compute limits for any polynomial
or rational function, once we know how to put together information about the limits of simple
functions to get limits of more complicated ones.

The Limit of a Constant Multiple of a Function. The first combining rule comes from this intuitive
idea: when f(x) is close to L, C · f(x) is close to C · L.
Thus if f(x) æ L as x æ a, then C · f(x) æ C · L as x æ a.
The first half of this says that lim

xæa
f(x) = L, so the second half gives

3openstax.org/books/calculus-volume-1/pages/2-2-the-limit-of-a-function
1openstax.org/books/calculus-volume-1/pages/2-3-the-limit-laws

https://openstax.org/books/calculus-volume-1/pages/2-2-the-limit-of-a-function
https://openstax.org/books/calculus-volume-1/pages/2-3-the-limit-laws
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Fact 2.3.1 The Constant Factor Rule for Limits.

lim
xæa

[C · f(x)] = C lim
xæa

f(x).

Example 2.3.2 Combining this with the previous result

lim
xæ2

7x = 7 lim
xæ2

x = 7 · 2 = 14.

⇤

The Limits of Sums and Differences of Functions. The next basic idea is that:
when f(x) is close to L and g(x) is close to M , their sum f(x) + g(x) is close to L + M .
This leads to

Fact 2.3.3 The Sum Rule for Limits.

lim
xæa

[f(x) + g(x)] = lim
xæa

f(x) + lim
xæa

g(x).

Similarly

Fact 2.3.4 The Difference Rule for Limits.

lim
xæa

[f(x) ≠ g(x)] = lim
xæa

f(x) ≠ lim
xæa

g(x).

Other basic arithmetic works too: we have

Fact 2.3.5 The Product Rule for Limits.

lim
xæa

[f(x) · g(x)] = lim
xæa

f(x) · lim
xæa

g(x)

and with a little more caution,

Fact 2.3.6 The Quotient Rule for Limits.

lim
xæa

f(x)
g(x) =

lim
xæa

f(x)
lim
xæa

g(x) , so long as lim
xæa

g(x) ”= 0.

The restriction here is just the requirement that the right-hand side makes sense.
Note well: when the right-hand side does not make sense (division by zero), the left-hand side still
might! In fact, many of the most important limit calculations are like that.

The Power Rule, and Power Functions. Using the product rule repeatedly gives

Fact 2.3.7 The Power Rule for Limits.

lim
xæa

[f(x)]n = [ lim
xæa

f(x)]n for n any natural number.

The power rule applied to the simple function f(x) = x gives the limits of power functions

lim
xæa

xn = an.

Limits of Polynomials and Rational Functions. The rule for constant multiples gives the limit for
any monomial f(x) = Cxn:

lim
xæa

f(x) = lim
xæa

C · xn = C · lim
xæa

xn = C · an = f(a).
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Any polynomial p(x) = c0 + c1x + c2x2 + · · · is a sum of such monomials, so using the Addition
Rule repeatedly gives

lim
xæa

p(x) = lim
xæa

c0 +c1x+c2x2 + · · · = lim
xæa

c0 + lim
xæa

c1x+ lim
xæa

c2x2 + · · · = c0 +c1a+c2a2 + · · · = p(a).

So we have every limit of every polynomial: they are all given simply by evaluating at x = a.

Example 2.3.8 Find a simple strategy for calculating the limit of any rational function, lim
xæa

p(x)
q(x)

where p(x) and q(x) are polynomials.
Use the rules above first for quotients, then for polynomials. ⇤
Theorem 2.3.9 The Direct Substitution Property. For f a polynomial or rational function and any
number a in its domain, the limit is given by simply substituting a for x:

lim
xæa

f(x) = f(a)

We will gradually expand the list of functions with this nice property, called continuity.

Checkpoint 2.3.10 Evaluate lim
xæ2

x ≠ 2
x2 ≠ 4 , using the limit laws and as little algebra as possible.

Theorem 2.3.11 The Root Law for Limits.

lim
xæa

n
Ô

x = n
Ô

a for n a positive integer (a > 0 is needed if n is even).

More generally
lim
xæa

n


f(x) = n

Ò
lim
xæa

f(x),

this time with lim
xæa

f(x) > 0 needed if n is even.

Proof. This can be shown by using the Power Rule. ⌅

Ignoring the Function Value at a. Remember that the value of f(x) for x = a is irrelevant to the
limit as x æ a:
If f(x) = g(x) for x ”= a, then lim

xæa
f(x) = lim

xæa
g(x).

This includes the possibility that neither limit exists: both are ��DNE’’. Thus only x < a and x < a
matter, and it sometimes helps to consider these two cases one at a time.

Using One-sided Limits to Compute Limits. As seen in the previous section, a limit exists exactly
when both one-sided limits exist, and both of then have the same value, in which case the limit has
that same value too. Moreover, all the rules seen above are also true for one sided limits.

Checkpoint 2.3.12 Evaluate lim
xæ2

f(x) where

f(x) =

Y
]

[

x3, x < 2
3, x = 2

x2 + 2x, x > 2

Hint: compute each one-side limit. Also, it might helps to sketch the graph first; it often does!

Limits Respect Inequalities. If f(x) is no greater than g(x), its limit at any point is not greater
either. That is,

If f(x) Æ g(x), then lim
xæa

f(x) Æ lim
xæa

g(x),
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(so long as both limits exist.)
This inequality idea is particularly useful when a function f(x) can be squeezed between two simpler
functions l(x) and u(x) with both of them having the same limit at a point a; this situation forces the
in-between function f(x) to have that same limit:

Theorem 2.3.13 The Squeeze Theorem. If l(x) Æ f(x) Æ u(x) and lim
xæa

l(x) = lim
xæa

u(x) = L,

then lim
xæa

f(x) = L also.

Checkpoint 2.3.14 Sketch y = f(x) = x2 sin
3 1

x

4
for x near 0, and then evaluate lim

xæ0
f(x).

In a while we will use squeezing to show that lim
xæ0

sin x

x
= 1, and use that to find the slope at any

point on the graph of any trig. function.

Exercises

Study Calculus Volume 1, Section 2.32, Exercises 83, 85, 89, 91, 93, 97, 107, 111, 119, 121, 127, and
128.

2.4 Continuity

References.
• OpenStax Calculus Volume 1, Section 2.4.1

• Calculus, Early Transcendentals by Stewart, Section 2.5.
We have seen that many common functions f like polynomials have the nice property that the limit
as x goes to a can be evaluated by simple evaluation of f(a). This property is useful in many ways,
so we now give it a name, explore its meaning in terms of graphs and other nice consequences, and
expand our list of such functions.

Definition 2.4.1 Continuity at one point. The function f is continuous at a if lim
xæa

f(x) = f(a).
(Note that this requires f to be defined at a!)
If not, we say that f is discontinuous at a. ⌃
Definition 2.4.2 Continuity of a Function. If a function is continuous at every point a in its domain,
we call it simply continuous. ⌃
For example all polynomials are continuous. Indeed, all rational functions are continuous: continuity
only fails at points where the denominator is zero, and those points are not in the domain!

Continuity at Some Places but not Others. Sometimes we have to be very careful with this
definition:

Example 2.4.3 Consider the function

f(x) =
;

x3, x < 2
x2 + 2x, x > 2

The function f is not continuous at x = 2 due to being undefined there, even though the limit exists
there: lim

xæ2
f(x) = 8. On the other hand, this function is continuous at all x values in its domain, so it

is continuous, despite this discontinuity outside its domain. ⇤
2openstax.org/books/calculus-volume-1/pages/2-3-the-limit-laws
1openstax.org/books/calculus-volume-1/pages/2-4-continuity

https://openstax.org/books/calculus-volume-1/pages/2-3-the-limit-laws
https://openstax.org/books/calculus-volume-1/pages/2-4-continuity
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Removable Discontinuities. There is also a remedy for the one discontinuity of f in the example
above, which is to extend its definition to that one x value missing form its domain by setting
f(2) = 8. This extended definition gives a function that is defined and continuous for all real x
values, a bit more satisfying than having that gap in its domain.
If a function is discontinuous at some point x = a because it is not defined there, but lim

xæa
f(x) exists,

this discontinuity is called removable: the gap in the domain and the discontinuity can be removed
by extending the domain of the function to include the value a, with f(a) given the value of this
limit.
An important case is the formula for the slope m(x) of the secant line from P (a, f(a)) to Q(x, f(x)),
where the “missing value” at x = a is the tangent slope at that point.

Jump Discontinuities. Another situation seen already is with the Heaviside function, where at
some places, the two one-sided limits do not match up. Here is a more natural mathematical
situation where this occurs:

Example 2.4.4 The integer part function f(x) = ÂxÊ is defined as the largest integer less than or
equal to x, so that Â3.9Ê = 3, Â5Ê = 5, Â≠1.2Ê = ≠2 (not ≠1!). This is just the familiar process of
“rounding down”, like when you give your age in years.

• Sketch the graph of y = ÂxÊ.
• For which values a is this function continuous at a?
• For which values a is this function discontinuous?
• Is this function continuous?

⇤
The discontinuities seen here at each integer are called jump discontinuities: points where the
function has one-sided limits from each side, but they are different.

Continuity From One Side Only. In the example above, the limits from the right do equal the
function value, so that side seems “continuous”. We talk about this situation as follows:

Definition 2.4.5 Right-continuity. The function f is continuous from the right at a or right-
continuous at a if its right-limit there exists and equals its value there: limxæa+ f(x) = f(a).
Similarly, left-continuity at a means limxæa≠ f(x) = f(a). ⌃
For example, the integer part function is right-continuous at every x value, or simply right-
continuous.

Loose Ends: Continuity on an Interval with Endpoints. With a function like


x(1 ≠ x) whose
domain [0, 1] includes end-points, continuity at an end-point is take to mean one-sided continuity
from the only side that makes sense: from inside the interval.

Definition 2.4.6 Continuity on an interval. A function f is continuous on an interval if it is
continuous at each interior point (non-endpoint) and is also “continuous from the inside” at any
endpoint that is in the interval: that is,
right-continuous at the left endpoint,
left-continuous at the right endpoint. ⌃
Thus f(x) =


x(1 ≠ x) can be shown to be continuous on interval [0, 1] using the Root Law for

limits and the simple limit behavior of polynomials:

lim
xæ0+


x(1 ≠ x) =


0(1 ≠ 0) = f(0),

lim
xæ1≠


x(1 ≠ x) =


1(1 ≠ 0) = f(1),
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and for 0 < a < 1, lim
xæa


x(1 ≠ x) =


a(1 ≠ a) = f(a).

New Continuous Functions from Old Ones with Arithmetic. The laws for limits of constant
multiples, sums, difference products and quotients of functions also mean that if f and g are
continuous at x = a, so are cf for any constant c, f + g, f ≠ g, and fg.
f/g is also, so long as it even makes sense at a: g(a) ”= 0.
For example, continuity of the product at x = a requires lim

xæa
f(x)g(x) = f(a)g(a), and in fact

lim
xæa

f(x)g(x) = lim
xæa

f(x) lim
xæa

g(x) (from the Product Rule for Limits),

= f(a)g(a) (from continuity of each function),

as needed.
As seen in Section 2.3 on limit rules, these facts allow us to show that all polynomials are continuous,
and rational functions are continuous at each number in their domains (avoiding divisions by zero),
so they are also continuous.
Next, let us consider two other important ways to produce new functions, and whether these
preserve continuity.

Continuity of An Inverse Function at a Point. Inverses of continuous functions are also continuous.
First:

Theorem 2.4.7 If f(x) is continuous at x = a, and has an inverse, then f≠1 is continuous at the corresponding
point b = f(a).

Intuitively, there is no break in the graph of f at point (a, f(a)) = (a, b), so when the graph is flipped
over the line y = x to get the graph of f≠1, there is no break in its graph at point (b, f≠1(b)) = (b, a).

Continuity of Inverse Functions. When the above applies at each point in the domain of f :

Theorem 2.4.8 if a function is continuous at every number in its domain and is one-to-one, its inverse exists
and is also continuous at every number in its domain.

For example, since a root function q
Ô

x = x1/q is the inverse of the polynomial xq , this shows that all
root functions are continuous.

Continuity of Compositions. The Root Law for limits allows us to show that any root of a
continuous function, [f(x)]1/q, is continuous. This is one case of continuity of a composition.
To see this more generally, we need the last main law of limits, which could not be stated in Section
2.3 because it needs the idea of continuity:

Theorem 2.4.9 Limit Law for Compositions. If f is continuous at b and lim
xæa

g(x) = b, then
lim
xæa

f(g(x)) = f(b). That is

lim
xæa

f(g(x)) = f
1

lim
xæa

g(x)
2

= f(b).

Loosely speaking, the limit operation can move from outside function f to inside it so long as f is
continuous at the relevant point.
This is intuitive because for x near a, g(x) is near b, so the argument g(x) of f in f(g(x)) is near b,
and continuity of f at b says that the value of f(g(x)) is close to f(b). This shows that composition
respects continuity, but we must be careful about the domain, since with

(f ¶ g)(x) = f(g(x)),

f has a different domain than g:
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Theorem 2.4.10 If g is continuous at number a and f is continuous at number g(a), then their composition
f ¶ g is continuous at a.
Proof. This is just the above result for the case where b = g(a). ⌅
Putting this together over the whole domain of g:

Theorem 2.4.11 If f and g are continuous and the range of g lies in the domain of f so that their composition
f ¶ g is defined on the whole domain of g, then this composition is continuous.

Continuity of Algebraic Functions. Combining all these rules gives the continuity of all functions
built up from polynomials with arithmetic, powers, roots and inverses, giving all algebraic functions,
and some more besides.

Theorem 2.4.12 Algebraic functions are continuous at each point in their natural domains, and so are
continuous.
The next question is whether common transcendental (non-algebraic) functions are continuous.

Continuity of Trigonometric Functions. With trigonometric functions, radian angle ◊ is the
distance along the unit circle anti-clockwise from point P (1, 0) to point Q(cos ◊, sin ◊). (Negative ◊
means going clock-wise by distance |◊|.)
Thus the x-coordinate cos ◊ of Q is not further than distance |◊| from the x-coordinate 1 of P and
likewise for the y-coordinates, sin ◊ and 0:

| cos ◊ ≠ 1| < |◊|, | sin ◊ ≠ 0| = | sin ◊| Æ |◊|.

A simple use of the Squeeze Theorem shows that

lim
◊æ0

cos ◊ = 1 = cos 0, lim
◊æ0

sin ◊ = 0 = sin 0,

so these functions are continuous at zero. Alternatively, the definition of limits in Section 2.4 can be
applied, with ” = ‘ in each case.
Then use of the trigonometric sum rules allows us to show that these functions are continuous
everywhere.
With that, all other standard trigonometric functions like tan ◊ are continuous everywhere that they

are defined, since they all come from sines and cosines by quotients like tan ◊ = sin ◊

cos ◊
, sec ◊ = 1

cos ◊
,

etc.
(Again, tan is not continuous at ◊ = fi/2, ≠fi/2 etc., but those points are not in its domain, so do not
really matter!)

Continuity of Exponentials and Logarithms. We defined the exponential function ax for all real x
using limits of rational powers of a, and this naturally makes the limits in the definition of continuity
match up:

Fact 2.4.13 Exponential functions are continuous.
Then since logarithms are inverses of exponentials, they are also continuous.

Continuity of all the Familiar “Elementary Functions”. In summary, it seems that every familiar
function given by a formulas in terms of polynomials, roots, powers, trigonometric, exponential and
logarithmic functions, and inverses and compositions of these is continuous.
These functions are collectively known as elementary functions.
The only failures of continuity that we have seen so far are:

• at gaps in the domain due to division by zero, and
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• at points where the “formula” for the functions changes, introducing a jump: for example,
rounding in the nearest integer function, or “turning on the power” in the Heaviside function.

Solving Equations with Continuous Functions. One very important feature of continuous func-
tion is that there are no “gaps” in the graph, just as there are no “gaps” between the real numbers.
(There are gaps between the rational numbers: the places where irrational numbers go.)
For example, if we deal only with rational numbers, the graph of f(x) = x2 does not intersect the
horizontal line x = 2: it comes very close above and below that line, but no rational number x gives
x2 = 2.
On the other hand, the graph of f(x) = x2 for all real numbers x does intersect that line, at x =

Ô
2

and also x = ≠
Ô

2.

Defining Inverse Functions, Like Logarithms. This absence of gaps in the range of an exponential
function was useful to define logarithmic functions, because with a function like f(x) = ax, it is
ensured that for every positive number y, there is a value x that solves ax = y, and this solution is
what we call x = loga y. This shows that loga is defined for domain (0, Œ).

The Intermediate Value Theorem. The sort of equation solving used to get the inverse of a function
is always possible for a continuous function:

Theorem 2.4.14 The Intermediate Value Theorem. If a function f is continuous on an interval [a, b]
and m is any value between f(a) and f(b), then f takes the value m somewhere in that interval: there is a
number c, a Æ c Æ b, for which f(c) = m.

A common case is that whenever a continuous function takes both positive and negative values on
some interval, it has a root there too: f(x) = 0 has a solution.

Example 2.4.15 Show that the equation cos x = x has a solution.

1. First, any zero of the function f(x) = x ≠ cos x will be a solution.
2. We know that f(0) = ≠1 and f(2) = 2 ≠ cos 2 Ø 2 ≠ 1 =, so f changes sign on interval [0, 2].
3. Also, the function f is continuous on this interval.
4. Thus for some number c between 0 and 2, f(c) = c ≠ cos c = 0, so c = cos c.

⇤

Exercises

Study Calculus Volume 1, Section 2.42, Exercises 133, 137, 141, 147, 150, 151, 154, 157, 163, and 165.

2.5 The Precise Definition of a Limit

References.
• OpenStax Calculus Volume 1, Section 2.5.1

• Calculus, Early Transcendentals by Stewart, Section 2.4.
We have worked with limits so far using the intuitive idea that limxæa f(x) = L means
As x gets “close” to a, f(x) gets “close” to L.
To state this more precisely, we first put this in terms of guarantees of closeness to L:

2openstax.org/books/calculus-volume-1/pages/2-4-continuity
1openstax.org/books/calculus-volume-1/pages/2-5-the-precise-definition-of-a-limit

https://openstax.org/books/calculus-volume-1/pages/2-4-continuity
https://openstax.org/books/calculus-volume-1/pages/2-5-the-precise-definition-of-a-limit
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We can guarantee that the value of f(x) is “close enough” to L by looking only at values of x that are “close
enough” to a.
Next, we measure the closeness of two numbers by the absolute value of their difference being small:
We can guarantee that f(x) ≠ L is “as small as we want” by looking only at values of x with x ≠ a “small
enough”.
Finally we give a numerical meaning to “small”:

• Guaranteeing f(x) ≠ L “as small as we want” means smaller than any chosen positive number,
‘: |f(x) ≠ L| < ‘;

• considering only x ≠ a “small enough” means only x values with |x ≠ a| < ” for some positive
value ”.

Putting this all together gives the precise definition of a limit:

Definition 2.5.1 Limit. The limit of f(x) as x goes to a is L if for any given positive number ‘, there
is a positive number ” so that having |x ≠ a| < ”, x ”= a ensures that |f(x) ≠ L| < ‘.
When this is true, we write limxæa f(x) = L. ⌃
Note that the value of f at x = a is ignored, which in particular allows limits to exist even if f is not
defined at x = a.

Example 2.5.2 For f(x) = 2x + 3, a = 4, verify that the limit is L = 11: lim
xæ4

(2x + 3) = 11.

This is confirmed by using ” = ‘/2 (this ” is positive as required).
This is because for |x≠4| < ”, |f(x)≠11| = |(2x+3)≠11| = |2x≠8| = |2(x≠4)| = 2|x≠4| < 2” = ‘.
That is, |f(x) ≠ 11| < ‘, as required.
For example, to get |f(x) ≠ 11| < 0.001, so 10.999 < 2x + 3 < 11.001,
it works to require |x ≠ 4| < 0.0005, so that “x is close to 4” in that 3.9995 < x < 4.0005. ⇤

One-sided Limits. The other types of limits have similar precise definitions. Firstly,

Definition 2.5.3 Right-hand limit. The right-hand limit of f(x) as x goes to a is L if for any
given positive number ‘, there is a positive number ” so that having a < x < a + ” ensures that
|f(x) ≠ L| < ‘. When this is true, we write limxæa+ f(x) = L. ⌃

Checkpoint 2.5.4
Ô

x is only defined on one side of x = 0, so evaluate limxæ0+
Ô

x.

Infinite Limits. We need a slightly different measure for f(x) being “close to infinity”, and what we
use is f(x) > M for large M ; likewise having f(x) < M for large negative M measures “closeness
to ≠Œ”.

Definition 2.5.5 Infinite Limit. The limit of f(x) as x goes to a is infinity if for any given number
M , there is a positive number ” so that
having |x ≠ a| < ”, x ”= a ensures that f(x) > M.

When this is true, we write limxæa f(x) = Œ.

Similarly for f having a limit of ≠Œ, using f(x) < M instead. ⌃

Exercises

Study Calculus Volume 1, Section 2.52, Exercises 177, 184, 185, 187, and 191.

2openstax.org/books/calculus-volume-1/pages/2-5-the-precise-definition-of-a-limit

https://openstax.org/books/calculus-volume-1/pages/2-5-the-precise-definition-of-a-limit


Chapter 3

Derivatives

This chapter introduces the concept of the derivative, and efficient rules for calculating the deriva-
tives of functions.

References.
• OpenStax Calculus Volume 1, Chapter 3.1

• Calculus, Early Transcendentals by Stewart, Chapter 2, Sections 6 and 7, and Chapter 3, Sections
1–6.

3.1 Defining the Derivative

References.
• OpenStax Calculus Volume 1, Section 3.1.1

• Calculus, Early Transcendentals by Stewart, Section 2.7.
This section revisits ideas seen earlier in Section 2.1, now done more completely and efficiently using
what we know about limits, and revisits examples from those sections. Thus we will not work all
the examples in class, but I recommend that you read the whole section and study all the examples.

Tangents. In the Preview of Calculus we saw that the slope of the secant line on the curve y = f(x)
between a point P (a, f(a)) and another point Q(x, f(x)), x ”= a, is

mP Q = �y

�x
= f(x) ≠ f(a)

x ≠ a
.

This “slope function” f(x)≠f(a)
x≠a is undefined at x = a, but often it has a removable discontinuity there.

We also saw there that it makes sense to define the slope of the curve at P as the limit of this secant
slope as x æ a:

m = lim
xæa

f(x) ≠ f(a)
x ≠ a

.

Typically, the line of this slope m through P touches the curve but does not cross it, so we call it the
tangent line to y = f(x) at point P (a, f(a)), or the tangent at x = a.

1openstax.org/books/calculus-volume-1/pages/3-introduction
1openstax.org/books/calculus-volume-1/pages/3-1-defining-the-derivative
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https://openstax.org/books/calculus-volume-1/pages/3-introduction
https://openstax.org/books/calculus-volume-1/pages/3-1-defining-the-derivative
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It is often convenient to let h = x ≠ a, the horizontal increment, so that x = a + h and the tangent
slope is given by

m = lim
hæ0

f(a + h) ≠ f(a)
h

This makes it easier to identify the division by zero that we wish to eliminate in order to compute
the limit. The formulation in terms of step size h is even more useful when the algebra gets more
complicated.

Checkpoint 3.1.1 Find the slopes of the tangent line to y = f(x) = Ô
x at the points (1, 1), (4, 2) and

(9, 3), by computing it at a general point P (a,
Ô

a).
Use the “rationalizing factor”

1 =
Ô

a + h + Ô
aÔ

a + h + Ô
a

.

