
Introduction to Numerical Methods and
Analysis with Julia (draft)

Brenton LeMesurier (College of Charleston, South Carolina) with contributions from Stephen Roberts (Australian National University).

Nov 22, 2022





CONTENTS

1 Introduction 3
1.1 Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Julia: a New Alternative to Matlab and Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Root-finding 5
2.1 Root Finding by Interval Halving (Bisection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Solving Equations by Fixed Point Iteration (of Contraction Mappings) . . . . . . . . . . . . . . . . . . 13
2.3 Newton’s Method for Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Taylor’s Theorem and the Accuracy of Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Measures of Error and Order of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 The Convergence Rate of Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7 Root-finding without Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Linear Algebra and Simultaneous Equations 63
3.1 Row Reduction/Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Machine Numbers, Rounding Error and Error Propagation . . . . . . . . . . . . . . . . . . . . . . . 81
3.3 Partial Pivoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4 Solving 𝐴𝑥 = 𝑏 with LU factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5 Solving 𝐴𝑥 = 𝑏 With Both Pivoting and LU Factorization . . . . . . . . . . . . . . . . . . . . . . . . 103
3.6 Error bounds for linear algebra, condition numbers, matrix norms, etc. . . . . . . . . . . . . . . . . . 111
3.7 Iterative Methods for Simultaneous Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.8 Faster Methods for Solving 𝐴𝑥 = 𝑏 for Tridiagonal and Banded matrices, and Strict Diagonal Dominance125
3.9 Computing Eigenvalues and Eigenvectors: the Power Method, and a bit beyond . . . . . . . . . . . . . 129
3.10 Solving Nonlinear Systems of Equations by generalizations of Newton’s Method — a brief introduction 134

4 Polynomial Collocation and Approximation 137
4.1 Polynomial Collocation (Interpolation/Extrapolation) and Approximation . . . . . . . . . . . . . . . . 137
4.2 Error Formulas for Polynomial Collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.3 Choosing the collocation points: the Chebyshev method . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.4 Piecewise Polynomial Approximating Functions: Splines and Hermite Cubics . . . . . . . . . . . . . . 155
4.5 Least-Squares Fitting to Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.6 Least-squares Fitting to Data: Appendix on The Geometrical Approach . . . . . . . . . . . . . . . . . 172

5 Derivatives and Definite Integrals 175
5.1 Approximating Derivatives by the Method of Undetermined Coefficients . . . . . . . . . . . . . . . . 175
5.2 Richardson Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.3 Definite Integrals, Part 1: The Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.4 Definite Integrals, Part 2: The Composite Trapezoid and Midpoint Rules . . . . . . . . . . . . . . . . 191
5.5 Definite Integrals, Part 3: The (Composite) Simpson’s Rule and Richardson Extrapolation . . . . . . . 196
5.6 Definite Integrals, Part 4: Romberg Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

i



6 Minimization 201
6.1 Finding the Minimum of a Function of One Variable Without Using Derivatives – under construction . 201
6.2 Finding the Minimum of a Function of Several Variables — Coming Soon . . . . . . . . . . . . . . . 203

7 Initial Value Problems for Ordinary Differential Equations 205
7.1 Basic Concepts and Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.2 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.3 A Global Error Bound for One Step Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
7.4 Systems of ODEs and Higher Order ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
7.5 Error Control and Variable Step Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.6 An Introduction to Multistep Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.7 Adams-Bashforth Multistep Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.8 Implicit Methods: Adams-Moulton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

8 Bibliography 317

9 Appendices 319
9.1 Installing Julia and some useful add-ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
9.2 Notes on the Julia Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
9.3 Module NumericalMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Bibliography 361

Proof Index 363

ii



Introduction to Numerical Methods and Analysis with Julia (draft)

Brenton LeMesurier College of Charleston, Charleston, South Carolina lemesurierb@cofc.edu,
with contributions by Stephen Roberts (Australian National University)
Last revised November 22, 2022
Recent changes:

• Improved formating of definitions, theorems, proofs, examples, remarks, etc. (ongoing!)
• Created a small bibliography using a BiBTeX file: see https://jupyterbook.org/en/stable/tutorials/references.html
• Added a draft section Piecewise Polynomial Approximating Functions: Splines and Hermite Cubics, based on notes
by Stephen Roberts.