Velocities. In the Preview we saw that average velocity is given by a formula like that for secant
slope. For an object whose position at time t is f(t), the average velocity over a time interval of
duration h from time a to time a + h is

vave = f(a + h) ≠ f(a)
h

.

The instantaneous velocity at time a is the limit of this as the length of the time interval h approaches
zero:

v(a) = lim
hæ0

f(a + h) ≠ f(a)
h

.

The quantity lim
hæ0

f(a + h) ≠ f(a)
h

has been seen to be important to computing slopes, velocities and
other rates of change. It deserve a name, and a short-hand, f Õ(a):

Definition 3.1.2 The derivative of function f at number a is the quantity

f Õ(a) = lim
hæ0

f(a + h) ≠ f(a)
h

,

if this limit exists. An alternative form is

f Õ(a) = lim
xæa

f(x) ≠ f(a)
x ≠ a

, where x = a + h.

⌃

Interpretation of the Derivative as the Slope of a Tangent Line. The quantity now called f Õ(a)
has been seen as the slope m of the tangent line to a curve. We can now write that

Definition 3.1.3 The tangent line to curve y = f(x) at point P (a, f(a)) is the line with equation

y = l(x) = f(a) + f Õ(a)(x ≠ a)

⌃
Note well that only x is the variable in the function l(x) here: a is a constant, and so f(a) and f Õ(a)
are also constants.
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Interpretation of the Derivative as a Rate of Change. The derivative of position as a function of
time is velocity, or the (time) rate of change of position. Likewise the derivative of a function is the rate
of change of the value of the function value with respect to change in the value of its argument.
For any quantity y related to another quantity x by y = f(x), changing the value of x from x1 to x2
causes a change in y from y1 = f(x1) to y2 = f(x2), so that the change by �x = x2 ≠ x1 in x causes
a change of by �y = y2 ≠ y1 in y. The difference quotient, defined by

�y

�x
= y2 ≠ y1

x2 ≠ x1

gives the average rate of change of y respect to x over the interval [x1, x2].
As we adjust x2 to approach x1, so that �x approaches 0, this average rate of change approaches the
instantaneous rate of change of y with respect to x,

lim
�xæ0

�y

�x
, = lim

x2æx1

f(x2) ≠ f(x1)
x2 ≠ x1

.

With some name changes (x1 becoming a; x2 becoming a + h, so that �x becomes h) this is the same
as the definition of the derivative:
The derivative f Õ(a) of function f at number a is the instantaneous rate of change of y = f(x) with respect to
x when x = a.

Exercises

Study Calculus Volume 1, Section 3.12; in particular Examples 1,2, 3, 5, 6 and 9, Checkpoint items 1,
3 and 4, and Exercises 1, 7, 11, 13, 15, 25, 37, 39, 41 and 51.

3.2 The Derivative as a Function

References.
• OpenStax Calculus Volume 1, Section 3.2.1

• Calculus, Early Transcendentals by Stewart, Section 2.8.
The formula for the tangent slope at one point x = a on curve y = f(x) can also be seen as a function,
with argument x and value the slope at the corresponding point:

Definition 3.2.1 Derivative. The function f Õ given by

f Õ(x) = lim
hæ0

f(x + h) ≠ f(x)
h

is the derivative of function f . The domain of f Õ is the x values for which this limit exists; this can
be smaller than the domain of f . ⌃
(The name comes from the ideas that this new function is derived from the original one.)
One basic physical example is that when f(t) is position as a function of time, f Õ(t) is velocity as a
function of time. We will study the geometry of this new function, and some useful things that it
can tell us about the original function.
This helps with questions like getting information about position from measurements of velocity.

Example 3.2.2
2openstax.org/books/calculus-volume-1/pages/3-1-defining-the-derivative
1openstax.org/books/calculus-volume-1/pages/3-2-the-derivative-as-a-function

https://openstax.org/books/calculus-volume-1/pages/3-1-defining-the-derivative
https://openstax.org/books/calculus-volume-1/pages/3-2-the-derivative-as-a-function
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• Draw some smooth graph of some function f : no formula needed.
• Try to sketch the graph of its derivative f Õ.

⇤
Example 3.2.3

• If f(x) = x3 ≠ x, find a formula for f Õ(x).
• Illustrate by comparing the graphs of f and f Õ.

⇤
Example 3.2.4

• For f(x) = Ô
x, find the derivative f Õ.

• What is the domain of f Õ?
⇤

Example 3.2.5 Calculate the derivative of f(x) = (1 ≠ x)/(2 + x). ⇤

Other Notations. Many different notations are used for the derivative of y = f(x). Besides f Õ as
above (introduced by Joseph-Louis Lagrange) we often use dy

dx or df
dx , introduced by Gottfried Leibniz.

Another notation is Df , due to Leonhard Euler: it will be used less here, but can be convenient at
times; when it is important to identify the independent variable, the variant Dxf is used. So here is
a collection of synonyms:

f Õ(x) = yÕ = dy

dx
= df

dx
= d

dx
f = Df(x) = Dxf(x).

Motivation for the Leibniz Notation. The Leibniz notation is suggested by another way to write
the formula for the derivative:
write �x for h, the change in argument x, and let �y = f(x + h) ≠ f(x) be the corresponding change
in y. Then

dy

dx
= lim

�xæ0

�y

�x

and the change in notation from a capital � to a small d suggests the very small changes involved.
In fact, Leibniz and other pioneers of calculus thought in terms of the derivative as the ratio of
“infinitely small” (“infinitesimally small”) increments in both the x and y values: the precise use of
the limit idea came later. This connection back to the division used to define the derivative is useful
in some calculations later.

Differentiability: at Some Values, and Everywhere. Limits do not always exist, so the derivative
does not always exist. Thus, similar to continuity we have:

Definition 3.2.6 A function f is differentiable at a if f Õ(a) exists.
It is differentiable on an open interval (a, b), (≠Œ, a), (a, Œ) or (≠Œ, Œ) if it is differentiable at
every number in that interval.
If a function is differentiable at every number in its domain, we simply call it differentiable. ⌃
Example 3.2.7

• Where is the function f(x) = |x| differentiable?
• Give its derivative.
• Where is the function f continuous?

⇤
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Differentiability and Continuity. The above example shows that sometimes, a function can be
continuous at a, but not differentiable at a. The opposite is not true however:

Theorem 3.2.8 If a function is differentiable at a, it is also continuous at a.

Proof. Differentiability says that the limit f Õ(a) = limhæ0
f(a+h)≠f(a)

h exists. Using the product law
for limits,

lim
hæ0

f(a + h) ≠ f(a) = lim
hæ0

3
h · f(a + h) ≠ f(a)

h

4

=
3

lim
hæ0

h

4 3
lim
hæ0

f(a + h) ≠ f(a)
h

4

= 0 · f Õ(a) = 0.

Then the addition rule for limits gives

lim
hæ0

f(a + h) = lim
hæ0

[(f(a + h) ≠ f(a)) + f(a)]

= lim
hæ0

[f(a + h) ≠ f(a)] + lim
hæ0

f(a) = 0 + f(a) = f(a).

With x = a + h, as x æ a, h = x ≠ a æ 0, so

lim
xæa

f(x) = lim
hæ0

f(a + h) = f(a) : continuity at a.

⌅

How Can a Function Fail to be Differentiable? The above theorem tells us one way that a function
can fail to be differentiable at a: if f is not continuous at a, it is not differentiable there either. So a
function is non-differentiable at jump discontinuities, removable discontinuities, places where it has
vertical asymptotes, and places where wilder behavior occurs, as with sin(1/x) at 0. But Example 5
shows another situation, where a function can fail to be differentiable at a point even though it is
continuous there. The problem there is a “corner” at the origin, where the graph does not have a
well defined tangent line. In fact any line through the origin of slope between ≠1 and 1 is “tangent”
to y = |x| at the origin, in that it touches the curve but does not cross it. One other situation where
the derivative does not exist is when a graph effectively has a vertical tangent line, or an infinite
slope at a point.

Example 3.2.9 No derivative at a point due to a vertical tangent. Consider y = f(x) = x1/3. It is
continuous everywhere, but if we try to compute the derivative at x = 0, we get

lim
hæ0

h1/3 ≠ 01/3

h
= lim

hæ0

h1/3

h
= lim

hæ0

1
h2/3 , DNE.

Actually there is an infinite limit, so in a sense the graph has an infinite tangent slope at the origin: a
vertical tangent line. ⇤

Continuity vs Differentiability. Intuitively,
• the graph of a continuous function has no breaks, whereas
• the graph of a differentiable function has no breaks, sharp corners, or vertical tangents.

Second Derivatives. If function f is differentiable, its derivative f Õ is also a function, and so can
have a derivative, called the second derivative of f . The Lagrange notation adds another prime:
(f Õ)Õ or more commonly f ÕÕ; The Leibnitz notations adds another “d/dx”; the Euler notation adds
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another “factor” of D:

f Õ = d

dx
f = df

dx
= Df, (f Õ)Õ = f ÕÕ = d

dx

d

dx
f = d

dx

df

dx
= d2f

dx2 = D2f.

The more compact version of Leibnitz notation treats each “d” on the top and each “dx” on the
bottom as if they were factors in a fraction.

Example 3.2.10 For f(x) = x3 ≠ x:
• Calculate f ÕÕ(x).
• Give a geometrical interpretation of f ÕÕ.

⇤

Third and Higher Derivatives. The above can be repeated, leading to the third derivative of f ,
denoted f ÕÕÕ or d3f

dx3 or D3f , and so on to the n-th derivative for any natural number n. The primes
can get messy when we do this too often, so the n-th derivative of f (it it exists) is also denoted f (n),
or dnf

dxn . The Euler notation is perhaps the most elegant: Dnf . Note the parentheses in the Lagrange
form: f (n)(x) is different from fn(x), which is [f(x)]n.

Example 3.2.11 For f(x) = x3 ≠ x as above:
• Calculate f (3).
• Calculate f (4).
• Calculate f (17).

⇤

Exercises

Study Calculus Volume 1, Section 3.22; in particular all Examples and Checkpoint items are worth
reviewing, along with Exercises 55, 57, 65, 67, 79, 80 and 96.

3.3 Differentiation Rules

References.
• OpenStax Calculus Volume 1, Section 3.31, and Section 3.92 for exponential functions.
• Calculus, Early Transcendentals by Stewart, Sections 3.1 and 3.2.

Derivatives of Linear Functions. Since the slope of a straight line y = mx + c is the constant
m, it is easy to check that the derivative of f(x) = mx + c is m, for any constants m and c. It is
often convenient to write calculations directly with formulas, without naming the functions, so to
illustrate several notations:

Theorem 3.3.1 The derivative of the linear function f(x) = mx + c is

f Õ(x) = (mx + c)Õ = d

dx
(mx + c) = m.

The two most basic special cases are when the function is a constant c or just x:

(c)Õ = d

dx
(c) = 0, (x)Õ = d

dx
(x) = 1.

2openstax.org/books/calculus-volume-1/pages/3-2-the-derivative-as-a-function
1openstax.org/books/calculus-volume-1/pages/3-3-differentiation-rules
2openstax.org/books/calculus-volume-1/pages/3-9-derivatives-of-exponential-and-logarithmic-functions

https://openstax.org/books/calculus-volume-1/pages/3-2-the-derivative-as-a-function
https://openstax.org/books/calculus-volume-1/pages/3-3-differentiation-rules
https://openstax.org/books/calculus-volume-1/pages/3-9-derivatives-of-exponential-and-logarithmic-functions


CHAPTER 3. DERIVATIVES 27

Derivatives of Power Functions. We have already computed the derivatives of a few powers
functions like (x2)Õ = 2x and (x3)Õ = 3x2, and these fit a more general pattern:

Theorem 3.3.2 The Power Rule (for Derivatives). For any non-negative integer n,

(xn)Õ = d

dx
(xn) = n · xn≠1.

This also agrees with the results seen above for f(x) = x1 = x and f(x) = x0 = 1.
Note that there is also a “Power Rule for Limits”: from now on, when we simply say “power rule”,
we mean this one for derivatives.
To see the pattern that helps us to get the general rule, let us look at n = 4:

Example 3.3.3 Calculate the derivative of f(x) = x4.
Use the first formula for the derivative f Õ(a):

f Õ(a) = lim
xæa

f(x) ≠ f(a)
x ≠ a

. lim
xæa

x4 ≠ a4

x ≠ a
.

The numerator vanishes for x = a, so it has a factor x ≠ a, and in fact the factorization is x4 ≠ a4 =
(x ≠ a)(x3 + x2 · a + x · a2 + a3). (Check by expanding!)
This gives

f Õ(a) = lim
xæa

(x ≠ a)(x3 + x2 · a + x · a2 + a3)
x ≠ a

= lim
xæa

(x3 + x2 · a + x · a2 + a3)

= 4a3.

That is, f Õ(x) = (x4)Õ = 4x3, as the Power Rule above says. ⇤
Let us try the power rule, using various different notations for derivatives:

Example 3.3.4 For f(x) = x6, find f Õ(x). f Õ(x) = 6x5 ⇤

Example 3.3.5 For y = x1000, find yÕ. yÕ = 1000x999 ⇤

Example 3.3.6 For y = t4, find dy
dt . dy

dt = 4t3 ⇤

Example 3.3.7 Find d
dr (r3). d

dr (r3) = 3r2 ⇤

Proof of the Power Rule. The key step is the factorization

xn ≠ an = (x ≠ a)(xn≠1 + xn≠2a + xn≠3a2 + · · · + xan≠2 + an≠1)

This can be checked by expanding the right hand side, distributing the left hand factor:

(x ≠ a)(xn≠1 + xn≠2a + xn≠3a2 + · · · + xan≠2 + an≠1)
= x(xn≠1 + xn≠2a + xn≠3a2 + · · · + xan≠2 + an≠1) ≠ a(xn≠1 + xn≠2a + xn≠3a2 + · · · + xan≠2 + an≠1)
= xn + xn≠1a + xn≠2a2 + · · · + x2an≠2 + xan≠1 ≠ xn≠1a ≠ xn≠2a2 ≠ xn≠3a3 ≠ · · · ≠ xan≠1 ≠ an

= xn ≠ an

because all the terms in between pair off and cancel out.
Much as with x4, the definition of the derivative gives the derivative of f(x) = xn at x = a as

f Õ(a) = lim
xæa

xn ≠ an

x ≠ a
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= lim
xæa

(x ≠ a)(xn≠1 + xn≠2 · a + xn≠3 · a2 + · · · + an≠1)
x ≠ a

= lim
xæa

(xn≠1 + xn≠2 · a + xn≠3 · a2 + · · · + an≠1)

= an≠1 + an≠2 · a + an≠3 · a2 + · · · + an≠1

= an≠1 + an≠1 + an≠1 + · · · + an≠1 (n copies)

= nan≠1,

so f Õ(x) = (xn)Õ = nxn≠1, as claimed.

Constant Multiples, Sums and Differences. As with limits, we can build up polynomials from
these power functions using constant multiples, sums and differences. The derivatives of these three
basic combinations are as simple as with limits:

Theorem 3.3.8 The Constant Multiple Rule. If a differentiable function f is multiplied by a constant c,
this product is also differentiable, with derivative:

d

dx
[cf(x)] = c

d

dx
[f(x)], or (cf)Õ(x) = cf Õ(x).

Theorem 3.3.9 The Sum Rule. The sum of two differentiable functions f and g is differentiable, with the
sum’s derivative the sum of their derivatives:

d

dx
[f(x) + g(x)] = d

dx
f(x) + d

dx
g(x), or (f + g)Õ(x) = f Õ(x) + gÕ(x).

Theorem 3.3.10 The Difference Rule. The difference of two differentiable functions f and g is differentiable,
with its derivative the difference of their derivatives:

d

dx
[f(x) ≠ g(x)] = d

dx
f(x) ≠ d

dx
g(x), or (f ≠ g)Õ(x) = f Õ(x) ≠ gÕ(x).

Warning: The rules seen so far are the only ones that are as simple and “guessable” as for limits!

Checkpoint 3.3.11 Compute the derivative of y = x8 + 12x5 ≠ 4x2 + 10x3 ≠ 6x + 5. Note that this
derivative is also a polynomial.

The same approach works for differentiating any polynomial:
All polynomials are differentiable, and their derivatives are polynomials, so the second and higher derivatives
also exist.

Checkpoint 3.3.12 Find the points on the curve y = x4 ≠ 6x2 + 4 where the tangent is horizontal.

Derivatives of Other Power Functions. Example 3 in Section 2.8 shows that
Ô

x has derivative
1/(2Ô

x). That is, d
dx x1/2 = (1/2)x1/2≠1. This fits the power rule, but for power 1/2, not a positive

integer. In fact, this works for all real powers:

Theorem 3.3.13 The Power Rule, Generalized Version. For any real number a,

d

dx
xa = axa≠1, or (xa)Õ = axa≠1. (3.3.1)

This is most easily shown later when we know how to differentiate exponential functions and
compositions of functions.

Example 3.3.14 If f(x) = 1/x2, find f Õ(x). f Õ(x) = ≠2/x3 ⇤

Example 3.3.15 If y = 3Ôx2, find yÕ. yÕ = 3/(2 3
Ô

x) ⇤
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Checkpoint 3.3.16 Differentiate 3/x .

To simplify differentiation of more functions, we would like to be able to deal with products,
quotients, compositions and inverses, much as we did with limits and continuity.
Warning: none of these derivatives are given by rules quite as simple as for limits. Only sums, differences
and constant multiples work that simply.

Example 3.3.17 A: a cautionary one. Compare
• the derivative of the product x · x2 = x3

• the product of the derivatives of x and x2.
The Power Rules tells us that the derivative of this product is 3x2; the product of the derivatives of x
and x2 is 1 · 2x = 2x: not the same! ⇤
In this section we will see what the rules really are for products and quotients; compositions will be
handled in Section 3.6.

The Derivative of a Product of Functions. The Leibniz notation is nice here. Let u = f(x), v = g(x),
and compute the derivative of the product uv using the formula

d(uv)
dx

= lim
�xæ0

�(uv)
�x

(3.3.2)

What is �(uv)?
First look at what �u and �v are: �u = f(x + �x) ≠ f(x), so f(x + �x) = u + �u, and likewise
g(x + �x) = v + �v.
Next, �(uv) is the change in the value of the product f(x)g(x) as the argument changes from x to
x + �x:

�(uv) = f(x + �x)g(x + �x) ≠ f(x)g(x) = (u + �u)(v + �v) ≠ uv = u�v + v�u + �u�v

That is,
�(uv) = u�v + v�u + �u�v

The difference quotient in (3.3.2) is thus

�(uv)
�x

= u�v + v�u + �u�v

�x
= u�v

�x
+ v�u

�x
+ �u�v

�x
= u

�v

�x
+ v

�u

�x
+ �u

�x

�v

�x
�x (3.3.3)

The two difference quotients here have limits as �x æ 0, as do the factors multiplying them:
�u

�x
æ du

dx
,

�v

�x
æ dv

dx
, �x æ 0, and u and v do not vary as �x æ 0. Thus we can compute the limit

as �x æ 0 in Equation (3.3.3):

Theorem 3.3.18 1. The Product Rule for Derivatives.

d(uv)
dx

= u
dv

dx
+ v

du

dx
, or (fg)Õ = f Õg + fgÕ.

Note that change in each factor in the products adds to the total change in the product, so you add a
term for the derivative of each factor to get the derivative of the product.

Example 3.3.19
• If f(x) = xex, calculate its derivative f Õ(x).
• Compute the second and third derivatives f ÕÕ and f ÕÕÕ of this function.
• Compute all the derivatives f (n) of this function.

⇤
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Example 3.3.20 Differentiate (compute the derivative of) the function f(t) =
Ô

t(a + bt). Do this two
ways, with and without the Product Rule. Hint: as usual, it can help to rewrite roots as powers, and
division by powers and roots as negative powers. ⇤
Sometimes, you only know the values of a function and its derivative at one point, like having
measurements of the position and velocity of an object at one time. This can be enough to compute
the derivative of another function got from the first with a product or such:

Example 3.3.21 If f(x) = Ô
xg(x), calculate f Õ(x) in terms of x and gÕ(x), and use this to find f Õ(4)

given that g(4) = 2 and gÕ(4) = 3. ⇤

The Derivative of the Reciprocal of a Function. To deal with division, start with the simplest case,
f(x) = 1/g(x), and use a common strategy:
Rephrase a new problem in terms of a problem we have already solved.
In this case, we can restate the situation in terms of a product, and use the Product Rule. First, clear
the denominator, getting f(x)g(x) = 1. Then use the product rule to get

f Õ(x)g(x) + f(x)gÕ(x) = 0.

Solve for f Õ and substitute in f(x) = 1/g(x):

f Õ(x) = ≠gÕ(x)f(x)/g(x) = ≠gÕ(x)/[g(x)]2,

or 31
g

4Õ
= ≠ gÕ

g2 .

The minus sign goes with the fact that an increase in g will cause a decrease in 1/g.

The Quotient Rule for Derivatives. Now it is east to get a rule for the derivative of any quotient,
by combining the product and reciprocal rules:

3
f

g

4Õ
=

3
f · 1

g

4Õ
= f Õ · 1

g
+ f ·

31
g

4Õ
= f Õ

g
≠ f · gÕ

g2 = f Õg ≠ fgÕ

g2 .

Theorem 3.3.22 The Quotient Rule for Derivatives.

3
f

g

4Õ
= f Õg ≠ fgÕ

g2 , or
d

dx

5
f(x)
g(x)

6
=

d

dx
[f(x)] · g(x) ≠ f(x) · d

dx
[g(x)]

[g(x)]2

Note well where the minus sign goes! the derivative of the bottom factor gets a minus sign. We saw
that with products, the derivative of each factor adds to the total derivative of the product; now the
derivative of the top factors add}, while the derivative of the bottom factor subtracts.

Example 3.3.23

1. Differentiate y = x2 + x ≠ 2
x3 + 6 .

2. Find the equation of the tangent line to this curve at point P (≠1, ≠2/5).
⇤

Remark 3.3.24 The derivatives of exponential functions are not covered in the OpenStax text till
Section 3.9, but these functions are so important that I like to introduce these facts as soon as possible.
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Derivative of the Natural Exponential Function. One way to define the number e is so that the
slope of y = ex at point (0, 1) is 1. That is,

lim
hæ0

eh ≠ 1
h

= 1.

This choice makes the derivative of ex simple:

d

dx
ex = lim

hæ0

ex+h ≠ ex

h
= lim

hæ0

ex · eh ≠ ex

h
= lim

hæ0

ex(eh ≠ 1)
h

= ex lim
hæ0

eh ≠ 1
h

(as ex is a constant as far as this limit is concerned: h is the variable!)
= ex · 1
= ex.

So the natural exponential function is equal to its own derivative:

Theorem 3.3.25 Derivatives of Exponential Functions.

d

dx
ex = ex.

Further, as will be shown in Section 3.4,

d

dx
ax = (ln a)ax for any constant a > 0.

Thus all exponential functions have a rate of change proportional to their current value.
This fits for example with the simple exponential model of a population whose growth rate is
proportional to its current size because the rates of births and deaths are both proportional to current
population.

Geometrical Explanation of the Derivative of ax. The result for the derivative of ax can be seen
graphically by writing a = eln a so that

ax = (eln a)x = e(ln a)x.

The effect of changing from f(x) to g(x) = f(kx) is to compress the graph horizontally by a factor of
k, increasing the slope at corresponding points by a factor k: in terms of derivatives,

d

dx
f(kx) = kf Õ(kx)

Thus, the graph of ax is a compression of the graph of ex by factor ln a and

d

dx
ax = (ln a)e(ln a)x = (ln a)ax..

In Section 3.4 we will see another way to compute this derivative, using a derivative rule for
composition of functions.

Example 3.3.26 If f(x) = ex ≠ x, find f Õ(x) and f ÕÕ(x), and then compare the graphs of f and f ÕÕ.
1. f Õ(x) = ex ≠ 1

2. f ÕÕ(x) = ex ⇤
Checkpoint 3.3.27 At what point on the curve y = ex is the tangent parallel to the line y = 2x?

Differentiation Facts So Far.
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•
d

dx
(c) = 0

•
d

dx
(xn) = nxn≠1

•
d

dx
(ex) = ex

•
d

dx
(ax) = (ln a)ax

•
d

dx
(cf) = c

df

dx

•
d

dx
(f + g) = df

dx
+ dg

dx

•
d

dx
(f ≠ g) = df

dx
≠ dg

dx

•
d

dx
(fg) = df

dx
g + f

dg

dx

•
d

dx

3
f

g

4
=

df

dx
g ≠ f

dg

dx
g2

What is missing so far? Mostly, derivatives of
• trigonometric functions,
• inverses of functions, including logarithms, and
• compositions of functions.

These gaps will be filled in the next few sections.

Exercises

Study Calculus Volume 1, Section 3.33; in particular all Examples are worth reviewing, along with
Checkpoint items 12 to 19 and Exercises 107, 109, 111, 119, 122, 127, 129, 130, 131, 133, 142, 143 and
147.

3.4 Derivatives as Rates of Change

Reference. OpenStax Calculus Volume 1, Section 3.41

Now that we know how to evaluate the derivatives of some common functions efficiently, let us
look at some of the places that this is useful in scientific problems. We will look at velocity and
acceleration, population growth, and marginal cost.

Rate of Change of One Quantity Relative to Another. The basic idea of a rate of change is that
there is a relationship between changes in one quantity x and another, y, due to there being a
function connecting the two quantities, y = f(x). (Note: you might not have a formula for this
function!) The pairs might be

• time and position,
• pressure and volume in a quantity of gas,
• horizontal and vertical position of a person traveling over hilly terrain,

or many other combinations.

Average Rate of Change of One Quantity Relative to Another. Suppose that the first quantity
changes in value from x1 to x2, the second changes from y1 to y2; in terms of the function, from
f(x1) to f(x2).
The change in the first quantity is �x = x2 ≠ x1 (spoken “delta x”), the corresponding change in the
second quantity is �y = y2 ≠ y1 = f(x2) ≠ f(x1) (“delta y”).

3openstax.org/books/calculus-volume-1/pages/3-3-differentiation-rules
1openstax.org/books/calculus-volume-1/pages/3-4-derivatives-as-rates-of-change

https://openstax.org/books/calculus-volume-1/pages/3-3-differentiation-rules
https://openstax.org/books/calculus-volume-1/pages/3-4-derivatives-as-rates-of-change
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The average rate of change of y with respect to x over the interval from x1 to x2 is given by the
difference quotient

�y

�x
= y2 ≠ y1

x2 ≠ x1
= f(x2) ≠ f(x1)

x2 ≠ x1
.

This is the slope of the secant line between the two points P (x1, y1) and Q(x2, y2) on the graph of y
vs. x.

Instantaneous Rate of Change of One Quantity Relative to Another. In the limit of x2 æ x1, with
x1 unchanging, so �x æ 0, we get the instantaneous rate of change of y with respect to x at x1,

lim
�xæ0

�y

�x
= dy

dx
(x1) = f Õ(x1).

Thus, whenever a derivative arises like this in a physical context, it has an interpretation as a rate of
change.

Physics: Velocity and Acceleration. We have already seen one example: when position s (along
a line) is a function of time t, s = f(t) the the rate of change of position with respect to time is the
velocity,

v(t) = sÕ(t) = f Õ(t) = ds

dt
.

Many basic laws of physics describe the way that a force causes the velocity of an object to change at
a certain rate, and the rate of change of velocity is acceleration,

a(t) = vÕ(t) = dv

dt
= sÕÕ(t) = f ÕÕ(t) = d2s

dt2 .

Checkpoint 3.4.1 An object moving back and forth along a line is at position s = f(t) = t3 ≠ 6t2 + 9t
meters to the right of its starting point at time t seconds (a negative s value means that it is to the
left.)

• Find its velocity at time t.
• What is the velocity after 2 seconds? After 4 seconds?
• When is the object at rest?
• When is it moving to the right?
• Draw a diagram to represent the motion of the object.
• Find the total distance traveled by the object during the first five seconds.

Bacterial Population Growth. A population of bacteria often grows by cells dividing at a roughly
fixed time period, T . If the initial number of bacteria is P0, then at a time nT the number of bacteria
is P = f(nT ) = P02n. To write this as a function of t, use t = nT so n = t/T , so

P = f(t) = P02t/T .

If this exponential patterns hold at all times, not just multiples of T (the bacteria are probably not
synchronized to divide at the same time), we can try to compute the rate of change of the population,

dP

dt
= d(P02t/T )

dt
= P0 ln 2 · 2t/T 1

T
= kP, k = ln 2

T
.

The exponential function fits the expected pattern of population growth rate being proportional to
current population size. As always, the exponential can be rewritten using the natural exponential:

P (t) = P0eln 2·t/T = P0ekt, k = ln 2
T

.
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Example 3.4.2 If the initial size of a bacterial population is P0 = 100 and it doubles every five hours:
1. How fast is it growing initially?
2. How fast is it growing after two days?
3. Compare the second answer to the average rate of change between days 1 and 3.

1. The population as a function of time is 100 · 2t/5, measuring time in hours. Thus the growth rate
is 100k2t/5, k = (ln 2)/5, approximately 13.862t/5. This gives the initial growth rate as 100k ¥ 13.86
bacteria per hour.

2. The growth rate two days [48 hours] later as 100k248/5 ¥ 10, 758 bacteria per hour.

3. The average growth rate “around” day two, time t = 48, from t = 24 to t = 72, is [f(72) ≠
f(24)]/48 = 44, 981. The average is distinctly higher, because the growth rate increases so much
between days 2 and 3. ⇤

Economics: Cost Functions and Marginal Cost. If the cost C of producing x units of a product
depends only on the number produced, it is given by some function C(x). Increasing production
level from x1 units to x2 incurs a change (increase) in cost of �C = C(x2) ≠ C(x1), for a change
(increase) in production of �x = x2 ≠ x1. The average rate of increase of cost with respect to increase
in production is

�C

�x
= C(x2) ≠ C(x1)

x2 ≠ x1
= C(x1 + �x) ≠ C(x1)

�x

Even though the production level is an integer, it can be extremely large, so that x might be in units
of thousands or millions, and then increments �x in production level can be small, so the average
rate of change of cost is well approximated by the derivative at x1:

�C

�x
¥ dC

dx
(x1) = C Õ(x1).

This is called the marginal cost, also well approximated by �C/�x for an increase in production
by a single unit (which might be �x far smaller than 1, depending on the units used.) A decision
to increase production might be made by comparing this marginal cost to the price at which extra
units could be sold.

Checkpoint 3.4.3 Consider the cost function C(x) = 10, 000 + 5x + 0.01x2

1. Find the marginal cost where the production level is 500 units.
2. Compare this to the actual added cost of making one more unit (501 instead of 500).
3. At what production level does the marginal cost reach $20 per item? (Important to know if

that is the selling price!)

Exercises

Study Calculus Volume 1, Section 3.42; in particular Examples 34 to 36, Checkpoint item 22, and
Exercises 151, 159 and 165.

3.5 Derivatives of Trigonometric Functions

References.
• OpenStax Calculus Volume 1, Section 3.51

• Calculus, Early Transcendentals by Stewart, Section 3.3.
2openstax.org/books/calculus-volume-1/pages/3-4-derivatives-as-rates-of-change
1openstax.org/books/calculus-volume-1/pages/3-5-derivatives-of-trigonometric-functions

https://openstax.org/books/calculus-volume-1/pages/3-4-derivatives-as-rates-of-change
https://openstax.org/books/calculus-volume-1/pages/3-5-derivatives-of-trigonometric-functions
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To find the derivatives of trigonometric functions, note first that we always use radian measure
which means that the angle ◊ is the length along the arc of the unit circle bounding a sector of angle ◊

Two calculations are the basis of all others: the derivatives of sine and cosine at the origin:

sinÕ(0) = lim
hæ0

sin(0 + h) ≠ sin 0
h

= lim
hæ0

sin h

h
= 1, (3.5.1)

cosÕ(0) = lim
hæ0

cos(0 + h) ≠ cos 0
h

= lim
hæ0

cos h ≠ 1
h

= 0. (3.5.2)

These will be calculated with the Squeeze Theorem from Section 2.3, p. 12 and the trigonometry in
this picture:
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The line segment CB has length sin h, so triangle —OAB has base 1, height sin h, area 1
2 sin h.

The sector OAB with arc of length h and sides of length 1 has area 1
2 h.

The line segment AD has length tan h, so triangle —OAD has base 1, height tan h, area 1
2 tan h.

Comparing these areas,

sin h Æ h Æ tan h for angle in the first quadrant.

(For negative angles in the fourth quadrant, the order is reversed.)

Using tan h = sin h

cos h
, and dividing through by h,

sin h

h
Æ 1 Æ sin h

h

1
cos h

, true also for negative h.

Multiplying the second inequality by cos h gives cos h Æ sin h

h
; since we already have

sin h

h
Æ 1, we

now have
sin h

h
squeezed:

cos h Æ sin h

h
Æ 1

Thus, as h æ 0, we have cos h æ cos 0 = 1 and 1 æ 1, which combine to force
sin h

h
æ 1: this

confirms Equation (3.5.1).
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We can also use this to calculate the derivative of cosine at the origin. The difference quotient used
to get the derivative is:

cos h ≠ 1
h

= cos h ≠ 1
h

· 1 + cos h

1 + cos h
= cos2 h ≠ 1

h(1 + cos h) = ≠ sin2 h

h(1 + cos h) = ≠ sin h

h
· sin h

1 + cos h
.

Thus,

lim
hæ0

cos h ≠ 1
h

= lim
hæ0

3
≠ sin h

h
· sin h

1 + cos h

4

= ≠ lim
hæ0

3 sin h

h

4
lim
hæ0

3 sin h

1 + cos h

4
= ≠1 · 0

1 + 1 = 0,

confirming Equation (3.5.2).
With this we can compute the derivative of sin x at any point, using the addition formulas

sin(x + y) = sin x cos y + cos x sin y (3.5.3)
cos(x + y) = cos x cos y ≠ sin x sin y (3.5.4)

d

dx
sin x = lim

hæ0

sin(x + h) ≠ sin x

h

= lim
hæ0

sin x cos h + cos x sin h ≠ sin x

h
, using the above sin-of-sum formula

= lim
hæ0

5
sin x

cos h ≠ 1
h

+ cos x
sin h

h

6

= (sin x) · lim
hæ0

cos h ≠ 1
h

+ (cos x) · lim
hæ0

sin h

h
= (sin x) · 0 + (cos x) · 1, using the above results for the derivatives at zero
= cos x

that is,
d

dx
sin x = cos x. (3.5.5)

With a similar calculation, we get:
d

dx
cos x = ≠ sin x. (3.5.6)

Note well where the minus sign is!

Checkpoint 3.5.1 Sketch the graphs of sin x, cos x and their derivatives, and use it to explain why
the minus sign above makes sense.

Checkpoint 3.5.2 Find the derivative of
x2 sin x

1 + cos x
.

Checkpoint 3.5.3 Complete this list of the derivatives of the other four standard trigonometric
functions:

•
d

dx
tan x =

•
d

dx
sec x =

•
d

dx
cot x =

•
d

dx
csc x =

Note that the derivative of each complementary “co-” function has a minus sign and swapping of
“co-” and “non-co” functions.

Checkpoint 3.5.4
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• Differentiate f(x) = sec x

1 + tan x
• For what values of x does f(x) have a horizontal tangent?

Exercises

Study Calculus Volume 1, Section 3.52; in particular Examples 39 to 44, Checkpoint items 25 to 30,
and Exercises 175, 178, 181, 182, 191, 197 and 206.

3.6 The Chain Rule

References.
• OpenStax Calculus Volume 1, Section 3.61 (and Section 3.92 for exponentials and logarithms)
• Calculus, Early Transcendentals by Stewart, Section 3.4.

The Chain Rule shows how to differentiate compositions of functions, which also allows us to
differentiate inverses. These are the last main methods for building new functions from old, and so
complete the tools we need to compute the derivatives of all the elementary functions. Along the way
we will verify that the power rule works for all real powers, as stated in Section 3.3, p. 26, and see
the easy way to compute the derivative of cosine.

Example 3.6.1 Unit Conversions as Rates of Change. Suppose that m is length in miles, y is length
in yards, and i is length in inches. The rate of change of y relative to m is 1760: each one mile increase
is a 1760 yard increase. Likewise, rate of change of i relative to y is 36. So what is the rate of change
of i relative to m?Clearly 1760 · 36, the number of inches in a mile: the rates of change multiply. In
formulas, y = 1760m and i = 36y, and the above results are

dy

dm
= 1760,

di

dy
= 36,

di

dm
= di

dy

dy

dm
= 36 · 1760.

In terms of functions, i = f(y) = 36y, y = g(m) = 1760m and inches as a function of miles is
i = f(g(m)). Composition takes miles m, first applies the “inside” function g to “input” m to get
yards y, and then applies the “outside” function f to its “input” y (which is the “output” of g) to get
the final “output” value for inches i. ⇤
The simple pattern above of multiplying derivatives works for all compositions:

Theorem 3.6.2 1. The Chain Rule for the Derivative of a Composition. If two differentiable functions
f and g are composed giving F = f ¶ g, its derivative is the product of their derivatives, each derivative
evaluated at the same argument as the corresponding original function:

F Õ(x) = f Õ(g(x)) · gÕ(x), or
(f ¶ g)Õ(x) = f Õ(u) · gÕ(x), with u = g(x). (3.6.1)

Note well that the argument of f Õ is g(x), just as the argument of f is g(x) in the composition.
In Leibniz notation, with y = f(u) and u = g(x) so y = f(g(x)),

dy

dx
= dy

du

du

dx
. (3.6.2)

2openstax.org/books/calculus-volume-1/pages/3-5-derivatives-of-trigonometric-functions
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Mnemonic: Treat Derivatives as Quotients of dx, dy, du, etc.. Note the resemblance to simpli-
fication of a product of fractions in the last form. The Leibniz notation also emphasizes that the
argument u of the outside function y = f(u) is different from the argument x of the inside function
g(x).

Checkpoint 3.6.3 The derivative of (x3 + 1)2 and higher powers of x3 + 1.
1. Compute the derivative of F (x) = (x3 + 1)2 two ways: with and without the Chain Rule.
2. Repeat for F (x) = (x3 + 1)9 using the Chain Rule.
3. What would be involved in differentiating F (x) = (x3 + 1)9 without using the Chain Rule?

Checkpoint 3.6.4 The derivative of ( 5
Ô

x)5, with a check.
1. Compute the derivative of f(x) = ( 5

Ô
x)5, using the Power Rule and the Chain Rule;

2. then check by noting that this function is just f(x) = x!

Checkpoint 3.6.5 Verifying that (cos x)Õ = ≠ sin x. Use the facts that (sin x)Õ = cos x and cos(x) =
sin(x + fi/2) to verify that

(cos x)Õ = ≠ sin x.

Partial Verification of the Chain Rule. Write u for g(x) and let �u = g(x + �x) ≠ g(x), the change
in the value of g caused by changing x by an amount �x, so that g(x+�x) = g(x)+�u. The change
�x changes the composition by

�y = f(g(x + �x)) ≠ f(g(x)) = f(u + �u) ≠ f(u)

so the derivative of y = F (x) is the limit as �x æ 0 of

�y

�x
= �y

�u

�u

�x
, (3.6.3)

so long as �u is never zero.
Ignoring that possibility for now, as �x æ 0, �u æ 0 because g is continuous, and so

�y

�u
æ dy

du
= f Õ(u) = f Õ(g(x)), �u

�x
æ du

dx
= gÕ(x), �y

�x
æ dy

dx
= F Õ(x).

Equation (3.6.3) says that the last of these limits is the product of the first two, which is the Chain
Rule in Equations (3.6.1) and (3.6.2) above.
The examples so far test the Chain Rule against previous results; let us now use it where there is no
other way to get the answer:

Checkpoint 3.6.6 Differentiate
Ô

x2 + 1. Do this two ways, first using the Chain Rule in the
Lagrange form (3.6.1) and then using the Leibniz form (3.6.2).
1. It is useful at first to introduce a name like u for the intermediate quantity, the value of the first
or “inside” function in the composition.
However with practice, it becomes quicker and more convenient to work directly with formulas all
in terms of one variable, the argument of the first function.

2. As is often the case with calculus, it can help to rewrite roots in terms of fractional powers.

Checkpoint 3.6.7 Some notation to be careful with, and the order of composition matters!
Differentiate

• sin x2 (= sin(x2))
• sin2 x (= (sin x)2)

What is the intermediate quantity “u” in each case?
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Suggestion: write each function with an abundance of parentheses to avoid ambiguity about the
order of operations.
Note from this example the importance of which function comes first in a composition! Also note
the convention for squaring the value of a trigonometric function by writing as if one is squaring the
name of the function [sin2] as opposed to squaring its argument [x2].

Derivatives of Exponentials. We can now confirm the result for the derivative of any exponential
function y = f(x) = ax. Note that the text leaves this till Section 3.93 but I like to introduce
exponential functions as soon as possible.

Write a as e(ln a), so that y = ax =
#
e(ln a)$x = e(x ln a), a composition with

• inside function u = (ln a)x, with derivative the constant ln a

• outside function eu, derivative eu.

The derivative is thus
d

dx
ax = d

du
eu · d

dx
[(ln a)x] = eu(ln a) = (ln a)ax, or

d

dx
ax = (ln a)ax. (3.6.4)

Checkpoint 3.6.8 Differentiate y = esin x.

The Generalized Power Rule. A common and convenient case of the Chain Rule is when the
outside function is a power: y = ur, u = g(x). Then

d

dx
(ur) = rur≠1 du

dx
(3.6.5)

or
[(g(x))r]Õ = r[g(x)]r≠1 · gÕ(x).

Checkpoint 3.6.9 Simplifying with roots and reciprocals. Differentiate f(x) = 1
3Ôx2 + x + 1

.Rewrite

roots as powers, and reciprocals of powers as negative powers: this is often useful in calculus.

In fact, the rule for the derivative of a reciprocal can be got just using the chain rule; writing 1/g(x))
as F (x) = [g(x)]≠1 = u≠1 so u = g(x),

d

dx

1
g(x) = d(u≠1)

du

du

dx
= (≠1)u≠2 dg

dx
= ≠dg/dx

g2(x)

When one or both of the inner and outer functions is itself complicated, it can be worth first
computing their derivatives separately, and then combining them with the Chain Rule:

Checkpoint 3.6.10 Combining compositions with quotients. Differentiate g(t) =
3

t ≠ 2
2t + 1

49
.

Checkpoint 3.6.11 Differentiate y = (2x+1)5(x3≠x+1)4. Note that this is not overall a composition,
but contains two compositions, and we need to use the Product Rule first.

The above example involves using the Chain Rule several times, and next we look at another way
that this can happen.

Nested Compositions. Functions can be produced with multiple nested compositions and then
the Chain Rule must be applied repeatedly. My usual guideline applies: look at the order in which
the steps in evaluation of the function must be done, and apply differentiation rules from last to
first; “from the outside inwards.” This means that the Chain Rule is applied first to the “outer”
composition, as this is evaluated last.

3openstax.org/books/calculus-volume-1/pages/3-9-derivatives-of-exponential-and-logarithmic-functions
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Example 3.6.12 Differentiate f(x) = sin(tan(x2)).
1. The outside function is sin, with derivative cos, which is evaluated at tan(x2) because sin was:

this gives a factor cos(tan(x2)).
2. Next in is the function tan, which has derivative sec2, and this is evaluated at x2: a factor

sec2(x2).
3. Finally, the innermost function is x2, with derivative 2x.

Altogether,

d

dx
sin(tan(x2)) = sinÕ(tan(x2)) · tanÕ(x2) · (x2)Õ

= cos(tan(x2)) · sec2(x2) · 2x

= 2x cos(tan(x2)) sec2(x2).

⇤
Note: put parentheses around the arguments of trig. functions whenever the argument is more than
a single letter like “x”: that avoids any possibly ambiguity about what the argument is, such as in
products like this.

Checkpoint 3.6.13 Differentiate y = esec 3◊. That innocent looking “3◊” means there are two
compositions here.

Exercises

Study Calculus Volume 1, Section 3.64; in particular Examples 48, 48, 50, 52 and 53, all Checkpoint
items, and Exercises 215, 217, 219, 221, 224, 229, 233, 235, 245, 251 and 257.

3.7 Derivatives of Inverse Functions

Reference. OpenStax Calculus Volume 1, Section 3.71

The Chain Rule for compositions, Equation (3.6.2) in Section 3.6, p. 38, gives us a rule for the
derivative of the inverse a function, because a function and its inverse are connected by composition:
For y = g(x) = f≠1(x) the inverse of x = f(y), their composition brings you back where you started:

f(g(x)) = x

The Chain Rule then connects their derivatives in a way that looks quite simple in Leibniz notation:
• the derivative of y = g(x) that we seek is gÕ(x) = dy/dx,
• the derivative of its inverse x = f(y) is f Õ(y) = dx/dy, so
• the derivative of their composition x = f(g(x)) is

1 = dx

dx
= dx

dy

dy

dx
:

• thus in words, the derivative of the inverse is the reciprocal of the derivative:

dy

dx
= 1

dx/dy
. (3.7.1)

4openstax.org/books/calculus-volume-1/pages/3-6-the-chain-rule
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This is just as you might guess from thinking of derivative notations like dy/dx as being arithmetic
with small quantities dx and dy!
However, we need to be careful with the fact that the function and its inverse have different input
arguments; x and y = f(x) respectively. The Lagrange "f Õ" notation makes the issue clearer:

gÕ(x) = 1
f Õ(y)

showing that this gives the derivative — a function of x — in terms of y instead. To get a formula in
terms of x, eliminate y by using y = g(x):

gÕ(x) = 1
f Õ(g(x))

Finally, to put it all in terms of the original function f whose derivative we already know,

[f≠1]Õ(x) = 1
f Õ(f≠1(x)) . (3.7.2)

Example 3.7.1 Derivative of the square root. Let’s start with an example where we can check the
answer: the derivative of the square root function y = g(x) = Ô

x. As will often be the case, the first
step is to rewrite in terms of a function that we already know how to differentiate, by solving for x:
x = f(x) = y2.
Using Leibniz notation first, dx/dy = d(y2)/dy = 2y so y = Ô

x has derivative

d
Ô

x

dx
= dy

dx
= 1

dx/dy
= 1

2y
.

Then to get this in terms of x, use y = Ô
x to get

d
Ô

x

dx
= 1

2Ô
x

,

as we have seen before. ⇤

3.7.1 A procedure using just the Chain Rule
Though these formulas can be useful, it is in many cases easier and safer to use a strategy of

1. "inverting" the equation y = f≠1(x) to the equation x = f(y) which involves only a function
we already know how to differentiate, then

2. differentiate both sides of that equation using the Chain Rule, and finally
3. solve a simple equation by division.