• Added a draft section Choosing the collocation points: the Chebyshev method, based on notes by Stephen Roberts.
• Added notes on the stiff limit 𝐾 = 𝐷 ≫ 1 of the damped mass-spring system (use this for future stiff-stability
examples.)

• Expanded the notes on Adams-Bashforth methods, and revised somewhat the notes on leapfrog.
• Added first drafts of some sections on multi-step methods: leapfrog, Adams-Bashforth methods and Adams-
Moulton methods.

This Jupyter book is a sibling of “… with Python”, both of which are based on Elementary Numerical Analysis with
Python, my notes for the course Elementary Numerical Analysis at the University of Northern Colorado in Spring 2021.)
The material is based in part on Jupyter notebooks and other materials for the courses MATH 245, MATH 246, MATH
445 andMATH 545 at the College of Charleston, South Carolina, andMATH 375 at the University of Northern Colorado.
To do:

• Add the basics of boundary value probems for ODEs, with both finite diference and (finite) element mthods.
• Positive definiite matrices and the Cholesky factorization.
• More on minimization
• Predicror-corrector methods for ODE IVP’s.
• Stability analysis for multi-step methods.
• Continue updating the formating of definitions, theorems, proofs, examples, remarks, etc. and MyST notation
for references, from An Introduction to Multistep Methods onward. For details https://jupyterbook.org/en/stable/
tutorials/references.html or here in the Jupyterbook documentation. For example

– label a section heading with preceeding line “(label-text)=”
– link to such a label with “{ref}(label-text)” or “[link text](label-text)”

• More exercises
• Gather exercises at the end of each section, with links to them from their current location.
• Expand the notes on “Julia for people who know Matlab or Python”, Notes on the Julia Language

This is published at http://lemesurierb.people.cofc.edu/introduction-to-numerical-methods-and-analysis-julia/
and its Python sibling at http://lemesurierb.people.cofc.edu/introduction-to-numerical-methods-and-analysis-python/

About Julia

CONTENTS 1

mailto:lemesurierb@cofc.edu
https://jupyterbook.org/en/stable/tutorials/references.html
http://lemesurierb.people.cofc.edu/elementary-numerical-analysis-python/
http://lemesurierb.people.cofc.edu/elementary-numerical-analysis-python/
https://jupyterbook.org/en/stable/tutorials/references.html
https://jupyterbook.org/en/stable/tutorials/references.html
https://jupyterbook.org/en/stable/content/references.html?highlight=cross-references#references-and-cross-references
http://lemesurierb.people.cofc.edu/introduction-to-numerical-methods-and-analysis-julia/
http://lemesurierb.people.cofc.edu/introduction-to-numerical-methods-and-analysis-python/


Introduction to Numerical Methods and Analysis with Julia (draft)

On the topic of programming, this book tries to address two audiences: people who already know Julia (only a basic famil-
iarity is needed), and people who are familiar with either Matlab or “Python Scientific” (Python + NumPy + Matplotlib)
and are Julia-curious.
Julia is designed with a fair degree of backward compatability with Matlab, and NumPy and Matplotlib often mimic
Matlab syntax too, so the jump is not so big.
To help, there are two appendices

• Installing Julia and some useful add-ons and
• Notes on the Julia Language

Some Further Reading on Numerical Methods and Analysis

• [Sauer, 2019] Numerical Analysis by Timothy Sauer, 2nd or 3rd edition.
• [Burden et al., 2016] Numerical Analysis by Richard L. Burden and J. Douglas Faires, 9th edition.
• [Chenney and Kincaid, 2012] Numerical Mathematics and Computing by Ward Chenney and David Kincaid.
• [Kincaid and Chenney, 1990] Numerical Analysis by David Kincaid and Ward Chenney.

This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International

2 CONTENTS

https://creativecommons.org/licenses/by-sa/4.0/


CHAPTER

ONE

INTRODUCTION

This book addresses the design and analysis of methods for computing numerical values for solutions to mathematical
problems. Most often, only accurate approximations are possible rather than exact solutions, so a key mathematical goals
is to assess the accuracy of such approximations.
Given that most numerical methods allow any degree of accuracy to be achieved by working hard enough, the next level
of analysis is assessing cost, or equivalently speed, or more generally the efficiency of resource usage. The most natural
question then is how much time and other resources are needed to achieve a given degree of accuracy.