This procedure will be used in most examples from now on, and is the basis of an important
strategy introduced in Section 3.8, p. 45: Implicit Differentiation. (In fact, I often prefer avoiding the
memorizing of yet another formula by instead having a "procedure" or "algorithm" that break the
calculation into steps each of which uses facts and methods that I already know.)

3.7.2 The Power Rule (xr)Õ = rxr≠1 for any rational number r

The result above for the square root can be extended to compute the derivative of any root function
f(x) = q

Ô
x = x1/q for q a natural number, and that is the main step in verifying the power rule for

all rational powers. This will be done using the new strategy described above.
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Firstly, since the q-th root is the inverse of the q-th power, y = x1/q means that x = yq (so the inverse
function " q

Ô" disappears). Then differentiate both sides of this equation, noting well that the variable

is x, not y. The Leibniz notation is safest here: On one side,
dx

dx
= 1; on the other side,

d

dx
yq = d(yq)

dy

dy

dx
= qyq≠1 dy

dx

Equating these two, and inserting the formula for y,

1 = q(x1/q)q≠1 dy

dx
= qx1≠1/q dy

dx

Finally, solve for the desired derivative:

dy

dx
= d

dx
x1/q = 1

q
x1/q≠1,

confirming the Power Rule for this case of exponent 1/q.
Now we can get the result for xr where r = p/q is any rational number, by using the Chain Rule
again. First, xr = (x1/q)p, = up with u = x1/q. Then

d

dx
(xr) = dup

dx
= dup

du

du

dx
= dup

du

d(x1/q)
dx

and we already have the power rule for each of these factors:

d

dx
(xr) = pup≠1 1

q
x1/q≠1

Finally, get it all in terms of the variable x using u = x1/q and p/q = r:

d

dx
(xr) = p

q
(x1/q)p≠1x1/q≠1 = p

q
xp/q≠1/q+1/q≠1 = p

q
xp/q≠1 = rxr≠1,

as advertised.
In fact we will soon be able to verify the power rule for any real power, xa, so the above was
not essential, but gives some useful examples of using the Chain Rule and of this strategy for
differentiating inverses.
To complete the story of the Power Rule, we first need the derivative of the natural logarithm.

3.7.3 Derivative of the Natural Logarithm
The Chain Rule can also be used to compute the last of the derivative of the last basic elementary
functions, the logarithm. The text leaves this till Section 3.92 but again, I like to introduce all the
elementary functions as soon as possible.
For this we again use the above strategy of solving the equation so that the inverse function
temporarily "disappears" and we only have to deal with functions and operations (like composition)
that we already know how to handle; this will also be very useful in the next few sections.
Let u = ln x and solve for x, giving

x = eu = eln x

Differentiating both sides with respect to x and using the Chain Rule gives

1 = deu

dx
= deu

du

du

dx
= eu du

dx

Inserting eu = x and u = ln x, this says that x d
dx ln x = 1, so dividing by x gives

d

dx
ln x = 1

x
, = x≠1. (3.7.3)

2openstax.org/books/calculus-volume-1/pages/3-9-derivatives-of-exponential-and-logarithmic-functions
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Example 3.7.2 The derivative of any logarithmic function: (loga x)Õ = 1
ln a

1
x

. Though it is rarely
needed, the same method gets the derivative of any logarithmic function y = loga x; do this by
differentiating the "inverse form" x = ay . ⇤

3.7.4 Verification of the Power Rule for all Real Powers

To differentiate f(x) = xa for x > 0 and any real a, write x = e(ln x) so that xa = [e(ln x)]a = e(a ln x).
Now use the Chain Rule, with

• inside function u = a ln x, with derivative a · 1
x

;

• outside function eu, with derivative eu, = ea ln x = xa.
d(xa)

dx
= d(eu)

dx
= d(eu)

du

du

dx
= eu

3
a · 1

x

4
= xa · a

x
= axa≠1.

3.7.5 Derivatives of the Inverse Trigonometric Functions

We can compute the derivative of an inverse trigonometric function like y = arcsin x = sin≠1 x by
again using the strategy described in Subsection 3.7.1, p. 42 above of first "solving for x" to hide
the inverse function: writing an equation involving the original “non-inverse” function whose
derivative we know and then using implicit differentiation. Here we can use

x = sin y

One thing we must be careful about is that no trigonometric function is invertible on its entire natural
domain, so we limit the domain to make it satisfy the Horizontal Line Test. Here, we restrict the
domain of sin to [≠fi/2, fi/2] where it is increasing, cuting off the domain at the points x = ±fi/2
beyond which it flips to being decresing. Thus sin≠1 x has range [≠fi/2, fi/2], and domain [≠1, 1].

Implicit differentiation of x = sin y gives 1 = cos y · dy

dx
, so

dy

dx
= 1

cos y
, cos y ”= 0.

But we want this as a function of x, not y!
Using the identity sin2 y+cos2 y = 1 along with x = sin y, we get cos2 y+x2 = 1, so cos y = ±

Ô
1 ≠ x2.

The range of y values [≠fi/2, fi/2] ensures that cos y is not negative, so cos y =
Ô

1 ≠ x2 and

d

dx
arcsin x = 1Ô

1 ≠ x2 , ≠1 < x < 1.

The restriction on the x values is to avoid division by zero, and shows that arcsin x is not differentiable
at the endpoints of its domain, due to “vertical tangents” (as with

Ô
x at (0, 0)). This happens because

sine has horizontal tangents at the endpoints of its domain.
This is rather typical with inverse functions, because restricting the domain of a function to make it
satisfy the Horizontal Line Test often requires ending the domain at a point where the tangent is
horizontal. For example, the same happens when we cut off the domain of y = x2 at x = 0 to get its
inverse

Ô
x. It also happens with the inverses of cos, sec and csc.
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The Derivatives of Other Inverse Trig. Functions. Similar calculations give

d

dx
sin≠1 x = 1Ô

1 ≠ x2
d

dx
sec≠1 x = 1

x
Ô

x2 ≠ 1
d

dx
cos≠1 x = ≠ 1Ô

1 ≠ x2
d

dx
csc≠1 x = ≠ 1

x
Ô

x2 ≠ 1
d

dx
tan≠1 x = 1

1 + x2
d

dx
cot≠1 x = ≠ 1

1 + x2

Checkpoint 3.7.3 Reciprocals vs inverses. Differentiate y = 1
sin≠1 x

, being careful with the two
uses of superscript -1!

Checkpoint 3.7.4 Compositions vs products. Differentiate f(x) = x arctan
Ô

x, being careful to
distinguish products from compositions.

Exercises

Study Calculus Volume 1, Section 3.73; in particular Examples 61 to 67, Checkpoint items 43 to 46,
and Exercises 265, 267, 269, 271, 279, and 291.
Hint for Exercise 279. One approach is to use the "equation solving" strategy of making the inverse
function disappear: solve for sin(y) = x2 and then differentiate each side of that equation.

3.8 Implicit Differentiation

References.
• OpenStax Calculus Volume 1, Section 3.81

• Calculus, Early Transcendentals by Stewart, Section 3.5.
In Section 3.7, p. 41, Derivatives of Inverse Functions, we computed the derivatives of y = ln x and
y = arcsin x functions by using the fact that they are the inverses of the natural exponential and
sin functions respectively: then we got equations for their values y in terms of those more familiar
functions, ey = x and sin y = x. That allowed us to use the Chain Rule to get a formula for dy/dx in
terms of the derivative of those original functions.
These are examples of the strategy of implicit differentiation, where the function to be differentiated
is given implicitly as the solution of an equation, rather than by an explicit formula.
Here we will see other uses for this strategy, like computing the slope at a point on a curve when the
curve is given by an equation, not as the graph of a known function.
Looking forward, this strategy will be useful in Chapter 4, p. 50; in particular, Section 4.1, p. 50

Checkpoint 3.8.1 Find the tangent line to point P (3, ≠4) on circle x2 + y2 = 25. Do this two ways:
1. By finding an explicit equation y = f(x) for the curve.
2. by differentiating the equation

x2 + [f(x)]2 = 25
without using a formula for f(x).

Checkpoint 3.8.2 Tangent to a curve that cannot be expressed as y = f(x). Find the tangent line to
the point P (1, 1) on the curve 2x7 + y7 = 3xy.

3openstax.org/books/calculus-volume-1/pages/3-7-derivatives-of-inverse-functions
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Procedure for Implicit Differentiation, with example x2 + xy2 + ey = 8. To find a formula for the
derivative of a function y = f(x) given implicitly by an equation involving x and y:

1. Differentiate each side of the equation.
Note that every time y appears, you must use the Chain Rule.

2x +
3

y2 + x2y · dy

dx

4
+ ey · dy

dx
= d

dx
8 = 0.

(The parentheses are around the derivative of xy2, which also requires the product rule.)

2. Add and subtract to get terms with factor
dy

dx
at left, all others at right.

2xy · dy

dx
+ ey · dy

dx
= ≠2x ≠ y2.

3. Collect the common factor
dy

dx
present in every term at left.

dy

dx
(2xy + ey) = ≠(2x + y2).

4. Divide out to get a formula for
dy

dx
, which is the desired answer.

dy

dx
= ≠ 2x + y2

2xy + ey
.

Note that to use this formula, you need both coordinates of a point of the curve given by the original
equation, P (x0, y0), not just an x value.

Example 3.8.3 Find
dy

dx
for sin(x + y) = y2 cos x.

Hint. Note that the “hidden” Chain Rule comes up in two places,
d

dx
(y2) and

d

dx
(x + y).

Solution.
1. The chain rule at left and product rule at right give:

cos(x + y) d

dx
(x + y) = d

dx
(y2) cos x + y2 d

dx
(cos x),

so
cos(x + y)

3
1 + dy

dx

4
= 2y

dy

dx
cos x ≠ y2 sin x.

2. Moving terms with factor
dy

dx
to the left, others to the right,

dy

dx
cos(x + y) ≠ 2y

dy

dx
cos x = ≠y2 sin x ≠ cos(x + y)

3. Gathering the common factor
dy

dx
at left (and a factor ≠1 at right),

dy

dx
[cos(x + y) ≠ 2y cos x] = ≠(y2 sin x + cos(x + y)).

4. Dividing out,
dy

dx
= ≠ y2 sin x + cos(x + y)

cos(x + y) ≠ 2y cos x
.
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⇤

Higher Derivatives: No Further Implicit Differentiation Needed! Once a derivative has been
found by implicit differentiation, you can compute the second and higher derivatives with no further
implicit differentiation:

Example 3.8.4 Find yÕÕ if x4 + y4 = 16.

Solution. First, implicit differentiation gives
dy

dx
= ≠x3

y3 .

Then the second derivative is
d2y

dx2 = d

dx

dy

dx
= ≠ d

dx

x3

y3 , and the quotient rule combined with the

hidden chain rule result
d(y3)

dx
= d(y3)

dy

dy

dx

gives
d2y

dx2 = ≠3x2y3 ≠ x33y2dy/dx

(y3)2 .

Finally, inserting the above result for dy/dx gives

d2y

dx2 = ≠3x2y3 ≠ x33y2(≠x3/y3)
y6 , = ≠3x2y4 + 3x6

y7 .

⇤

Exercises

Study Calculus Volume 1, Section 3.82; in particular Examples 68, 69, 71, 72, both Checkpoint items
and Exercises 301, 303, 305, 307, 311, 316, 325, and 329.

3.9 Derivatives of Exponential and Logarithmic Functions (and
Logarithmic Differentiation)

References.
• OpenStax Calculus Volume 1, Section 3.91

• Calculus, Early Transcendentals by Stewart, Section 3.6.
In this course, we have already seen and worked with the derivatives of exponential functions (in
Section 3.6, p. 38 and of logarithmic functions (in Section 3.7, p. 41). Thus for us, the first part of this
section of the text is just for review and further worked examples and homework exercises, and I
will just summarise briefly with some examples. I suggest looking at Theorems 14, 15 and 26 in the
text to review the formulas, and its Examples 74, 75, 77, and 79.
The last part of this section introduces a useful new technique, Logarithmic Differentiation, which is a
use of implicit differentiation to simplify differentiation of functions that involve a mix of products,
quotients and powers.

Derivatives of exponential and logarithmic functions (recap). The natural exponential function
has derivative

d

dx
ex = ex. (3.9.1)
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and more generally
d

dx
ax = (ln a)ax, a > 0 (3.9.2)

The natural logarithm function has derivative

d

dx
ln x = 1

x
, x > 0 (3.9.3)

Further, for x < 0, (ln |x|)Õ = (ln(≠x))Õ = 1
≠x

· (≠1) = 1
x

, so

d

dx
ln |x| = 1

x
, x ”= 0 (3.9.4)

Checkpoint 3.9.1 Differentiate y = ln(x3 + 1).

Checkpoint 3.9.2 Find
d

dx
ln(sin x).

Always remember to look simplify first, before differentiating:

Checkpoint 3.9.3 Differentiate f(x) =
Ô

ln x.

Here even more, simplify first!

Checkpoint 3.9.4 Find
d

dx
ln x + 1Ô

x ≠ 2
.

Two Useful Derivative Formulas. The Chain Rule gives

d

dx
ln f(x) = df/dx

f(x) , or (ln u)Õ = uÕ

u
. (3.9.5)

One common special case is when function u is linear:

d

dx
ln(mx + a) = m

mx + a
, (3.9.6)

and even more specifically,
d

dx
ln(x + a) = 1

x + a
. (3.9.7)

Warning: This is the only case where the derivative of ln f(x) is 1/f(x)!
Having f Õ(x) = 1 is the key.

Example 3.9.5 Verify that the derivative of ln(| sec x|) is tan x. Note that sec x = 1
cos x

and
ln(1/u) = ≠ ln u, so

ln(| sec x|) = ln
3 1

| cos x|

4
= ≠ ln(| cos x|).

Then using the Chain Rule with u = cos x,

d

dx
ln(| sec x|) = ≠ d

du
(ln |u|) · du

dx
= ≠ 1

u
· (≠ sin x) = sin x

cos x
= tan x.

⇤

Logarithmic Differentiation. Logarithms have the nice property of converting products to sums,
quotients to differences and exponentials to products. The leads to the method of logarithmic
differentiation, which can simplify the differentiation of functions built of products, quotients and
exponentials.
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Example 3.9.6 Compute
dy

dx
for y = x3

(2x + 3)5 . For y = x3

(2x + 3)5 , ln y = ln x3

(2x + 3)5 = ln(x3) ≠

ln((2x + 3)5) = 3 ln x ≠ 5 ln(2x + 3).

The left side has derivative
d

dx
ln y = d

dy
(ln y) dy

dx
= 1

y

dy

dx
.

Using Eq. (3.9.6), the right side has derivative

d

dx
[3 ln(x) ≠ 5 ln(2x + 3)] = 3 1

x
≠ 5 2

2x + 3 = 3
x

≠ 10
2x + 3 .

Comparing the two sides,
1
y

dy

dx
= 3

x
≠ 10

2x + 3 .

Finally, multiplying each side by y,

dy

dx
=

3 3
x

≠ 10
2x + 3

4
y =

3 3
x

≠ 10
2x + 3

4
x3

(2x + 3)5 .

⇤
The working of this example reveals a strategy for usign logrutmns to simplify teh differentiation
of a function y = f(x) when the formuals for is butrok fomr products quotients, powers and
expontiations.

1. First, take the derivative of both sides, getting ln(y) = ln(f(x))
2. Next, a critical step: simplify the right-hand side as much as possible, using the properties of

logarithms; in particular:
• ln(ab) = ln(a) + ln(b),
• ln(a/b) = ln(a) ≠ ln(b), and
• ln(ab) = b ln(a).

(Also, as usual, convert roots to fractional powers!) This will give something like

ln y = ln(f1(x)) + · · ·

3. Differentiate both sides of the equation, with much use of the rule
d

dx
(ln(u)) = 1

u

du

dx
; This

gives an equation that starts
1
y

dy

dx
= · · ·

4. Multiply both sides by the quantity y = f(x), the original function being differentiated.
Also look at Examples 81 to 83 in Section 3.9 of the text2.

Exercises

Study Calculus Volume 1, Section 3.93; in particular Examples 74, 75, 77, 78, 81 and 82, Checkpoint
54, and Exercises 333, 339, 347, 351 and 353.
We in particular emphasize the last topic of Logarithmic Differentiation, using the strategy of simplify-
ing functions of the form log(. . . ) using the laws of logarithms like log(ab) = log(a) + log(b).

2openstax.org/books/calculus-volume-1/pages/3-9-derivatives-of-exponential-and-logarithmic-functions
3openstax.org/books/calculus-volume-1/pages/3-9-derivatives-of-exponential-and-logarithmic-functions
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Chapter 4

Applications of Differentiation

This chapter introduces the concept of the derivative, and efficient rules for calculating the deriva-
tives of functions.
Note: The topic Newton’s Method will probably be omitted, so for now at least the notes for the
corresponding Section 4.9 are just references and a brief study guide.

References.
• OpenStax Calculus Volume 1, Chapter 4.1

• Calculus, Early Transcendentals by Stewart, Chapter 3, Sections 9 and 10 and Chapter 4, Sections
1–5 and 7–9, and also Section 2.6 (for horizontal asymptotes)

4.1 Related Rates

References.
• OpenStax Calculus Volume 1, Section 4.11

• Calculus, Early Transcendentals by Stewart, Section 3.9.
In many physical situations, several related quantities change with time, such as the pressure P and
volume V of a fixed amount of a gas at a fixed temperature (PV = c.) When the changing quantities
are related by a known formula, their rates of change are also related, so that a measurement of one
rate of change can be used to determine the other. In the above example, if the applied pressure is
increased at a given rate, one can predict how fast the volume will be decreasing.
Since the rates of change are with respect to the variable time, this leads to implicit differentiation
of the formula relating the two quantities. For example, the above equation could be spelt out as
P (t) · V (t) = c, with c a known constant.

Strategy for Related Rates Problems. Firstly, what identifies a related rates problem is that you
are asked to find one rate of change (a derivative, such as a velocity) using information about one or
more other rates of change (other derivatives), and you often have that rate of change information only
at one time, not as functions of time. Most often the independent variable is time, t, so I assume that
here. In the following strategy, always keep track of your main goal: to compute the derivative of a
certain variable with respect to t.Keep your eye on that “key” variable!

1openstax.org/books/calculus-volume-1/pages/4-introduction
1openstax.org/books/calculus-volume-1/pages/4-1-related-rates
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Strategy for Related Rates Problems.
1. Read all the given information carefully, and identify the main goal: What is the quantity whose

rate of change you wish to know?
2. Give names to all relevant variables; in particular name variable quantities whose rate of change is

either wanted or is known. (Constants usually do not need names.)
3. Draw a diagram relating all the variables and other known values, if appropriate.
4. Describe the rate of change sought as the derivative of a certain variable.
5. Seek an equation (or several equations) relating just the relevant variables. That is, variables

whose derivatives are either known or wanted. Make sure that these equations are true at all times,
not just at one moment.

6. Differentiate the equation[s] with respect to time. This is implicit differentiation, with “hidden”
compositions.

7. Substitute known values into the equation[s] got by differentiating. At this stage only, the values
might only be valid at the one time of interest.

8. Solve the resulting equation[s] for the desired rate of change (derivative). It might be necessary
to also substitute all known values into the original equations (from step 5), and use this larger
collection of equations to solve for the desired rate of change.

9. Answer the original question! That is, relate your mathematical results back to the question
asked, preferably as a verbal statement of the result. Put back in physical units, and interpret
the sign of the derivative as saying whether the quantity is increasing or decreasing.

Example 4.1.1 Inflating a balloon. Air is being pumped into a spherical balloon at a rate of 100cm3/s.
How fast is the radius increasing when the diameter is 50cm?
Writing V = V (t) for the volume, a function of time, and r = r(t) for the radius:

• What we want to know is dr/dt at a certain moment.
• what we know is that dV/dt = 100cm3/s and V = 4

3 fir3 at all times, and at that moment,
r = 50/2 cm (half the diameter.)

How do we relate these two derivatives? The equation relating the two relevant variables is

V (t) = 4
3fi[r(t)]3, or just V = 4

3fir3.

This can be differentiated with respect to time, involving the Chain Rule, or implicit differentiation
of r with respect to t:

dV

dt
= dV

dr

dr

dt
= 4fir2 dr

dt
.

At the moment of interest, r = 25 and dV/dt = 100, and substituting in these numbers: 100 =
4fi(25)2 dr

dt
, so

dr

dt
= 100

4fi(25)2 = 1
25fi

¥ 0.0127cm/s.

We could also solve for the unknown derivative at any moment in terms of known quantities:

dr

dt
= dV/dt

4fir2 .

⇤
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Exercises

Study Calculus Volume 1, Section 4.12; in particular the Problem Solving Strategy, all Examples and
Checkpoints, and Exercises 1, 3, 5, 7, 9, 17, and 25.

4.2 Linear Approximations and Differentials

References.
• OpenStax Calculus Volume 1, Section 4.21

• Calculus, Early Transcendentals by Stewart, Section 3.10.
When we first introduced the tangent line to a curve at a point, one characteristic was that this
appears to be the line that is closest to the curve itself when one looks near that point: zooming
in towards that point, the curve looks more and more like that tangent line. This means that the
tangent line can be useful as an approximation of the curve, and thus can be used to approximate
the value of a function from its value at one point plus its derivative at that point.

The tangent line to y = f(x) at x = a. At the point P (a, f(a)) on the curve y = f(x), the tangent
line has slope m = f Õ(a), and is

y = f(a) + f Õ(a)(x ≠ a) (4.2.1)

Since this line is close to the curve at least when x is close to a, this gives

f(x) ¥ f(a) + f Õ(a)(x ≠ a) (4.2.2)

as the linear approximation or tangent line approximation of f at a. The linear function occurring
here,

L(x) = f(a) + f Õ(a)(x ≠ a) (4.2.3)

is called the linearization of f at a.
Note well: f(a) and f Õ(a), not f(x) and f Õ(x)! Once the point P (a, f(a)) is chosen, these are just
numbers, with the only variable in L(x) being the x in (x ≠ a).

Example 4.2.1 At 10am, a car has traveled 200 miles since the start of the day and its speed is 55mph.
Use the linearization of the function giving distance traveled in terms of time to estimate the total
distance traveled by a slightly later time like 10:15am.
With s = f(t) where t is time (in hours since midnight) and s is distance traveled in miles, we know
that f(10) = 200 and f Õ(10) = 55. Thus the linearization at t = 10 is

L(t) = 200 + 55(t ≠ 10).

For example, time 10:15 is t = 10.25, so the linear approximation of total distance traveled by then is

L(10.25) = 200 + 55(10.25 ≠ 10) = 213.75 miles.

⇤

Linearization: Assuming Constant Rate of Change. This procedure should be familiar: it is
approximation by assuming that the speed stays constant at the given value of 55, or at least close
to that speed. More generally, linear approximation is the assumption that the rate of change is
constant, or at least does not change much when the independent variable is changed by only small
amount. This is the same idea as used when a population’s size in the near future is estimated using
the population’s current size and rate of growth.

2openstax.org/books/calculus-volume-1/pages/4-1-related-rates
1openstax.org/books/calculus-volume-1/pages/4-2-linear-approximations-and-differentials

https://openstax.org/books/calculus-volume-1/pages/4-1-related-rates
https://openstax.org/books/calculus-volume-1/pages/4-2-linear-approximations-and-differentials


CHAPTER 4. APPLICATIONS OF DIFFERENTIATION 53

Linearization to Evaluate Functions Approximately. Sometimes it is easy to find out about a
function at one value of its argument, and we can use this information to approximate it at other
arguments, where the exact calculation is harder:

Checkpoint 4.2.2 The linearization of f(x) =
Ô

x + 3 at a = 1. Find the linearization of f(x) =Ô
x + 3 at a = 1, and use this to approximate

Ô
3.98 and

Ô
4.05.

Checkpoint 4.2.3 A calculator exercise based on the above. For which values of x is the above
linear approximation accurate to within 0.1?

sin x ¥ x For Small Angles. It is often useful to have an approximation of sin x for small angles.
For example in optics, angles of only a few degrees are often involved, and then x is smaller than
about 0.1 (in radians). Thus complicated optical formulas involving trig. functions and their inverses
are accurately approximated by far simpler linear formulas. This approximation is done with the
linearization of f(x) = sin x at a = 0, where f Õ(0) = cos 0 = 1. Since sin 0 = 0, we get the very simple
approximation

sin x ¥ L(x) = x.

This is one reason why radian measure is convenient!

Differentials: dx, dy, etc. The Leibniz notation
dy

dx
came from the intuition that the slope of curve

y = f(x) is given by the ratio of a very small difference dx in the value of argument x to the very
small difference dy that this causes in the value of y = f(x). These very small differences were called
differentials, and the subject of derivatives is sometimes called differential calculus, meaning the
subject of calculating with differentials. This intuitive, approximate idea can be made more precise
using linearization: for a function y = f(x),

• any change in the independent variable x is denoted dx, a differential. (Likewise dt if the
independent variable is t, etc.)

• the resulting linear approximation of the change in the y value is called the differential dy,
given by

dy = f Õ(x) dx.

• That is, dy = L(x + dx) ≠ L(x), the change in the value of the linearization of f at x.
Note that this also means that the ratio of the differentials is

dy

dx
= f Õ(x),

so the Leibniz notation is now a genuine fraction!

Example 4.2.4 (Example 4.2.1 above revisited). In Example 1, the differential for the independent
variable t is the change in time, dt = 0.25, and the resulting differential in the independent variable
is

ds = sÕ(10)dt = 55 · 0.25 = 13.75,

the estimated change in position. ⇤

Example 4.2.5 (Checkpoint 4.2.2 revisited). In Example 2 with f(x) =
Ô

x + 3 linearized at 1, the
values 3.98 and 4.05 corresponding to differential in x of dx = ≠0.02 and dx = 0.05. The differential
in the value of the function is

dy = dx

2
Ô

1 + 3
= dx

4 ,

giving dy = ≠0.005 and dy = 0.0125 respectively: the estimated changes in the value of the function
from its value of 2 when x = 3. ⇤
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Differential vs Difference. For the independent variable, a differential dx is the same thing as the
difference denoted �x: the change in the value of x. However for a dependent variable y = f(x),
�y = f(x + �x) ≠ f(x) is the exact change in the value of y, while dy = f Õ(x)dx is the linear
approximation of this change.

Checkpoint 4.2.6 For y = f(x) = x3 + x2 ≠ 2x + 1, compare the values of �y and dy when x changes:
• from 2 to 2.05
• from 1 to 0.99

Estimating the Effects of Measurement Error. One important use of differentials and linearization
in experimental science is estimating the effect of error in measuring one quantity on the error in
some other quantity computed from the measured value.

Example 4.2.7 Accuracy in computing the volume of a sphere fom its diameter. The radius of a
sphere has been measured and found to be 21 cm to the nearest mm, so the measurement error is at
most 0.05 cm. Use differentials to estimate the maximum error in the value of the volume got by
using this measured value for the radius.
The exact error is �V , where V = 4

3 fir3; we approximate this with the differential dV = 4fir2dr, =
4fi(21)2dr.
The actual radius can vary from 21 by up to 0.05 in either direction, so all we know is that ≠0.05 Æ
dr Æ 0.05, or |dr| Æ 0.05. This tells us that ≠4fi(21)20.05 Æ dV Æ 4fi(21)20.05 or

|dV | =
----
dV

dr

---- · |dr| = 4fi(21)2|dr| Æ 4fi(21)20.05 ¥ 277 cm3.

Exact calculation gives ≠276.4 Æ �y Æ 277.7, so this is a good error estimate. ⇤

Exercises

Study Calculus Volume 1, Section 4.22 including all Examples and Checkpoints and a few Exercises
from each of the ranges 50–55, 62–67, 68–71, 72–77, 78–83, 84–86; for example, Exercises 49, 51, 52, 57,
69, 73, 79 and 84.

4.3 Maxima and Minima

References.
• OpenStax Calculus Volume 1, Section 4.31

• Calculus, Early Transcendentals by Stewart, Section 4.1.
Questions of optimization are one of the two most important applications of calculus that we will
see this semester. (The other is finding a function from information about its rate of change, coming
up in Section 4.10, p. 69 and Chapter 5, p. 72) For example, choosing the shape of a product that
minimizes its weight or cost, or that maximizes strength for a given weight, or finding a route that
minimizes travel time, or the price at maximizes profit.
We have already seen one key idea intuitively and graphically: the graph of function tends to have a
low point or a high point where the derivative is zero, and not where the derivative is non-zero. We
now investigate carefully questions like:

• When does a function have an overall minimum or maximum value?
2openstax.org/books/calculus-volume-1/pages/4-2-linear-approximations-and-differentials
1openstax.org/books/calculus-volume-1/pages/4-3-maxima-and-minima

https://openstax.org/books/calculus-volume-1/pages/4-2-linear-approximations-and-differentials
https://openstax.org/books/calculus-volume-1/pages/4-3-maxima-and-minima


CHAPTER 4. APPLICATIONS OF DIFFERENTIATION 55

• How can we find these extreme values of a function, and the arguments of the function that
give them?

Checkpoint 4.3.1 Try to draw a graph where the minimum value occurs at a point P (a, f(a)), where
it is not true that f Õ(a) = 0.

Checkpoint 4.3.2 Try to draw a graph where f Õ(a) = 0 for some a, but the value f(a) is not a
minimum or maximum, even compared to nearby points on the graph.

Definition 4.3.3 Global Extrema.
A function has an absolute maximum, or global maximum, at c if f(c) Ø f(x) for all x in its domain
D. The value f(c) is the maximum value of f on domain D.
An absolute (global) minimum and minimum value are defined similarly. Collectively, global
maxima and minima are global extrema, and the values of f there are extreme values. ⌃
Definition 4.3.4 Local Extrema.
A function has a local maximum, or relative maximum, at c if f(c) Ø f(x) for x near c. That is, on
some open interval (a, b) containing c, f(x) is never greater than f(c).
The value of the function at a local maximum is a local maximum value.
Local (relative) minima, extrema and such are defined similarly. ⌃
Checkpoint 4.3.5 Find the local [relative] and global [absolute] minima and maxima of the function
f(x) = cos x, and the points at which they occur.

Checkpoint 4.3.6 Try to find the locations of the global extrema and corresponding extreme values
for f(x) = x2.

Checkpoint 4.3.7 Do the same for g(x) = x3.

Checkpoint 4.3.8 Find the global extrema of f(x) = x2 with domain D = [≠1, 2].
Find all local extrema for this function.

Checkpoint 4.3.9
1. Using a graph, try to find the local extrema for f(x) = 3x4 ≠16x3 +18x2 on domain D = [≠1, 4].
2. Then find the global extrema of this function.
3. Is the derivative of f zero at every local extremum?
4. Where are the local extrema with f Õ(x) ”= 0?

Theorem 4.3.10 The Extreme Value Theorem. If function f is continuous on a closed interval [a, b], then
it attains a global maximum value f(c) and a global minimum value f(d) at some numbers c and d in this
interval.
Note that either extreme value can possibly occur at more than one number, so that c and d are not
always unique.

Theorem 4.3.11 Fermat’s Theorem. If function f has a local extremum on an open interval at number c
and if f Õ(c) exists, then f Õ(c) = 0.

Note well:
• f Õ(c) might not exist at a local extremum.
• This refers to open intervals, so excluding endpoints: endpoints are also always candidate

locations for extrema.

Checkpoint 4.3.12 Use f(x) = x3 to show that having f Õ(c) = 0 does not always give a local
extremum at x = c.
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Checkpoint 4.3.13 Use f(x) = |x| to show that not all local extrema on open intervals occur at points
where f Õ(c) = 0.

Checkpoint 4.3.14 Use f(x) = x on domain D = [0, 1] to show another way that local extrema can
occur.
The above three exercises show that f Õ(x) = 0 is only part of the puzzle!

Definition 4.3.15 Critical Points, Values, and Numbers.
A critical number of a function f is a value c in its domain such that either f Õ(c) = 0 or f Õ(c) does
not exist.
A critical value is the value f(c) of a function at a critical number c.
A critical point is a point P (c, f(c)) on the graph of function f for c a critical number. ⌃
Loosely, a critical point is a point on the graph where the curve does not either rise or fall as it passes through
the point, where rise or fall of the curve is indicated by a rising or falling tangent line.

Checkpoint 4.3.16 Find the critical points of f(x) = x3/5(x ≠ 4).

Fermat’s Theorem can now be rephrased this way:

Theorem 4.3.17 (Where the extrema are, and are not). Local extrema can occur only at critical points
and end points.
Thus, if f has a non-zero derivative at a point that is not an end point, that point does not give a local
extremum.
Note: the “open interval” part of the original statement of Fermat’s Theorem meant that it did not
say anything about end points. Typically a function has only a finite number of critical points (and
of end points), so once these are found, working out which of them give global minima or maxima is
just a matter of computing and comparing the values at those points. This is a lot better than having
to check at the infinite number of points in the domain of f !
Checking if a point is a local minimum or maximum sometimes requires a few more ideas, coming
in the next few sections.

The Closed Interval Method for Finding Global Extrema. The results above can be turned into a
procedure for finding and classifying the extrema of a continuous function f on a closed bounded
interval [a, b].

1. Compute the derivative of f , and find where it is zero or does not exist, plus the end points.
2. Find the value of f at each of these points.
3. Compare these values: the largest and smallest are the global maximum and minimum of f .

Exercises

Study Calculus Volume 1, Section 4.32; in particular the Problem Solving Strategy, all Examples and
Checkpoints, and a few Exercises from each of the ranges 91–98, 100–103, 104–107, 108–117, 118–128
and 129–134. (Some suggested selections are Exercises 91, 93, 97, 101, 107, 109, 119 and 129.)

4.4 The Mean Value Theorem

References.
• OpenStax Calculus Volume 1, Section 4.41

2openstax.org/books/calculus-volume-1/pages/4-3-maxima-and-minima
1openstax.org/books/calculus-volume-1/pages/4-4-the-mean-value-theorem
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• Calculus, Early Transcendentals by Stewart, Section 4.2.
The Mean Value Theorem is the intuitive fact that the slope between the endpoints of a curve is a
mean (average) of the slopes at the various points along that curve, and so is between the extreme
values of the tangent slopes, so that this secant slope equals the tangent slope at at least one point. A
few details are needed to make this precise:

Theorem 4.4.1 The Mean Value Theorem, or MVT. If a function f is continuous on a closed interval
[a, b] and is also differentiable there except possibly at the endpoints, then for at least one number c in (a, b),
the average slope over the whole interval equals the tangent slope:

f Õ(c) = f(b) ≠ f(a)
b ≠ a

That is, the change �x = b ≠ a over the interval produces a change

f(b) ≠ f(a) = f Õ(c)(b ≠ a), or �y = f Õ(c)�x.

We will verify the MVT for all cases soon, but for now:

Checkpoint 4.4.2 Verify the Mean Value Theorem for f(x) = x3 ≠ x, a = 1, b = 3.

The Case of Zero Mean Slope: Rolle’s Theorem. The MVT is even more intuitive in the special
case when the value at each endpoint is the same, so the secant line is horizontal: the MVT then says
that f Õ(c) = 0 somewhere in between.

Theorem 4.4.3 Rolle’s Theorem. If a function f is continuous on a closed interval [a, b] and differentiable
there except possibly at the endpoints, and if f(a) = f(b), then f Õ(c) = 0 for at least one number c in the
open interval (a, b).

This has to be true basically because f must have a global maximum or minimum at some point c
between a and b, and then Fermat’s Theorem in Section 4.1, p. 50 says that f Õ(c) = 0. The only way
that Fermat’s Theorem might fail to give f Õ(c) = 0 is that the maximum and minimum both occur at
the endpoints. But then the common endpoint value is both the global maximum and the minimum
so f is constant, making f Õ(c) = 0 for any c!

Example 4.4.4 If an object’s position s is a differentiable function of time t, s = f(t), and the object is
at the same position at two different times a and b, then Rolle’s Theorem shows that the velocity
v = sÕ is zero at some intermediate time: to return to its starting point, an object moving on a line must be
stationary at some intermediate time.
Note that this confirms an intuition already used in Section 3.7, p. 41. ⇤

Checkpoint 4.4.5 Prove that equation x3 + x ≠ 1 = 0 has exactly one solution. Use the Intermediate
Value Theorem to show that there is at least one solution, and then Rolle’s Theorem to show that
there is not more than one.

See Example 4 in Section 4.4 of the text,2 which introduces the following intuitive physical version
of the MVT:

Average Velocity. An intuitive application is that the average velocity over an interval of time
must equal the instantaneous velocity at at least one moment: your speed cannot always be above
average or always below average, and to swap between above and below, it must at some moment
be exactly average. This comes from letting distance traveled by time t be s = f(t) so the average

velocity between times a and b is vave = f(b) ≠ f(a)
b ≠ a

, and at some intermediate time t = c, the

instantaneous velocity is vinst = f Õ(c) = vave.
2openstax.org/books/calculus-volume-1/4-4-the-mean-value-theorem
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Checkpoint 4.4.6 Suppose that f(0) = ≠3 and f Õ(x) Æ 5 for all x. How large can f(2) possibly be?

Verifying the MVT in all cases. It can now be seen that the MVT is true in all cases by simply
“twisting” the graph to get a horizontal secant line. For f satisfying the conditions of the MVT and

with m = f(b) ≠ f(a)
b ≠ a

its mean slope, the new function

g(x) = f(x) ≠ m(x ≠ a)

has the same value f(a) at each end point, and Rolle’s Theorem gives gÕ(c) = 0 somewhere in
between. Since f(x) = g(x) + m(x ≠ a), we get the claimed result that

f Õ(c) = gÕ(c) + m = 0 + m = f(b) ≠ f(a)
b ≠ a

.

Zero Derivative Means Constant on an Interval. The MVT also helps us to find a function from
information about its rate of change. For now, we deal with just the simplest case of zero rate of
change:

Theorem 4.4.7 If a function has derivative equal to zero at every point of an open interval (a, b), it is constant
on that interval. This also applies to infinite intervals like (≠Œ, Œ). That is, on intervals, “zero derivative
everywhere” means “constant everywhere”.
Proof. This is true because if the function were not constant, there would be a pair of numbers – < —
in the interval with f(–) ”= f(—), and then the MVT applied to this smaller closed interval [–, —]
would give a number c with derivative f Õ(c) = (f(—) ≠ f(–)/(— ≠ –) ”= 0, which would contradict
what we know about f Õ. ⌅

Getting f from f Õ, part I. The above says that the obvious functions with derivative f Õ = 0 are
the only functions with this derivative, at least with domain being an interval. This has another
important consequence:

Theorem 4.4.8 If two functions have equal derivatives at each number in an interval, they differ by a constant
on that interval.
That is, if f Õ(x) = gÕ(x) for all x in (a, b), then for some constant C, f(x) = g(x) + C.

Checkpoint 4.4.9
(a) Find every function whose derivative is cos x.
(b) Find every function whose derivative is 1/x. Be careful!

Checkpoint 4.4.10 Verify the identity arcsin x + arccos x = fi/2. Do this two ways:
1. With a diagram and trigonometry.
2. Using Theorem 4.4.8, p. 58 above.

Exercises

Study Calculus Volume 1, Section 4.43. Pay particular attention the Corollaries of the Mean Value
Theorem in the second half: Theorems 6, 7 and 8: these will be extremely useful for applications later
in this chapter.
Study Examples 14 and 15, Checkpoint 14, and a selection from Exercises 148–150, 152–156, 161–166,
167–169, 182–184, and 190–193.
Here I group the exercises in ranges by "question type", so start by trying one or two from each of the
six ranges. For example, some suggested selections are Exercises 149, 153, 161, 169, 182 and 192.

3openstax.org/books/calculus-volume-1/pages/4-4-the-mean-value-theorem
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4.5 Derivatives and the Shape of a Graph

References.
• OpenStax Calculus Volume 1, Section 4.51

• Calculus, Early Transcendentals by Stewart, Sections 4.3 and 4.5.
We have seen a number of connections between derivatives and the shape of a graph, and these can
be useful in both directions: using derivatives to understand how the graph of a function will look,
and using the graph to summarize and identify useful information about a function, such as the
locations of its extrema.
For example, we have seen that positive derivatives are associated with function values that increase
as the argument increases, zeros of the derivative are associated with minimum and maximum
values, and the second derivative is associated with whether the curve is bending up or down.

f Õ Tells Where a Curve Increases and Where it Decreases. First let’s make precise some intuitive
concepts:

Definition 4.5.1 Increasing/Decreasing. Function f is increasing on an interval if for any numbers
c < d in that interval, f(c) < f(d).
Likewise f is decreasing on an interval if f(d) < f(c) for all such c < d. ⌃
Theorem 4.5.2 Increasing/Decreasing Test.

1. If f Õ(x) > 0 throughout an interval, then f is increasing on that interval.
2. If f Õ(x) < 0 throughout an interval, then f is decreasing on that interval.
3. Only at critical points can a function change between increasing and decreasing ...
4. ... but not every critical point gives a change between increasing and decreasing.

Proof. The proofs of (a)-(c) are based on f(b) ≠ f(a) = f Õ(c)(b ≠ a), as given by the Mean Value
Theorem.
Item (d) is shown by examples like f(x) = x3. ⌅
Checkpoint 4.5.3 Make sketches illustrating each of the above four statements.

Checkpoint 4.5.4 Find where the function f(x) = 3x4 ≠ 4x3 ≠ 12x2 + 5 is increasing, and where it is
decreasing.

Which Critical Points Are Local Minima? Local Maxima? Increasing/decreasing behavior can
only change at critical points, and how it changes (if at all) determines whether a critical point is a
local minimum or local maximum (or neither):

Theorem 4.5.5 The First Derivative Test for Local Extrema. Consider c a critical number of a continuous
function f (not an endpoint):

1. If f Õ changes from positive to negative at x = c (as x increases), then f has a local maximum at c.
2. If f Õ change from negative to positive at x = c, then f has a local minimum at c.
3. If f Õ does not change sign at c (i.e. it has the same sign for x near c to either side), then there is no local

extremum at c.
All of these results are intuitive when one sketches the situations described, and are proved by the
increasing/decreasing properties given by the signs of the derivatives.

Checkpoint 4.5.6 Make sketches illustrating all three cases above.
1openstax.org/books/calculus-volume-1/pages/4-5-derivatives-and-the-shape-of-a-graph
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Checkpoint 4.5.7 Find the local minimum and maximum points of

f(x) = 3x4 ≠ 4x3 ≠ 12x2 + 5.

Checkpoint 4.5.8 Find all local minima and maxima of

g(x) = x + 2 sin x, domain 0 Æ x Æ 2fi.

Using f Õ at Endpoints. At endpoints we only need to look to one side:

Theorem 4.5.9 The First Derivative Test at Endpoints.
1. If c is a left endpoint of an interval in the domain and f Õ(x) > 0 nearby, then f has a local minimum at

c.
2. If c is a left endpoint and f Õ(x) < 0 nearby, then f has a local maximum at c.
3. If c is a right endpoint, the above are reversed: f Õ > 0 gives a local maximum, f Õ < 0 gives a local

minimum.
Checkpoint 4.5.10 Make sketches illustrating all four cases.

Checkpoint 4.5.11 If the function f(x) = 3x4 ≠4x3 ≠12x2 +5 has domain [≠2, 3], check the endpoints
for local minima and maxima, and then determine the global extrema.

f ÕÕ Tells Which way a Curve is Bending: Concavity. Though we can usually classify critical points
using just the first derivative, the second derivative gives an alternative that is sometime more
convenient, and can improve the visual accuracy of a sketch graph.

Definition 4.5.12 Concavity. If the graph of f lies above all its tangents on an interval I it is called
concave upward on that interval.
If the graph of f lies below all its tangents on an interval I it is called concave downward on that
interval. ⌃
Theorem 4.5.13 Concavity Test. If f ÕÕ(x) > 0 for all x in interval I , f is concave upward on I .
If f ÕÕ(x) < 0 for all x in interval I , f is concave downward on I .

Checkpoint 4.5.14 Illustrate each of the above with sketches of simple functions like f(x) = x2 and
g(x) = sin(x).

Concavity can be used in place of increasing/decreasing behavior to check a critical number c for
a local minimum and maximum. This is sometimes easier, as you need only think about function
values at one argument c, not at all nearby ones.
However, it only works where f Õ(c) = 0, not where f Õ(c) does not exist.

Theorem 4.5.15 The Second Derivative Test.
1. If f Õ(c) = 0 and f ÕÕ(c) > 0, f has a local minimum at c.
2. If f Õ(c) = 0 and f ÕÕ(c) < 0, f has a local maximum at c.

Proof. Part (a) is true because when f Õ(c) = 0, the tangent there is the horizontal line y = f(c), and
f ÕÕ(c) > 0 makes f concave up, so that the graph lies above this horizontal tangent line: nearby
values of f(x) are greater than f(c), which is a local minimum.
Part (b) is the same but upside down. ⌅
Checkpoint 4.5.16 Illustrate each part of the above theorem.

Where Concavity Changes: Inflections. We have seen unusual cases like f(x) = x3 where a critical
point is not a local extremum. This is related to concavity flipping at such points:
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Definition 4.5.17 A point P on a curve is called an inflection point if the curve changes from being
concave up to being concave down (with continuity at that point.) ⌃
This is akin to a local extremum being a point where the curve changes from increasing to decreasing.
Inflections can occur at points where f ÕÕ = 0, and also at points where f ÕÕ does not exist. Locating
inflections along with local extrema can help get the overall shape in a sketch of a function.

A Curve Sketching Strategy. A key to sketching a curve is to find “interesting” points (domain
end-points, axis intercepts, vertical asymptotes, critical points, inflection points) and then find out
about behavior in each interval between these, such as whether the curve in increasing or decreasing,
concave up or concave down.
Note that within each interval between two consecutive “interesting” points, there is no change
between increasing and decreasing, and no change in concavity.
It helps to summarize this information in a table, with the top row listing in increasing order
the “interesting” values of the argument (x-values), a column in between each for the intervals in
between, and all other useful information gathered in rows below.
As a variant, you can draw the number line for the domain, mark the interesting values on there,
and summarize other information below it.
To sketch y = f(x),

1. Compute the first and second derivatives, yÕ = f Õ(x) and yÕÕ = f ÕÕ(x).
2. Note any endpoints of the domain and points where the function is undefined.
3. If feasible, find the x-intercepts, points where y = 0.
4. Find the critical points, where yÕ is zero or does not exist (possible local extrema).
5. Find the points where yÕÕ is zero or DNE (possible inflections).
6. Evaluate the function at all these x values, and summarize on a table with a column for each

of these x values (a, b, c etc.) and a column in between each:
x 2 4 7 · · ·
y 5 6 4 · · ·
yÕ

yÕÕ

7. Determine the sign of yÕ and of yÕÕ, meaning positive, negative or zero, and add this information
in the next rows of the table as +, ≠ or 0. (One way to do this is to evaluate yÕ and yÕÕ at one x
value in each interval between “interesting” values.)

x 2 4 7 · · ·
y 5 6 4 · · ·
yÕ + + 0 ≠ ≠ ≠
yÕÕ ≠ ≠ ≠ ≠ 0 +

8. At the bottom of the table, you might want to draw a little fragment of curve in each column
with the correct increasing/decreasing behavior and correct concavity, with a dot on the curve
where each “interesting value” occurs. Alternatively do this directly as you sketch the graph.
(In this table, x = 2 is the left end-point, x = 4 a critical number and x = 7 gives an inflection.)