1.1 Topics

The main areas of interest are:
1. Finding the zeros of a function: solving 𝑓(𝑥) = 0.
2. Solving systems of simultaneous linear equations; in matrix-vector notation, solving 𝐴𝑥 = 𝑏 for 𝑥.
3. Fitting polynomials to a collection of data points, either exactly (collocation) or approximately (by least-squares).
4. Approximating a function by a polynomial, or several polynomials.
5. Approximating derivatives and definite integrals.
6. Finding the minimum of a function.
7. Solving initial value problems for ordinary differential equations.

Although it is the last major topic, the numerical solution of differential equations will often be mentioned earlier as a
motivation for other topics. However, we start in a simpler setting: the problem of finding the zeros of a real-valued
function: solving 𝑓(𝑥) = 0.

1.2 Julia: a New Alternative to Matlab and Python

The two dominant dynamic programming language environments for numerical computing and graphics are
• the open-source combination of Python with Numpy, Matplotlib, SciPy and other packages, sometime claled
Python Scientific, and

• the older, commercial product Matlab(TM).
Though I generally recommend the former, Matlab is long-established, especially in engineering fields, and has advantages
in a few respects, like notation for working with matrices and vectors that is cleaner and closer to standard mathematical
notation.
One more recent innovation is the Julia language, which for one thing combines many of the virtues of both:

3

https://julialang.org/


Introduction to Numerical Methods and Analysis with Julia (draft)

• Like Python, it is open source with some nice modern programming language features (some newer and improving
on Python), while also being

• more compatability in its syntax and notation with existing Matlab code and standard linear algebra notation.
• Also, Julia code usually runs faster that either Python or Matlab.

P.S. What does Jupyter mean?
“JuPyteR” is a portmanteau of the names of three important modern open-source programming tools for scientific com-
puting:

• Julia,
• Python, and
• R (which is for statistical computing).

So in particular, Jupyter notebooks and Jupyter books work fine with Julia, and a Jupyter book can use a mix of different
languages in different sections.

4 Chapter 1. Introduction



CHAPTER

TWO

ROOT-FINDING

2.1 Root Finding by Interval Halving (Bisection)

References:
• Section 1.1 The Bisection Method in Numerical Analysis by Sauer [Sauer, 2019]
• Section 2.1 The Bisection Method in Numerical Analysis by Burden, Faires and Burden [Burden et al., 2016]

(See the Bibliography.)

2.1.1 Introduction

One of the most basic tasks in numerical computing is finding the roots (or “zeros”) of a function — solving the equation
𝑓(𝑥) = 0 where 𝑓 ∶ ℝ → ℝ is a continuous function from and to the real numbers. As with many topics in this course,
there are multiple methods that work, and we will often start with the simplest and then seek improvement in several
directions:

• reliability or robustness— how good it is at avoiding problems in hard cases, such as division by zero.
• accuracy and guarantees about accuracy like estimates of how large the error can be — since in most cases, the
result cannot be computed exactly.

• speed or cost — often measured by minimizing the amount of arithmetic involved, or the number of times that a
function must be evaluated.

We use the package PyPlot; see the notes on plotting graphs and on using package and modules in Notes on the Julia
Language.

using PyPlot

Example 2.1 (Solve 𝑥 = cos𝑥)
This is a simple equation for which there is no exact formula for a solution, but we can easily ensure that there is a solution,
and moreover, a unique one. It is convenient to put the equation into “zero-finding” form 𝑓(𝑥) = 0, by defining

𝑓(𝑥) ∶= 𝑥 − cos𝑥.

Also, note that | cos𝑥| ≤ 1, so a solution to the original equation must have |𝑥| ≤ 1. So we will start graphing the function
on the interval [𝑎, 𝑏] = [−1, 1].