9. Sketch the graph using the points in the top two lines and (if drawn) the shapes drawn at the
bottom of the table.
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Exercises

Study Calculus Volume 1, Section 4.52; in particular the Problem Solving Strategy, the First Derivative
Test, the Second Derivative Test all Examples and Checkpoints, and a selection from Exercises 194–200,
201–205, 206–210, 211–215, 216–220, 221–223 and 224–230.
Some suggested selections are Exercises 199, 201, 203, 213, 215, 217, 223, 225, 229.

4.6 Limits at Infinity and Asymptotes

References.
• OpenStax Calculus Volume 1, Section 4.61

• Calculus, Early Transcendentals by Stewart, Section 2.6
So far we have used the idea of limits to describe how a function behaves as its argument approaches
a real value a: as x æ a. We also introduced the idea that if the value f(x) gets larger and larger
without bound, we say that “f(x) is approaching infinity”, and use shorthand f(x) æ Œ.
We now consider what happens as the argument x gets larger and larger without bound, using the
similar wording that “x is approaching infinity”, shorthand x æ Œ.
For x negative and increasing in magnitude, we talk of “x approaching negative infinty”, shorthand
x æ ≠Œ.
The idea of limits at infinity is useful to describe what happens to the extreme right and left on the
graph of a function like f(x) = x2≠1

x2+1 , whose value is very close to 1 for x values of large magnitude.
In the new shorthand, the value approaching 1 for ever larger positive x is “f(x) æ 1 as x æ Œ”, or

lim
xæŒ

x2 ≠ 1
x2 + 1 = 1

The same happens going to the left, with x negative and of ever larger magnitude:

lim
xæ≠Œ

f(x) = 1.

Graphically, the curve gets very close to the horizontal line y = 1 both to the right and left: this line
is called a horizontal asymptote.

Limits at Infinity. We measure x being close to Œ or ≠Œ by x > M for large M and x < M for
large negative M , as we measured f(x) being close to infinity in the precise definition of infinite
limits in Section 2.4. Thus, similar to that definition we have

Definition 4.6.1 Limits at Infinity. For function f defined on infinite interval (a, Œ) [i.e., for x > a],
we say that the limit of f(x) as x goes to Œ is L if:
For any given positive number ‘, there is a number M so that
having x > M ensures that |f(x) ≠ L| < ‘.

When this is true, we write
lim

xæŒ
f(x) = L.

Similarly for the limit at ≠Œ, using x < M instead. ⌃

Limit Laws for Limits at Infinity. All the familiar limit laws apply for this new type of limits, so
sums, products, compositions and such are all easily handled.

2openstax.org/books/calculus-volume-1/pages/4-5-derivatives-and-the-shape-of-a-graph
1openstax.org/books/calculus-volume-1/pages/4-6-limits-at-infinity-and-asymptotes
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Example 4.6.2 The asymptotes of tan and tan≠1. The tangent function on interval (≠fi/2, fi/2) has
one-sided limits

lim
xæ≠fi/2≠

= ≠Œ, lim
xæ≠fi/2+

= Œ

and is one-to-one with range (Œ, Œ). Thus it has an inverse, tan≠1, with domain (Œ, Œ), range
(≠fi/2, fi/2), and the vertical asymptotes flip over to give horizontal asymptotes y = ≠fi/2 to the
left, and y = fi/2 to the right for this inverse.
These correspond to limits at infinity:

lim
xæ≠Œ

= ≠fi/2, lim
xæŒ

= fi/2.

⇤
limxæŒ

1
x and limxæ≠Œ

1
x are both zero; these facts that "As x æ ±Œ, 1/x æ 0" are useful building

blocks in computing the horizontal asymptotes of other rational functions.
For example, these zero limits also occur for any negative power of x:

For any r > 0, lim
xæŒ

1
xr

= lim
xæ≠Œ

1
xr

= 0.

which follows from the above by using the power rule for limits.

Checkpoint 4.6.3 Calculate lim
xæŒ

3x2 ≠ x ≠ 2
5x2 + 4x + 1 . As so often, the key idea is finding a useful simplifi-

cation, so that limit laws and results above then give the answer easily. Here this means getting rid
of division by infinity, by dividing top and bottom by x2. Thus the limit is

lim
xæŒ

3 ≠ 1/x ≠ 2/x2

5 + 4/x + 1/x2 = lim
xæŒ

3 ≠ 1/x ≠ 2(1/x)2

5 + 4(1/x) + (1/x)2 = 3 ≠ 0 ≠ 2(0)2

5 + 4(0) + (0)2 = 3
5 .

Exponential functions like ex have a horizontal asymptote y = 0 to the left, so

lim
xæ≠Œ

ex = 0, and in fact lim
xæ≠Œ

ax = 0 for any a > 1.

Checkpoint 4.6.4 Calculate limxæ0≠ e1/x. Convert this to a limit at infinity with the change of
variable t = 1/x.

Infinite limits at infinity. Many familiar functions have values that grow without bound (“f(x) æ
Œ”) as their argument grows without bound (“x æ Œ”). The simplest example is f(x) = x, and
g(x) = ex is another. This situation combines function values going to infinity (as seen with infinite
limits in Section 2.2) with the argument x going to infinity (as just seen with limits at infinity).
Combining these ideas and the notation for them, we say that limxæŒ x = Œ, limxæŒ ex = Œ. In
general in this situation, we write that

lim
xæŒ

f(x) = Œ.

and likewise with the various ≠Œ options.

Example 4.6.5 Calculate limxæŒ x3, limxæ≠Œ x3, limxæŒ x2, and limxæ≠Œ x2. ⇤
Note: all the limits are infinite, but note how the signs differ for even and odd powers of x.

Example 4.6.6 Calculate limxæŒ x2 ≠ x. Factorize. ⇤

Checkpoint 4.6.7 Sketching y = f(x) = x2 ≠ 1
x2 + 1 . When a function has horizontal asymptotes or

infinite limits at infinity, we can enhance the sketching procedure from Section 4.5, p. 59 with the
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help of fictitious "infinite endpoints" at x = ±Œ added to the table described there.
First, we need the derivatives, to seek critical and inflection points:

yÕ = d

dx

3
x2 ≠ 1
x2 + 1

4
= 2x(x2 + 1) ≠ (x2 ≠ 1)2x

(x2 + 1)2 = 4x

(x2 + 1)2

so the only critical point is at x = 0: the point (0, ≠1). Next

yÕÕ = d

dx

3 4x

(x2 + 1)2

4
= 4(x2 + 1)2 ≠ 4x2(x2 + 1)2x

(x2 + 1)4 = 4x2 + 4 ≠ 16x2

(x2 + 1)3 = 4(1 ≠ 3x2)
(x2 + 1)3

so the second derivative is zero at x = ±1/
Ô

3, giving the points (±1/
Ô

3, ≠1/2).
In this case, we can also easily get the x-axis intercepts, where y = 0: they are at x = ±1 Thus
there are five "interesting" x-values, or seven counting the infinities; arranged in order left-to-right,
≠Œ, ≠1, ≠1/

Ô
3, 0, 1/

Ô
3, 1, Œ.

x ≠Œ ≠1 ≠1/
Ô

3 0 1/
Ô

3 1 Œ
y 1 0 ≠1/2 ≠1 ≠1/2 0 1
yÕ 0
yÕÕ 0 0

It is easy to check that yÕ < 0 for x < 0 and yÕ > 0 for x > 0yÕÕ

x ≠Œ ≠1 ≠1/
Ô

3 0 1/
Ô

3 1 Œ
y 1 0 ≠1/2 ≠1 ≠1/2 0 1
yÕ ≠ ≠ ≠ ≠ ≠ 0 + + + + +
yÕÕ ≠ ≠ ≠ 0 + + + 0 ≠ ≠ ≠

Sketches
With this information we can sketch the function; do this in three ways:

• Using just the axis intercepts and the increasing/decreasing information given by the signs of
the first derivative, yÕ.

• Using just the axis intercepts and the concavity information given by the signs of the second
derivative, yÕÕ.

• Using all the above information.

Exercises

Study Calculus Volume 1, Section 4.62; particularly Examples 21 to 26, 28, 29 and 31 and Checkpoints
20, 23–25, 27, 28 and 30 (We omit oblique asymptotes, so skip Example 30 and Checkpoint 29), and a
selection from Exercises 251–255, 256–260, 261–270, 271–281, 285–288 and 294–298.
Here the exercises are grouped in ranges by "question type", so start by trying one or two from each
of the seven ranges; some suggested selections are Exercises 251, 256, 257, 259, 261, 263, 265, 267,
271, 279, 281, 285, 306 and 307.

4.7 Applied Optimization Problems

References.
• OpenStax Calculus Volume 1, Section 4.71

2openstax.org/books/calculus-volume-1/pages/4-6-limits-at-infinity-and-asymptotes
1openstax.org/books/calculus-volume-1/pages/4-7-applied-optimization-problems
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• Calculus, Early Transcendentals by Stewart, Section 4.7.
Many scientific and engineering questions can be phrased in terms of finding the global minimum
or maximum of a function, such as minimizing cost or weight or maximizing the use of limited
resources. The solution to such questions often breaks into several steps:

1. rephrasing a verbal question in terms of a quantity to be minimized, given in terms of other
quantities whose values one can adjust in seeking the optimal outcome;

2. expressing the quantity to optimize as a function of a single variable;
3. finding the local extrema of this function; and finally
4. identifying the optimum (global minimum) from amongst these local extrema.

The First and Second Derivative Tests for Global Extrema. There is bad news and good news in
using the ideas of previous section to find a global extremum.
The bad news is that the domain is often not a closed interval for which the Extreme Value Theorem
applies. Instead it is often an open interval, such as “any positive value”.
The good news is that there is often a unique critical point, and then the only question is whether it
is a global maximum, a global minimum, or neither. Derivatives again answer this question:

Theorem 4.7.1 (The first derivative test for global extrema). Suppose that function f has a unique
critical number c on an interval.

• If f Õ(x) > 0 to the left of c (x < c) and f Õ(x) < 0 to the right of c (x > c), then f(c) is the maximum
value of f on that interval.

• If f Õ(x) < 0 to the left of c and f Õ(x) > 0 to the right of c, then f(c) is the minimum value of f on
that interval.

• If f Õ(x) has the same sign on either side of c then f has no global extremum on that interval, except
possibly at an endpoint.

Checkpoint 4.7.2 Make sketches illustrating each case.

Theorem 4.7.3 (The second derivative test for global extrema). Suppose that function f has a unique
critical number c on an interval.

• If f ÕÕ(c) < 0 then f(c) is the maximum value of f on that interval.
• If f ÕÕ(c) > 0 then f(c) is the minimum value of f on that interval.

Note: if f ÕÕ(c) = 0 or DNE, other tests must be used, like the one above.

Checkpoint 4.7.4 Make sketches illustrating each case.

A Strategy for Optimization Problems. The approach blends some elements from related rates
problems with ideas from this chapter.

• Read the question carefully. (Familiar?) Note all the relevant information.
• If appropriate, draw a diagram to summarize this information.
• Name all relevant quantities, in particular one to be optimized (let us call it Q) and others whose

values can be adjusted (say x, y, etc.)
• Find a formula for the quantity to be optimized in terms of the other quantities: say Q(x, y, . . .).
• If this formula involves more than one variable, seek equations relating these, and use them

to eliminate all but one independent variable, giving the quantity to be optimized as a function of a
single variable; say Q(x).

• Determine the allowable values of the independent variable[s], and thus determine the domain
of the above function (Q(x)).
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• Using the various derivative tests above, or otherwise, find the global optimum value and the
values of the independent variable[s] that give it.
Do not forget that the optimum might occur at an endpoint!

• Answer the Question.
The full answer often involves giving the values of all variables introduced in Step 3, and
putting back in physical units.

Exercises

Study Calculus Volume 1, Section 4.72; in particular Examples 33–35 and 37; Checkpoints 31–34 and
36; and a selection from Exercises 311–314, 315–318, 319–321, 322–326, 335–336 and 351–355.
Here the exercises are grouped in ranges by "question type", so start by trying one or two from each
of the seven ranges; some suggested selections are Exercises 311, 316, 320, 322, 335 and 353.

4.8 L’Hôpital’s Rule

References.
• OpenStax Calculus Volume 1, Section 4.81

• Calculus, Early Transcendentals by Stewart, Section 4.4.
There are places in the graph of a function where simple evaluation can fail to show what is
happening: argument values x where the formula gives a meaningless indeterminate form like “0/0”,
“Œ/Œ”, “0 · Œ”, “Œ ≠ Œ”, “00”, “1Œ” or “Œ0”.
It can be useful to compute the limits at such points, and l’Hôpital’s Rule often helps with these sort
of limits. This rule can also be useful in exploring the sideways extremes of a graph, the limits as
x æ ≠Œ and x æ Œ.

When f(x) gives “0/0” for some x values. With the function given by the formula f(x) = sin x

x
,

the formula fails at x = 0, because substituting in x = 0 gives 0/0, an indeterminate form.
It cannot be simplified to 0 (suggested by the zero numerator), or to infinity (suggested by the zero
denominator), or to 1 (suggested by canceling equal factors).
An indeterminate form tells us nothing about what happens at that point!
A new idea is needed. Fortunately, in the above example, we have seen that this is a removable
discontinuity: the domain of the function can be extended to include x = 0 while keeping function
continuous, with a unique choice of the value given by the limit

f(0) = lim
xæ0

sin x

x
, = 1.

Evaluating that limit was the hardest part of finding the derivative of sine, but now that we know a
good collection of derivatives, computing such limits can be much easier, avoiding much algebra
and trigonometry.

L’Hôpital’s Rule for 0/0. For a limit limxæa
f(x)
g(x) with f(a) = g(a) = 0 and both functions differen-

tiable, the behavior for x values near a can be approximated with the linearizations

f(x) ¥ f(a) + f Õ(a)(x ≠ a) = f Õ(a)(x ≠ a)
2openstax.org/books/calculus-volume-1/pages/4-7-applied-optimization-problems
1openstax.org/books/calculus-volume-1/pages/4-8-lhopitals-rule

https://openstax.org/books/calculus-volume-1/pages/4-7-applied-optimization-problems
https://openstax.org/books/calculus-volume-1/pages/4-8-lhopitals-rule
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g(x) ¥ g(a) + gÕ(a)(x ≠ a) = gÕ(a)(x ≠ a).

This suggests that for x ¥ a,
f(x)
g(x) ¥ f Õ(a)(x ≠ a)

gÕ(a)(x ≠ a) = f Õ(a)
gÕ(a) .

The one hazard is that gÕ(a) might also be zero. To avoid this, the precise result is

Theorem 4.8.1 L’Hôpital’s Rule, basic form.
If f(x) and g(x) are differentiable at x = a and f(a) = g(a) = 0, then

lim
xæa

f(x)
g(x) = lim

xæa

f Õ(x)
gÕ(x) ,

if both limits exist.
So if f Õ and gÕ are continuous at a and gÕ(a) ”= 0, the limit is f Õ(a)/gÕ(a).

Example 4.8.2

lim
xæ0

sin x

x
= lim

xæ0

(sin x)Õ

xÕ = lim
xæ0

cos x

1 = cos 0 = 1

lim
xæ1

x ≠ 1
ln x

= lim
xæ1

1
1/x

= 1

lim
xæ2

x ≠ 2
x2 ≠ 4 = lim

xæ2

1
2x

= 1
4

lim
xæ0

1 ≠ cos x

x2 = lim
xæ0

sin x

2x
= lim

xæ0

cos x

2 = 1
2

lim
xæ0

tan x

x2 = lim
xæ0

sec2 x

2x
, DNE: division by zero.

⇤

Notes.
1. Keep going so long as both the top and bottom are zero at x = a, but evaluate as soon as either

one is non-zero, even if the result is “no limit” or an infinite limit due to division by zero.
2. The top and bottom are differentiated separately, different from and easier than the quotient

rule for derivatives!

Theorem 4.8.3 L’Hôpital’s Rule extended to infinity.
L’Hôpital’s Rule also applies to the cases of limits at infinity (a = Œ), one sided limits, and when each of f(x)
and g(x) has an infinite limit at the relevant point. That is, it applies when an attempt to use the quotient rule
for limits gives the nonsense result 0/0 or Œ/Œ.

Again, repeated application might be needed, so long as limits of the new top and bottom functions
are both infinite or both zero, but you must stop as soon as this is no longer true.

Checkpoint 4.8.4 Evaluate lim
xæ≠Œ

4x2 ≠ 2x + 5
2x2 + x + 1 .

Checkpoint 4.8.5 Evaluate lim
xæŒ

ex

x2 .

Checkpoint 4.8.6 Evaluate lim
xæŒ

ln x
3
Ô

x
.
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Indeterminate Products Œ · 0.
Another kind of indeterminate form that can arise in limits is a product Œ ·0, as with limxæa f(x)g(x)
when limxæa f(x) = Œ and limxæa g(x) = 0.
Simple examples like limxæ0(5/x)x, limxæ0(1/x2)x and limxæ0(1/x)x2 show that the limit can be
zero, infinity or anything in between; it can be negative too.
Fortunately, such limits can often be rewritten as a quotient where l’Hôpital’s Rule applies: simply
rewrite f(x)g(x) as

either
f(x)

1/g(x) giving a form
Œ
Œ , or

g(x)
1/f(x) , giving a form

0
0 .

The form Œ/Œ is usually more useful.

Example 4.8.7

lim
xæ0+

x ln x = lim
xæ0+

ln x

1/x
Simplify: rearrange in Œ/Œ form

= lim
xæ0+

1/x

≠1/x2 From l’Hôpital’s Rule.

The result is still Œ/Œ, so SIMPLIFY before trying anything fancier:
= lim

xæ0+
≠x

= 0.

⇤
Warning: if you do not simplify after the first use of l’Hôpital’s Rule, and instead use l’Hôpital’s
Rule again, you will go on forever!

Indeterminate Differences: Œ ≠ Œ.
If limxæa f(x) = Œ and also limxæa g(x) = Œ, attempting to evaluate limxæa(f(x) ≠ g(x)) can lead
to another kind of indeterminate form, “Œ ≠ Œ”.
This can have any finite or infinite value, or no limit at all.
Sometimes, the function f(x) ≠ g(x) can be rewritten as a quotient giving an indeterminate form 0/0,
so that l’Hôpital’s Rule can be tried. For example, this happens if f(x) and g(x) are both quotients
with the same function in the denominator, with that function going to zero as x æ a.

Checkpoint 4.8.8 Compute lim
xæ(fi/2)≠

(sec x ≠ tan x).

Indeterminate Powers: 00, Œ0 and 1Œ.
A final kind of indeterminate form is with the limit as x æ a of an exponential expression

y = [f(x)]g(x)

where as x æ a, either
• f(x) æ 0 and g(x) æ 0 [type 00], or
• f(x) æ Œ and g(x) æ 0 [type Œ0], or
• f(x) æ 1 and g(x) æ ±Œ [type 1Œ].

All of these can be handled by converting the exponentiation into a product, by looking at the limit
of the logarithm:

ln y = ln([f(x)]g(x)) = g(x) ln(f(x)),
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and computing the limit of ln y gives the indeterminate form 0 · (≠Œ), or 0 ·Œ, or ±Œ ·0 respectively
for the three cases above. So one can try to evaluate this limit by the methods above for indeterminate
products.
Note that if one succeeds, that gives the value of the limit of ln y, so the last step is to exponentiate
this to get the desired limit of y itself.

Checkpoint 4.8.9 lim
xæ0+

xx

Checkpoint 4.8.10 lim
xæ0+

(1 + sin(4x))(cot x)

Exercises

Study Calculus Volume 1, Section 4.82, Examples 38–41, 43 and 44, Checkpoints 37–40, 42 and 43,
and a selection from Exercises 356–361, 362–366, 367–385, 387–389 and 391–395.
Here the exercises are grouped in ranges by "question type", so start by trying one or two from each
of the ranges; some suggested selections are Exercises 357, 359, 363, 367, 371, 377, 379, 387, and
393.

4.9 Newton’s Method (Omitted)

References.
• OpenStax Calculus Volume 1, Section 4.91

• Calculus, Early Transcendentals by Stewart, Section 4.8.
This optional topic is not covered this semester, so these notes are just references and a brief study
guide.

Exercises

Study Calculus Volume 1, Section 4.92; in particular Examples 46 to 48, Checkpoints 45 to 47, and
Exercises 407, 423 and 429.

4.10 Antiderivatives

References.
• OpenStax Calculus Volume 1, Section 4.101

• Calculus, Early Transcendentals by Stewart, Section 4.9.
Probably the greatest use of calculus is in problems where one knows something about the deriva-
tives of a function and wishes to learn about the function: going from knowledge about the rate of
change of a quantity to knowing the quantity itself. For example, the laws of physics often describe
acceleration (second derivative of position), from which position as a function of time is determined.
Also in biological, chemical and economic models, rates of changes are often the measured or known
information, from which we seek to make predictions of how a quantity will change over time.
We have already seen one simple but important example: when the acceleration of a falling body is
constant, its velocity is linear in time, and its position is a suitable quadratic function of time.

2openstax.org/books/calculus-volume-1/pages/4-8-lhopitals-rule
1openstax.org/books/calculus-volume-1/pages/4-9-newtons-method
2openstax.org/books/calculus-volume-1/pages/4-9-newtons-method
1openstax.org/books/calculus-volume-1/pages/4-10-antiderivatives

https://openstax.org/books/calculus-volume-1/pages/4-8-lhopitals-rule
https://openstax.org/books/calculus-volume-1/pages/4-9-newtons-method
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https://openstax.org/books/calculus-volume-1/pages/4-10-antiderivatives
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Our interest here is the “opposite” of derivatives:

Definition 4.10.1 Antiderivative. A function F is called an antiderivative of another function f on
interval I if F Õ = f on that interval. ⌃
For example, for function f(x) = 3x2, the function F (x) = x3 is an antiderivative, and so is the
alternative F (x) = x3 + 7, or indeed F (x) = x3 + C for any constant C.

Note the wording about an antiderivative of f rather than the antiderivative.

Position and Velocity from (Constant) Acceleration. When acceleration

a(t) = vÕ(t) = ≠9.8m/s2,

one possible anti-derivative of a is
v(t) = ≠9.8t,

and since this v(t) is sÕ(t) for s(t) the displacement, one possible antiderivative of v is displacement

s(t) = ≠4.9t2.

But there are other antiderivatives: one can have

v(t) = ≠9.8t + v0 for any constant v0, the velocity when t = 0.

Then this velocity has as one antiderivative the position function s(t) = ≠4.9t2 + v0t, and again,
adding any constant is allowed, giving the family of of possible position functions

s(t) = ≠4.9t2 + v0t + s0 for any constant s0, the displacement when t = 0.

Checkpoint 4.10.2 Find formulas for all possible antiderivatives of
• f(x) = sin x

• f(x) = xn, n ”= ≠1 a constant
• f(x) = x≠1 = 1/x.

Hint. Be careful with the cases where the domain is not an interval because it excludes x = 0.
The “quirks” with domains like x ”= 0 illustrate why we usually work with derivatives and an-
tiderivatives on intervals. This is natural; domains are intervals in most applications of antiderivatives
(and indeed in most applications of calculus).

Checkpoint 4.10.3 Hunting and Collecting Antiderivatives (the start of an ongoing activity).
Every derivative formula gives the anti-derivative of a function, so this is how we start our collection
of antiderivatives:

1. Write down all the the formulas you know for derivatives of basic functions, giving pairs F (x),
f(x) = F Õ(x).

2. Multiply each by a constant if necessary so that the function f(x) is as simple as possible.
3. Turn each pair around into a function-antiderivative pair f(x), F (x), and gather these in a

table.
4. Add new antiderivatives to this table as we discover them.

This table will be useful for computing derivatives and anti-derivatives: keep it with your notes.

Theorem 4.10.4 Antiderivatives on an interval differ only by a constant.
If F and G are both antiderivatives of the same function f on the same interval I , they differ only by a constant:
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G(x) ≠ F (x) is a constant C, so
G(x) = F (x) + C. (4.10.1)

Proof. This follows from the Mean Value Theorem:
Firstly, the difference G ≠ F has derivative (G ≠ F )Õ = GÕ ≠ F Õ = f ≠ f = 0 everywhere.
We saw in Section 4.4, p. 56 that the only function with derivative equal to zero everywhere on an
interval is a constant, so G(x) ≠ F (x) is a constant: call it C. ⌅
As a result, the graphs of two different antiderivatives of f on an interval never pass through the
same point, so once you know one point on the graph of the desired antiderivative, there is only one
choice.

The Geometry of Antiderivatives. We have seen how derivatives relate to the “geometry” of a
function; the shape or of the graph. This ideas is useful in the reverse direction too, using that fact
that the value of f(x) describes the slope of the antiderivative graph at x.
The above theorem says that the graphs of any two different antiderivatives of the same function on an
interval differ simply by a vertical shift.

Checkpoint 4.10.5 Sketching Antiderivatives.
1. Sketch a few simple functions f like f(x) = x2 or f(x) = sin x, for which we know an

antiderivative, and from the information there about the slope of the antiderivative, try to
sketch an antiderivative F (x), passing through the origin. Place the sketch of F directly below
that of f .

2. Sketch the known antiderivatives and see how well you did.
3. Draw a graph of some function f for which you do not know a formula, and try to sketch

several antiderivatives for it.

Rectilinear Motion (motion along a line). If we know the acceleration of an object moving on a
line, its velocity is an antiderivative. Knowing the velocity at any one time allows one to choose the
correct antiderivative:
Knowing acceleration at all times plus velocity at any one time determines velocity at all times.
In turn, knowing velocity tells as the position (an antiderivative of velocity) up to a constant and
knowing position at one time determines the position function. Putting this all together,
Knowing acceleration at all times plus position and velocity at any one time determines position at all
times.This is the basic form of the single most important mathematical contribution to physics in the
last few centuries, and one of the main reasons why calculus is so important in physical science.

Exercises

Study Calculus Volume 1, Section 4.102; including all the Examples and Checkpoints, and a selection
from Exercises 465–469, 470–473, 474–489, 490–498, 499–503 and 504–508.
Here the exercises are grouped in ranges by "question type", so start by trying several from each of
the ranges; some suggested selections are Exercises 465, 467, 469, 471, 477, 487, 491, 493, 499, 501 and
505.
Hint: It often helps to simplify the function first, and then use the list of derivatives and indefinite
integrals in the online test.

2openstax.org/books/calculus-volume-1/pages/4-10-antiderivatives
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Chapter 5

Integrals

References.
• OpenStax Calculus Volume 1, Chapter 5.1

• Calculus, Early Transcendentals by Stewart, Chapter 5.

5.1 Approximating Areas (and Distance Traveled)

References.
• OpenStax Calculus Volume 1, Section 5.11

• Calculus, Early Transcendentals by Stewart, Section 5.1.
One of the beauties of mathematics is that often problems that seem to be very different turn out to
have very similar mathematical representations and solutions. Two such problems are

• finding the area of a region with curved boundary, and
• finding the distance traveled when we know how the velocity varies with time.

Problem 1: The Area of a Region with Curved Upper Boundary. We can compute the area shown
in the figure where the upper boundary is the curve y = f(x), the lower boundary is the x axis, the
left boundary is the line x = a, and the right boundary is the line x = b as follows:

1openstax.org/books/calculus-volume-1/pages/5-introduction
1openstax.org/books/calculus-volume-1/pages/5-1-approximating-areas
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Divide the interval [a, b] into n small subintervals each with length

�x = b ≠ a

n

and let x0, x1, x2, . . . , xn be the end points of the subintervals, so that

x0 = a, xi = a + i�x, xn = b

The area Ai above the i-th subinterval xi≠1 < x < xi will be approximately the area of a rectangle
with width �x and height f(xi):

Ai ƒ f(xi)�x

Adding these up we get the total area is given (approximately) by

A =
nÿ

i=1
Ai ƒ Rn :=

nÿ

i=1
f(xi)�x. (5.1.1)

This is the so-called right-hand endpoint rule, because we use the value of f(x) at the right-hand
end of each sub-interval [xi≠1, xi] as the height of the rectangle over that interval. An alternative is
to use the height at the left end of each interval, giving the left-hand endpoint rule

A ƒ Ln =
n≠1ÿ

i=0
f(xi)�x. (5.1.2)

Note: never use the value at both the left and right endpoints!

The Exact Area, Using Limits. If we used more subintervals (larger n and thus smaller �x), we
could get a better approximation, because the rectangles would fit the true area closer over the
shorter intervals. If we can find the limit as n æ Œ and �x æ 0 of these approximating sums, then
we can find the area exactly:

A = lim
�xæ0

nÿ

i=1
f(xi)�x, = lim

næŒ

nÿ

i=1
f(xi)�x (5.1.3)

It also turns out that the approximations Ln and Rn lead to the same limit, so long as f(x) is
continuous. We could also use rectangles with heights given by the function’s value at intermediate
points in each interval, such as the middle points a + h/2, a + 3h/2 ... b ≠ h/2. In fact, we use this
formula to define area in this situation; without calculus and limits, area has only really been defined
for polygons.
Later in this chapter we will learn how to evaluate such limits, at least for some functions f . However,
the accurate approximations given by the sum formulas with small �x are often also often useful in
practice.

Problem 2: Displacement (net change in position) from Velocity. If we know a function that gives
the velocity of an object at time t, that is we know v = f(t) and we want to find the distance s that
the object travels over a time interval a Æ t Æ b, we can proceed as follows: Divide the time interval
[a, b] into n small subintervals each with length

�t = b ≠ a

n

and let t0, t1, t2, . . . , tn be the end points of the subintervals, so that

t0 = a, ti = a + i�t, tn = b
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Over the i-th subinterval ti≠1 < t < ti, the velocity can be approximated by its value at the start of
that interval, f(ti≠1), so that we can use the familiar formula “distance = rate ◊ time” to compute
the distance si traveled (approximately) over that short time interval:

si ƒ f(ti≠1)�t. (5.1.4)

Adding these up, the total distance traveled is given (approximately) by

s ƒ
n≠1ÿ

i=0
f(ti)�t. (5.1.5)

This is the left-hand endpoint rule (5.1.2) again, and again an alternative is to use the velocity at the
end of each time interval; the right-hand endpoint rule (5.1.1).

From Approximations to the Exact Displacement. If we used more subintervals (larger n and
thus smaller �t), we could get a better approximation, because the velocity would be closer to
being constant over the shorter intervals. If we can find the limit as n æ Œ and �t æ 0 of these
approximating sums, then we can find the distance exactly.

s = lim
�tæ0

nÿ

i=1
f(ti)�t, = lim

næŒ

nÿ

i=1
f(ti)�t. (5.1.6)

Comparing the Area and Distance Formulas. Note the similarity between Equation (5.1.3) for
area under curve and Equation (5.1.6) for computing distance from a velocity function: this allows
the same methods to be used for both the area and the distance problems, for both approximation
and exact evaluation.
Indeed a great variety of the mathematical and scientific problems can be solved in terms of the
same sort of “limit of a sum” formula, which makes evaluation of this quantity of great importance.
This is the topic for the rest of this course, and a major topic in Calculus II.

Exercises

Study Calculus Volume 1, Section 5.12; in particular, if you are unfamiliar with the � notation for
sums, the first part of that section should help. Study Exercises 15, 19, 23, 27, 29, and 43.

5.2 The Definite Integral

References.
• OpenStax Calculus Volume 1, Section 5.21

• Calculus, Early Transcendentals by Stewart, Section 5.2.
The ��limit of sums’’ formula seen in Section 5.1 for computing both distance traveled and area
under a curve is also useful in many other cases, and the main goal of this chapter is to learn more

2openstax.org/books/calculus-volume-1/pages/5-1-approximating-areas
1openstax.org/books/calculus-volume-1/pages/5-2-the-definite-integral

https://openstax.org/books/calculus-volume-1/pages/5-1-approximating-areas
https://openstax.org/books/calculus-volume-1/pages/5-2-the-definite-integral


CHAPTER 5. INTEGRALS 75

about how to do this calculation in practice, without having to actually evaluate the sums or limits,
but instead mostly using anti-derivatives.
In this section we make a careful statement of the quantity to be calculated, introduce some variants
on the Riemann sum approximation of the area under a curve to make calculator approximations
more accurate and efficient, and learn some properties akin to those for limits, derivatives and
anti-derivatives: rules for sums, differences, constant multiples, etc.

A key calculus strategy: first approximate, then find a limit. There are many other problems that
can be calculated by the above process of

• approximating a quantity by a sum of function values times a small interval width �x, and then
• finding the exact quantity as the limit as the number of function values used goes to Œ and �x

goes to 0.
Thus we need a name and notation for it:

Definition 5.2.1 Definite Integral, right-hand rule version. For f(x) is a continuous function on the

interval a Æ x Æ b, the definite integral of f(x) over the interval [a, b], denoted
⁄ b

a
f(x) dx, is the

numerical value given by the limit

⁄ b

a
f(x) dx = lim

næŒ

nÿ

i=1
f(xi)�x, = lim

�xæ0

nÿ

i=1
f(xi)�x,

where �x = b≠a
n and xi = a + i�x, so x0 = a and xn = b. ⌃

Note that the notation
• modifies the ��Greek S’’ � to become the ��elongated S’’

s
, and

• changes the ��Greek D’’ � in �x to the ��small d’’ in dx, to indicate that the limit was taken
as n æ Œ (i.e. �x æ 0).

Other Choices for the Rectangle Heights and Widths. The sums of areas of rectangles used above
to approximate the area under the curve is called a Riemann Sum, but the choice of using intervals
of equal width with the height of each rectangle being the height of the curve at the right endpoint of
each interval is not the only possibility: it was used partly because it makes the notation easiest. The
intervals can instead vary in width, and the heights can instead be computed at other points xú

i in
each interval, like the left endpoints or the midpoints, or a different choice in each interval. Of these
options, using the mid-point of each interval is intuitively the best choice, and this in fact can be
proven to be the most accurate in some sense, to be seen in Calculus 2.
The most general form of the approximation for area under the curve allows for the interval [a, b] to
be divided into possibly unequal intervals by x values a = x0 < x1 · · · < xn = b, with widths

�x1 = x1 ≠ x0, . . . , �xi = xi ≠ xi≠1, . . . , �xn = xn ≠ xn≠1,

taking any point xú
i within each sub-interval [xi≠1, xi] to get the height of a rectangle on that

sub-interval. Then the approximate area under the curve is the general Riemann sum Approximation

nÿ

i=1
f(xú

i )�xi = f(xú
1)�x1 + f(xú

2)�x2 · · · f(xú
n)�xn.
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It can be shown that even with varying intervals widths and choices of where in each interval to
compute the rectangle height, the approximations all get close to the same value when the widths
of all the subintervals are very small (no rectangle width �xi bigger than some maximum width
�x), so long as f(x) is continuous on [a, b]. The proof is omitted here; it is seen is advanced calculus
courses.
This gives the most general definition:

Definition 5.2.2 Definite Integral, with all Riemann Sum Approximations. If f(x) is a continuous
function on the interval a Æ x Æ b, with the xi, �xi and xú

i as above and �xi Æ �x, then

⁄ b

a
f(x) dx = lim

�xæ0

nÿ

i=1
f(xú

i )�xi

⌃

The Mid-point Rule. Of these approximations, using the mid-point of each interval is intuitively
the best choice. % and this in fact can be proven to be the most accurate in some sense. %, to be seen
in Calculus 2. It is still simplest to use n intervals of equal width h = �x = (b ≠ a)/n, which gives
the n-point midpoint rule approximation

⁄ b

a
f(x) dx ¥ Mn = h

nÿ

i=1
f

3
xi≠1 + xi

2

4
= h

nÿ

i=1
f(a + (i ≠ 1/2)h),

where xi = a + ih (x0 = a, x1 = a + h, etc.)
This sum can be evaluated on calculators with something like
sum(seq(f(a+(i-0.5)*h),i,1,n))*h

or the slightly quirky but easier to type version
sum(seq(f(x),x,a+h/2,b,h))*h

This uses x values a+h/2, a+3h/2 and so on, continuing so long as the value is less than b. Actually
the last value used is b ≠ h/2, but using the upper limit of b is safer; if you use b ≠ h/2, a slight
rounding error can cause that last x value to be omitted!

Properties of the Definite Integral. Thinking of definite integrals as areas under curves or dis-
placements given by velocities, the following facts are intuitive. We will soon see a simple way to
verify them, using anti-derivatives.
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1.
⁄ b

a
c dx = c(b ≠ a) where c is any constant.

2.
⁄ b

a
cf(x) dx = c

⁄ b

a
f(x) dx where c is any constant.

3.
⁄ b

a
f(x) + g(x) dx =

⁄ b

a
f(x) dx +

⁄ b

a
g(x) dx

4.
⁄ b

a
f(x) ≠ g(x) dx =

⁄ b

a
f(x) dx ≠

⁄ b

a
g(x) dx

5.
⁄ b

a
f(x) dx +

⁄ c

b
f(x) dx =

⁄ c

a
f(x) dx

6.
⁄ a

b
f(x) dx = ≠

⁄ b

a
f(x) dx

7.
⁄ a

a
f(x) dx = 0

Comparison Properties of the Definite Integral.
1. If f(x) Ø 0 for a Æ x Æ b, then ⁄ b

a
f(x) dx Ø 0.

2. If f(x) Ø g(x) for a Æ x Æ b, then
⁄ b

a
f(x) dx Ø

⁄ b

a
g(x) dx.

3. If m Æ f(x) Æ M for a Æ x Æ b, then

m(b ≠ a) Æ
⁄ b

a
f(x) dx Æ M(b ≠ a).

The last is a cousin of the Mean Value Theorem.

Exercises

Study Calculus Volume 1, Section 5.22; in particular Examples 8 to 13, Checkpoints 8 to 12, and
Exercises 61, 65, 73, 75, 79, 81, 89, 91, 93, 99, 101 and 107.

5.3 The Fundamental Theorem of Calculus

References.
• OpenStax Calculus Volume 1, Section 5.31

• Calculus, Early Transcendentals by Stewart, Section 5.3.
The Fundamental Theorem of Calculus relates derivatives to definite integrals, giving an easy way
to evaluate many definite integrals using antiderivatives. One half is the formula

⁄ b

a
f(x) dx = F (b) ≠ F (a), (5.3.1)

2openstax.org/books/calculus-volume-1/pages/5-2-the-definite-integral
1openstax.org/books/calculus-volume-1/pages/5-3-the-fundamental-theorem-of-calculus

https://openstax.org/books/calculus-volume-1/pages/5-2-the-definite-integral
https://openstax.org/books/calculus-volume-1/pages/5-3-the-fundamental-theorem-of-calculus


CHAPTER 5. INTEGRALS 78

true when F is any antiderivative of f on the interval [a, b]: F Õ = f .

This equation can for example be corroborated for some simple definite integrals whose values are
clear from geometry:

Example 5.3.1 For f(x) = c, any constant, all antiderivatives have the form cx + C (C another
constant), so Equation (5.3.1) says

⁄ b

a
c dx = F (b) ≠ F (a) = (cb + C) ≠ (ca + C) = c(b ≠ a),

the expected area of the rectangle of width b ≠ a, height c under this curve. ⇤

Example 5.3.2 For f(x) = x, antiderivatives have the form x2/2 + C (C a constant),
⁄ b

a
x dx = F (b) ≠ F (a) =

3
b2

2 + C

4
≠

3
a2

2 + C

4
= b2

2 ≠ a2

2 = a + b

2 (b ≠ a)

which is the area of the trapezoid under this line y = x: the difference of the areas of two right
triangular regions, or the width of the trapezoid times its average height. (Case a = 0 is the area
1/2 · b · b of a right triangle of width b, height b.) ⇤
Next, one that requires a far less obvious anti-derivative:

Checkpoint 5.3.3

1. Verify that f(x) =
Ô

1 ≠ x2 has antiderivative F (x) = x
Ô

1 ≠ x2 + arcsin(x)
2 .

2. Sketch a graph of y =
Ô

1 ≠ x2 on interval [≠1, 1].
3. Use this graph to explain why the value of 2

s 1
≠1

Ô
1 ≠ x2dx should be fi.

4. Verify this by evaluating this integral, using FTC, Equation (5.3.1).

The moral here is that we would like to know how to find many more anti-derivatives, like the one
seen above.

Getting Antiderivatives from Definite Integrals. To understand why the above result is true, we
do something a bit more ambitious: using the definite integral over intervals of variable width [a, x]
for x between a and b, so that the value of the definite integral depends on the choice of x. This gives
a function of x, which turns out to be an antiderivative of f .
That is, we define a function g(x), a Æ x Æ b by

g(x) =
⁄ x

a
f(t) dt

Let us compute the derivative of g, using the definition

gÕ(x) = lim
hæ0

g(x + h) ≠ g(x)
h

.

The numerator in the difference quotient is

so
g(x + h) ≠ g(x)

h
= 1

h

⁄ x+h

x
f(t) dt.



CHAPTER 5. INTEGRALS 79

Intuitively, the value of f(t) over the small interval is close to f(x), so the area given by the interval
is close to that of a rectangle of height f(x), width h. That is, the integral here is approximately
f(x)h, so that the difference quotient is approximately f(x), and then the limit gives

gÕ(x) = lim
hæ0

g(x + h) ≠ g(x)
h

= lim
hæ0

1
h

⁄ x+h

x
f(t) dt = lim

hæ0

1
h

f(x)h = f(x).

This can be shown more carefully using the Extreme Value Theorem and the comparison properties
of definite integrals.

So as claimed, g(x) =
⁄ x

a
f(t) dt is an antiderivative of f :

d

dx

⁄ x

a
f(t) dt = f(x).

Getting Definite Integrals from Antiderivatives. If F is any antiderivative of f on interval [a, b], it

differs from the above antiderivative g only by an added constant, so F (x) =
⁄ x

a
f(t) dt + C. Thus

The last is true because the variable name used, t or x, has no effect on the value of a definite integral,
which is a number, not a function of x or of t.For F any antiderivative of f on interval [a, b],

⁄ b

a
f(x) dx = F (b) ≠ F (a).

The difference here arises so often that it is useful to have a short-hand for it:
Ë
F (x)

Èb

a
= F (b) ≠ F (a), = F (b)

≠F (a)

I sometimes use the “vertical” form at right above to keep straight which term is added and which
subtracted.

Integration and differentiation as inverse processes. The two parts of the Fundamental Theorem
of Calculus can be summarized by the idea that integration and differentiation are like inverses:

• Computing the integral of a function f [to upper limit x] and then differentiating the result
gets you back to where you started: function f .

• Differentiating a function F (getting f = F Õ) and then integrating over an interval [a, x] the
result gets you back to where you started: function F (up to adding a constant.)

Exercises

Study Calculus Volume 1, Section 5.32; in particular Theorems 4 and 5, Examples 17, 18, 20 and 21;
Checkpoints 16, 17 and 19; and Exercises 149, 153, 155, 157, 161, 171, 177, 179, 183, 190, 191 and 195.
For further practice, look at several exercises from each of the following ranges: 148–159, 160–163,
170–189, 190–193, and 194–197.

2openstax.org/books/calculus-volume-1/pages/5-3-the-fundamental-theorem-of-calculus

https://openstax.org/books/calculus-volume-1/pages/5-3-the-fundamental-theorem-of-calculus
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5.4 Integration Formulas and the Net Change Theorem

References.
• OpenStax Calculus Volume 1, Section 5.41

• Calculus, Early Transcendentals by Stewart, Section 5.4.
Now that we have seen the connection between antiderivatives and definite integrals, it is convenient
to recast antiderivatives in terms of integrals, and use the notation of integrals when calculating
with antiderivatives. Thus, just as

s x
a f(t) dt gives one antiderivative of f (a different one for each

different choice of a) we denote the general antiderivative by dropping the specific choice a, and
simplifying a bit:

Definition 5.4.1 The Indefinite Integral of f with respect to x is the most general function F (x)
having F Õ(x) = f(x), including an arbitrary added constant. This is denoted

⁄
f(x) dx

The function inside this expression is called the integrand.
The differential “dx” is essential! For example, we can verify that

⁄
x t dx = x2t/2 + C while

⁄
x t dt = xt2/2 + C.

⌃

Example 5.4.2
⁄

x2 dx = x3

3 + C
⁄

cos x dx = sin x + C
⁄

sec2 x dx = tan x + C
⁄

tan x dx = log | sec x| + C
⁄

ln x dx = x ln x ≠ x + C
⁄

2xex2
dx = ex2 + C

⇤
How do we know that these are correct?
Differentiate the formula at right and verify that this gives the integrand, the function inside the
integral expression at left.

Checkpoint 5.4.3

Rather than list numerous sums and constant multiples, the list can start with the two general “com-
bining” rules that we have for sums, differences and constant multiples of antiderivatives, rephrased as
facts about integrals:

⁄
cf(x) dx = c

⁄
f(x) dx for any constant c.

1openstax.org/books/calculus-volume-1/pages/5-4-integration-formulas-and-the-net-change-theorem

https://openstax.org/books/calculus-volume-1/pages/5-4-integration-formulas-and-the-net-change-theorem


CHAPTER 5. INTEGRALS 81

⁄
f(x) ± g(x) dx =

⁄
f(x) dx ±

⁄
g(x) dx

But beware: we have no rules for products or quotients or compositions of functions.

Simplify first! As usual, it often helps to simplify the function as much as possible before looking
for antiderivatives, both by using the above rules to break up sums and differences and extract
constant factors and by using other algebraic rules and trigonometric facts.

Connection to Definite Integrals. The Fundamental Theorem of Calculus gives

⁄ b

a
f(x) dx = F (b) ≠ F (a)

and we denote the difference here with the shorthand forms
Ë
F (x)

Èb

a
= F (x)

---
b

a
= F (b) ≠ F (a)

so we can now use the indefinite integral notation for the antiderivative:

⁄ b

a
f(x) dx =

5⁄
f(x) dx

6b

a

=
⁄

f(x) dx

----
b

a

(I prefer always using matching left and right brackets to avoid any possible ambiguity, but some
texts use the right bracket only.)

Integrals of Derivatives and the Net Change Theorem. The indefinite integral a function is the
general antiderivative, so the indefinite integral of the derivative f Õ of function f is the general
antiderivative of the derivative. The original function f itself is one such antiderivative, so all that
remans is to add an arbitrary constant:

⁄ b

a
f Õ(x) dx = f(b) ≠ f(a), =

Ë
f(x)

Èb

a

This says that the definite integral of the rate of change of a quantity gives the net change in the
quantity.

For f(t) a Velocity, Displacement is Net Change. For example, if function f gives position and
the independent variable is time, the rate of change is velocity, v(t) = f Õ(t), so the definite integral
of velocity from a to b is the net change in position between times a and b, the displacement, not the
total distance traveled:

The displacement between times a and b is
⁄ b

a
v(t) dt =

⁄ b

a
f Õ(t) dt = f(b) ≠ f(a).

This is what we saw in Problem 2 of Section 5.1, p. 72, motivating the idea of the definite integral.
Geometrically, this is the difference between the area under the positive part of the graph of v = f Õ

and the area below the negative part.

Total Distance Traveled is Total Change. On the other hand, the total distance traveled is the
“total change” of position, given by integrating the rate of change of position without regard to
direction: this is speed, which is the magnitude of the velocity, |v(t)|.

The total distance traveled between times a and b is
⁄ b

a
|v(t)| dt =

⁄ b

a
|f Õ(t)| dt.
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Geometrically, this is the total area between the graph of v and the t-axis, adding area above and
below the axis. It is not given by the simple formula f(b) ≠ f(a), so how can it be computed?
The answer is to break the integral up into several integrals over several intervals such that on
each interval, v = f Õ is either positive throughout or negative throughout. Then each integral is of
the form either

s d
c f Õ(t) dt or

s d
c ≠f Õ(t) dt, and so each can be evaluated easily by the Net Change

Theorem, as either f(d) ≠ f(c) or f(c) ≠ f(d). Adding these positive pieces gives the total distance
traveled.

Exercises

Study Calculus Volume 1, Section 5.42; in particular Theorem 6, Examples 23–26, 28 and 29; Check-
points 21, 22 and 24; and Exercises 207, 209, 211 and 223.
For further practice, look at several exercises from each of the following ranges: 207-212 and
223-228.

5.5 Substitution

References.
• OpenStax Calculus Volume 1, Section 5.51

• Calculus, Early Transcendentals by Stewart, Section 5.5.
So far we are rather limited in our ability to calculate antiderivatives and integrals because, unlike
with derivatives, knowing indefinite integrals for two functions does not in general allow us to
calculate the indefinite integral of their product, quotient, or composition. However, we can find a
rule that will help up with some products and compositions, using the same strategy that lead us to
our first few antiderivatives: take a fact about derivatives and “invert” it.
Surprisingly, it is the Chain Rule that is most useful, because the derivative of a composition is a
certain product, and thus running it backwards gives an antiderivative for that product: almost a
product rule for indefinite integrals.

Getting some integrals involving products, quotients and compositions. To get an idea of how
the Substitution Rule will work, let us first get a few examples of integrals of products by working
backwards from some derivatives.

d

dx
(sin x)3 = 3(sin x)2 d

dx
(sin x) = 3 sin2 x cos x , so dividing by 3,

⁄
sin2 x cos x dx = 1

3(sin x)3 + C (5.5.1)

d

dx
ln(cos x) = 1

cos x

d

dx
(cos x) = ≠ sin x

cos x
, so

⁄
tan x dx =

⁄ sin x

cos x
dx = ≠ ln(cos x) + C (5.5.2)

Reversing a Chain Rule Calculation. Let us look at the first calculation above in reverse order.
Factor cos x has antiderivative sin x, which also appears in the other factor, so

sin2 x cos x = (sin x)2 d

dx
(sin x)

2openstax.org/books/calculus-volume-1/pages/5-4-integration-formulas-and-the-net-change-theorem
1openstax.org/books/calculus-volume-1/pages/5-5-substitution

https://openstax.org/books/calculus-volume-1/pages/5-4-integration-formulas-and-the-net-change-theorem
https://openstax.org/books/calculus-volume-1/pages/5-5-substitution
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Using the name u for this repeated term sin x, this is u2 du

dx
.

Since u2 has antiderivative u3/3,

u2 du

dx
= d

du

3
u3

3

4
du

dx
.

This is what the Chain Rule gives for

d

dx

3
u3

3

4
, = d

dx

(sin x)3

3 .

Thus sin2 x cos x has antiderivative
(sin x)3

3 .

Reversing a Chain Rule Calculation. In this calculation, the antiderivatives for cos x and u2 have
been combined to get this new antiderivative. In terms of indefinite integrals, we have used the two
simple indefinite integrals ⁄

cos x dx = sin x + C

and ⁄
u2du = u3

3 + C

plus the Chain Rule
d

dx
f(u) = f Õ(u)du

dx
to get

⁄
sin2 x cos x dx = sin3 x

3 + C.

The Substitution Rule. Suppose that we seek the (indefinite) integral of a function of the special
“composition-product-derivative” form f(g(x))gÕ(x), and we know an antiderivative F for f . Then
the Chain Rule gives

d

dx
[F (g(x))] = F Õ(g(x))gÕ(x) = f(g(x))gÕ(x)

so F (g(x)) is an antiderivative of this function, and
⁄

f(g(x))gÕ(x) dx = F (g(x)) + C.

On the other hand, if we define u = g(x) then gÕ(x) = du

dx
, F (g(x)) = F (u), and

s
f(u) du = F (u)+C.

Combining these results
⁄

f(g(x))gÕ(x) dx =
⁄

f(u)du

dx
dx =

⁄
f(u) du = F (u) + C. (5.5.3)

In practice, the emphasis is on choosing the new quantity u and changing to it as the variable, which
involves getting a differential du in the integral formula in place of dx. To be precise,

Theorem 5.5.1 Substitution Rule. If u = g(x) is differentiable with range covering some interval I , and
function f is continuous on that interval I , then

⁄
f(g(x))gÕ(x) dx =

⁄
f(u) du

That is, one can effectively make a substitution with the differential formula du = du

dx
dx inside

integral formulas, and this helps so long as the rest of the formula can also be expressed entirely in
terms of the new variable u.
Note well: for this substitution method to be useful, one must completely convert to u from x, not
have a mix of both variables in the transformed integral.
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Choosing u. The key in practice is finding a suitable choice of u, and there may be more than one
worth trying.
One strategy is to use the quantity inside a composition as u, since u is the “inside” part of the Chain
Rule.
This composition should then multiply some other factor containing just the derivative of u.
Another strategy is that to seek some quantity such that both its and its derivative appear in the
integrand,
with the derivative simply multiplying the rest of the integrand.

Checkpoint 5.5.2 Find
⁄

x3 cos(x4 + 2) dx.

Start by thinking of options for u.

Checkpoint 5.5.3 Find
⁄

cos x sin x dx.

Start by seeking several possible options for u.

Checkpoint 5.5.4 Find
⁄ Ô

2x + 1 dx.

Here there is no product, just a composition, so what do we do about the need for factor du/dx?
It still helps to try the inside of a composition as u.

Checkpoint 5.5.5 Find
⁄

xÔ
1 ≠ 4x2 dx.

Checkpoint 5.5.6
⁄

e3x dx

Checkpoint 5.5.7
⁄ 

1 + x2 x5 dx

Checkpoint 5.5.8
⁄

tan x dx

Substitution in Definite Integrals. Often the easiest way to deal with definite integrals is to first
seek an indefinite integral, and then use the FTC. However with substitution, this involves the step
of converting back from a function of new variable u to the original variable x, and it may be easier
to avoid that by converting everything to the new variable, including the limits of integration.

Theorem 5.5.9 The Substitution Rule for Definite Integrals. If u = g(x) is differentiable with range
covering some interval I , gÕ is continuous, and function f is continuous on that interval I , then

⁄ x=b

x=a
f(g(x))gÕ(x) dx =

⁄ x=d

u=c
f(u) du, with c = g(a), d = g(b). (5.5.4)

That is, for F an antiderivative of f ,
⁄ x=b

x=a
f(g(x))gÕ(x) dx =

Ë
F (u)

Èu=g(b)

u=g(a)
. (5.5.5)

I write the integral limits as “x = a”, “u = b” and so on to emphasize that u must completely displace
x, in three places:

• in the formula for the integrand, f(u) replaces f(g(x));

• in the differential, du replaces
du

dx
dx = gÕ(x)dx; and
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• in the limits of integration, c = g(a) and d = g(b) replace a and b.

Checkpoint 5.5.10
⁄ 4

0

Ô
2x + 1 dx

Checkpoint 5.5.11
⁄ 2

1

1
(3 ≠ 5x)2 dx, =

⁄ 2

1

dx

(3 ≠ 5x)2

Checkpoint 5.5.12 Evaluate
⁄ e

1

ln x

x
dx.

Try it both ways: using the above formula , and by first finding the indefinite integral as a function
of x and then using the FTC.

Short-cuts From Symmetry. For even and odd functions integrated over a symmetric interval
[≠a, a], the intervals simplify:

• (a) If f(x) is odd
#
f(≠x) = ≠f(x)

$
then

⁄ a

≠a
f(x) dx = 0.

• (b) If f(x) is even
#
f(≠x) = f(x)

$
then

⁄ a

≠a
f(x) dx = 2

⁄ a

0
f(x) dx.

Checkpoint 5.5.13 Evaluate
⁄ 2

≠2
x6 + 1 dx.

Checkpoint 5.5.14 Evaluate
⁄ 1

≠1

tan x

1 + sec2 x
dx.

Exercises

Study Calculus Volume 1, Section 5.52; in particular Theorem 7, the Problem Solving Strategy that
follows it, Examples 30–33 (and maybe 34 and 35), Checkpoints 25–28, (and maybe 29 and 30), and
one or several exercises from each of the following ranges: 256–260, 261–270, 271–287 and 292–297;
Some suggested selections are Exercises 257, 261, 265, 271, 275, 281, 293, 297.
As noted above, for definite integrals one can either do it as described there (Theorem 8, Examples
34 and 35, Checkpoints 29 and 30) or (a) first get the indefinite integral

s
f(x)dx = F (x) + C using

substitution and then (b) use FTC:
s b

a f(x)dx = F (b) ≠ F (a).

5.6 Integrals Involving Exponential and Logarithmic Functions —
Summary

References.
• OpenStax Calculus Volume 1, Section 5.61

This section of the OpenStax text just introduces a couple useful new indefinite integrals, and then
gives some example and practicee of using them in combination with substitutions; these notes just
provide a brief study guide to that.

The main new integrals here are:
⁄

ex dx = ex + C

2openstax.org/books/calculus-volume-1/pages/5-5-substitution
1openstax.org/books/calculus-volume-1/pages/5-6-integrals-involving-exponential-and-logarithmic-functions

https://openstax.org/books/calculus-volume-1/pages/5-5-substitution
https://openstax.org/books/calculus-volume-1/pages/5-6-integrals-involving-exponential-and-logarithmic-functions
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⁄
ax dx = 1

ln a
ax + C, and

⁄
ln x dx = x ln(x) ≠ x + C = (x ≠ 1) ln x

along with ⁄ 1
x

dx = ln |x| + C

already seen.

Exercises

Study Calculus Volume 1, Section 5.62; in particular Examples 37, 38, 39, 41, 44, 45, 47, 48, the
Checkpoints that immediately follow each of those Examples, and a few Exercises from each of the
ranges 320–325, 328–339, and 355–357.

5.7 Integrals Resulting in Inverse Trigonometric Functions — Sum-
mary

References.
• OpenStax Calculus Volume 1, Section 5.71

As with Section 5.6, p. 85 , this section of the OpenStax text just introduces a few useful indefi-
nite integrals, and then gives some example and practice with using them in combination with
substitutions; often simple ones of the form u = ax; these notes just provide a brief guide to that.
The two very useful integrals here are

⁄
dxÔ

a2 ≠ x2 = arcsin(x/a) + C, a > 0, and
⁄

dx

a2 + x2 = 1
a

arctan(x/a) + C

The third one ⁄
dx

x
Ô

x2 ≠ a2 = 1
a

sec≠1(|x/a|) + C, a > 0

is also occasionally useful, but less often.

Exercises

Study Calculus Volume 1, Section 5.72. All Examples and Checkpoint items are worth looking at;
Then do a few Exercises from each of the ranges 391–394, 397–400, and 411–414.

2openstax.org/books/calculus-volume-1/pages/5-6-integrals-involving-exponential-and-logarithmic-functions
1openstax.org/books/calculus-volume-1/pages/5-7-integrals-resulting-in-inverse-trigonometric-functions
2openstax.org/books/calculus-volume-1/pages/5-7-integrals-resulting-in-inverse-trigonometric-functions

https://openstax.org/books/calculus-volume-1/pages/5-6-integrals-involving-exponential-and-logarithmic-functions
https://openstax.org/books/calculus-volume-1/pages/5-7-integrals-resulting-in-inverse-trigonometric-functions
https://openstax.org/books/calculus-volume-1/pages/5-7-integrals-resulting-in-inverse-trigonometric-functions


Appendix A

Study Guide

(Updated December 19, 2023)
Some suggested strategies when studying for tests and the final exam:

1. Review previous quizzes and tests, rework questions that you did not get completely correct,
and use this to identify topics and sections where you most need to review.

2. Cycle through the sections covered repeatedly, rather than trying to master everything in a
section before moving on.

3. When you start studying a section, first read through the class notes and corresponding part
of the OpenStax online text.

4. Then attempt each of the indicated examples on paper, initially not looking at the solutions
provided.

5. Once you have worked an example, check the text’s solutions.
6. Once you feel that you understand an example, try the Checkpoint item that immediately

follows, if there is one.
7. With the recommended Exercises, try a few at a time— if there are ranges of Exercises indicated,

initially attempt at most one from each range; return to others when you cycle back to the
section (see Item 2, p. 87).

Chapter 2, Limits.
• Calculus Volume 1, Section 2.11, In particular Example 1, as usual the Checkpoint immediately

following that (also 1 in this case), and Exercises 4, 5, 6, 16 and 17.
• Calculus Volume 1, Section 2.22, In particular Examples 4, 5, 7, 8, 9, 10 and 11, as usual the

Checkpoints immediately following those (4, 6, 7, 8, 9 and 10 in this case), and Exercises 30, 31,
35, 36, 37, 46–49, 77 and 79.

• Calculus Volume 1, Section 2.33, All Examples and Checkpoints are worth studying, and
Exercises 83, 85, 89, 91, 93, 97, 107, 111, 119, 121, 127, and 128.

• Calculus Volume 1, Section 2.44, All Examples and Checkpoints are worth studying, and
Exercises 133, 137, 141, 147, 150, 151, 154, 157, 163, and 165.

• Calculus Volume 1, Section 2.55, In particular Examples 39, 41, 43 and 44; the Checkpoints
immediately following those (28 and 30), and Exercises 177, 184, 185, 187, and 191.

1openstax.org/books/calculus-volume-1/pages/2-1-a-preview-of-calculus
2openstax.org/books/calculus-volume-1/pages/2-2-the-limit-of-a-function
3openstax.org/books/calculus-volume-1/pages/2-3-the-limit-laws
4openstax.org/books/calculus-volume-1/pages/2-4-continuity
5openstax.org/books/calculus-volume-1/pages/2-5-the-precise-definition-of-a-limit
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https://openstax.org/books/calculus-volume-1/pages/2-1-a-preview-of-calculus
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Chapter 3, Derivatives.
• Calculus Volume 1, Section 3.16; in particular Examples 1,2, 3, 5, 6 and 9, Checkpoint items 1, 3

and 4, and Exercises 1, 7, 11, 13, 15, 25, 37, 39, 41 and 51.
• Calculus Volume 1, Section 3.27: all Examples and Checkpoint items are worth reviewing, and

Exercises 55, 57, 65, 67, 79, 80 and 96.
• Calculus Volume 1, Section 3.38: all Examples, Checkpoint items 12 to 19 and Exercises 107,

109, 111, 119, 122, 127, 129, 130, 131, 133, 142, 143 and 147.
• Calculus Volume 1, Section 3.49: Examples 34 to 36, Checkpoint item 22, and Exercises 151, 159

and 165.
• Calculus Volume 1, Section 3.510; in particular Examples 39–44, Checkpoint items 25–30, and

Exercises 175, 178, 181, 182, 191, 197 and 206.
• Calculus Volume 1, Section 3.611 Examples 48, 48, 50, 52 and 53, all Checkpoint items, and

Exercises 215, 217, 219, 221, 224, 229, 233, 235, 245, 251 and 257.
• Calculus Volume 1, Section 3.712; Examples 61–67, Checkpoint items 43–46, and Exercises 265,

267, 269, 271, 279, and 291.
Hint for Exercise 279. One approach is to use the "equation solving" strategy of making the
inverse function disappear: solve for sin(y) = x2 and then differentiate each side of that
equation.

• Calculus Volume 1, Section 3.813 Examples 68, 69, 71 and 72, both Checkpoint items, and
Exercises 301, 303, 305, 307, 311, 316, 325, and 329.

• Calculus Volume 1, Section 3.914 Examples 74, 75, 77, 78, 81 and 82, Checkpoint 54, and
Exercises 333, 339, 347, 351 and 353.
We in particular emphasize the last topic of Logarithmic Differentiation, using the strategy
of simplifying functions of the form log(. . . ) using the laws of logarithms like log(ab) =
log(a) + log(b).

Chapter 4, Applications of Derivatives.
• Calculus Volume 1, Section 4.115: all Examples and Checkpoints and Exercises 1, 3, 5, 7, 9, 17,

and 25.
• Calculus Volume 1, Section 4.216 all Examples and Checkpoints and a few Exercises from each

of the ranges 50–55, 62–67, 68–71, 72–77, 78–83, 84–86; for example, Exercises 49, 51, 52, 57, 69,
73, 79 and 84.

• Calculus Volume 1, Section 4.317: in particular the Problem Solving Strategy, both Examples and
Checkpoints, and a few Exercises from each of the ranges 91–98, 100–103, 104–107, 108–117,
118–128 and 129–134. (Some suggested selections are Exercises 91, 93, 97, 101, 107, 109, 119
and 129.)
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• Calculus Volume 1, Section 4.418. Pay particular attention the Corollaries of the Mean Value
Theorem in the second half: Theorems 6, 7 and 8: these will be extremely useful for applications
later in this chapter.
Study Examples 14 and 15, Checkpoint 14, and a selection from Exercises 148–150, 152–156,
161–166, 167–169, 182–184, and 190–193.
Here I group the exercises in ranges by "question type", so start by trying one or two from each
of the six ranges. For example, some suggested selections are Exercises 149, 153, 161, 169, 182
and 192.

• Calculus Volume 1, Section 4.519: the Problem Solving Strategy, the First Derivative Test, the
Second Derivative Test all Examples and Checkpoints, and a selection from Exercises 194–200,
201–205, 206–210, 211–215, 216–220, 221–223 and 224–230.
Some suggested selections are Exercises 199, 201, 203, 213, 215, 217, 223, 225, 229.

• Calculus Volume 1, Section 4.620 Examples 21–26, 28, 29 and 31, Checkpoints 20, 23–25, 27, 28
and 30, (We omit oblique asymptotes, so skip Example 30 and Checkpoint 29) and a selection
from Exercises 251–255, 256–260, 261–270, 271–281, 285–288 and 294–298.
Here the exercises are grouped in ranges by "question type", so start by trying one or two from
each of the seven ranges; some suggested selections are Exercises 251, 256, 257, 259, 261, 263,
265, 267, 271, 279, 281, 285, 306 and 307.

• Calculus Volume 1, Section 4.721 Examples 33–35 and 37, Checkpoints 31–34 and 36, and a
selection from Exercises 311–314, 315–318, 319–321, 322–326, 335–336 and 351–355.
Here the exercises are grouped in ranges by "question type", so start by trying one or two from
each of the seven ranges; some suggested selections are Exercises 311, 316, 320, 322, 335 and
353.

• Calculus Volume 1, Section 4.822 Examples 38–41, 43 and 44, Checkpoints 37–40, 42 and 43,
and a selection from Exercises 356–361, 362–366, 367–385, 387–389 and 391–395.
Here the exercises are grouped in ranges by "question type", so start by trying one or two from
each of the ranges; some suggested selections are Exercises 357, 359, 363, 367, 371, 377, 379,
387, and 393.

• Calculus Volume 1, Section 4.1023 all the Examples and Checkpoints and a selection from
Exercises 4465–469, 470–473, 474–489, 490–498, 499–503 and 504–508.
Here the exercises are grouped in ranges by "question type", so start by trying several from
each of the ranges; some suggested selections are Exercises 465, 467, 469, 471, 477, 487, 491,
493, 499, 501 and 505.
Hint: It often helps to simplify the function first, and then use the list of derivatives and
indefinite integrals in the online test.

Chapter 5, Integrals.
• Calculus Volume 1, Section 5.124 If you are unfamiliar with the � notation for sums, the first

part of that section should help. Study Example 4, Checkpoint 4, and Exercises 15, 19, 23, 27,
29, and 43.

• Calculus Volume 1, Section 5.225 Examples 8–13, Checkpoints–12, and Exercises 61, 65, 73, 75,
79, 81, 89, 91, 93, 99, 101 and 107.
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• Calculus Volume 1, Section 5.326 Theorems 4 and 5, Examples 17, 18, 20 and 21; Checkpoints
16, 17 and 19; and Exercises 147, 149, 153, 155, 157, 161, 171, 177, 179, 183, 190, 191 and 195.

• Calculus Volume 1, Section 5.427 Theorem 6, Examples 23–26, 28 and 29, Checkpoints 21, 22
and 24, and Exercises 207, 209, 211 and 223.

• Calculus Volume 1, Section 5.528: Theorem 7, the Problem Solving Strategy that follows it,
Examples 30–33 (and maybe 34 and 35), Checkpoints 25–28, (and maybe 29 and 30), and one
or several exercises from each of the following ranges: 256–260, 261–270, 271–287 and 292–297;
Some suggested selections are Exercises 257, 261, 265, 271, 275, 281, 293, 297.
Note that, for definite integrals one can either do it as described there (Theorem 8, Examples
34 and 35, Checkpoints 29 and 30) or (a) first get the indefinite integral

s
f(x)dx = F (x) + C

using substitution and then (b) use FTC:
s b

a f(x)dx = F (b) ≠ F (a).

• Calculus Volume 1, Section 5.629 Examples 37, 38, 39, 41, 44, 45, 47, 48, the Checkpoints that
immediately follow each of those, and a few Exercises from each of the ranges 320–325, 328–339
and 355–357.

• Calculus Volume 1, Section 5.730 All Examples and Checkpoint items are worth looking at; and
study a few Exercises from each of the ranges 391–394, 397–400, and 411–414.
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Appendix B

Some Tables

• OpenStax Calculus Volume 1, Appendix B: Table of Derivatives.1The relevant ones are up to
Exponential and Logarithmic Functions; you may ignore the ones towards the end involving
hyperbolic functions.

• OpenStax Calculus Volume 1, Appendix A: Table of Integrals.2Only a few of these are are
relevant; up to number 16. (The rest are for use in Calculus 2, MATH 220). Use this list to test
yourself on those basic ones.

1openstax.org/books/calculus-volume-1/pages/b-table-of-derivatives
2openstax.org/books/calculus-volume-1/pages/a-table-of-integrals
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