5



Introduction to Numerical Methods and Analysis with Julia (draft)

f(x) = x - cos(x);

Remark 2.1 (On Julia)
For notes on this compact version of Julia function syntax, see Functions, part 1 in Notes on the Julia Language.

a = -1.0
b = 1.0;

Remark 2.2 (On Julia)
See the notes on the function range used below in Notes on the Julia Language.

x = range(a, b, 100)
figure(figsize=[10,6])
plot(x, f.(x));
plot([a, b], [0, 0], "g"); # Mark the x-axis in green
grid(true) # Add a graph paper background

This shows that the zero lies between 0.5 and 0.75, so zoom in:

a = 0.5
b = 0.75
x = range(a, b, 100)
figure(figsize=[10,6])
plot(x, f.(x))
plot([a, b], [0, 0], "g")
grid(true)

6 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

And we could repeat, geting an approximation of any desired accuracy.
However this has two weaknesses: it is very inefficient (the function is evaluated about fifty times at each step in order to
draw the graph), and it requires lots of human intervention.
To get a procedure that can be efficiently implemented in Julia (or another programming language of your choice), we
extract one key idea here: finding an interval in which the function changes sign, and then repeatedly find a smaller such
interval within it. The simplest way to do this is to repeatedly divide an interval known to contain the root in half and
check which half has the sign change in it.
Graphically, let us start again with interval [𝑎, 𝑏] = [−1, 1], but this time focus on three points of interest: the two ends
and the midpoint, where the interval will be bisected:

a = -1.0
b = 1.0
c = (a+b)/2
println("a=$a, b=$b, c=$c")

a=-1.0, b=1.0, c=0.0

Remark 2.3 (On Julia)
If you are unfamiliar with println see the notes on Displaying values in Notes on the Julia Language.

acb = [a c b]
figure(figsize=[10,6])
plot(acb, f.(acb), "b*")
# And just as a visual aid:
x = range(a, b, 100)
plot(x, f.(x), "b-.")

(continues on next page)

2.1. Root Finding by Interval Halving (Bisection) 7



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

plot([a, b], [0, 0], "g")
grid(true)

𝑓(𝑎) and 𝑓(𝑐) have the same sign, while 𝑓(𝑐) and 𝑓(𝑏) have opposite signs, so the root is in [𝑐, 𝑏]; update the a, b, c values
and plot again:

a = c # new left end is old center
b = b # redundant, as the right end is unchanged
c = (a+b)/2
println("a=$a, b=$b, c=$c")

a=0.0, b=1.0, c=0.5

acb = [a c b]
figure(figsize=[10,6])
plot(acb, f.(acb), "b*")
x = range(a, b, 100)
plot(x, f.(x), "b-.")
plot([a, b], [0, 0], "g")
grid(true)

8 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

Again 𝑓(𝑐) and 𝑓(𝑏) have opposite signs, so the root is in [𝑐, 𝑏], and …

a = c # new left end is old center again
# skipping the redundant "b = b" this time
c = (a+b)/2
println("a=$a, b=$b, c=$c")

a=0.5, b=1.0, c=0.75

acb = [a c b]
figure(figsize=[10,6])
plot(acb, f.(acb), "b*")
x = range(a, b, 100)
plot(x, f.(x), "b-.")
plot([a, b], [0, 0], "g")
grid(true)

2.1. Root Finding by Interval Halving (Bisection) 9



Introduction to Numerical Methods and Analysis with Julia (draft)

This time 𝑓(𝑎) and 𝑓(𝑐) have opposite sign, so the root is at left, in [𝑎, 𝑐]:

# this time, the value of a does not need to be updated ...
b = c # ... and the new right end is the former center
c = (a+b)/2
println("a=$a, b=$b, c=$c")

a=0.5, b=0.75, c=0.625

acb = [a c b]
figure(figsize=[10,6])
plot(acb, f.(acb), "b*")
x = range(a, b, 100)
plot(x, f.(x), "b-.")
plot([a, b], [0, 0], "g")
grid(true)

10 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

2.1.2 A first algorithm for the bisection method

Now it is time to dispense with the graphs, and describe the procedure in mathematical terms:
• if 𝑓(𝑎) and 𝑓(𝑐) have opposite signs, the root is in interval [𝑎, 𝑐], which becomes the new version of interval [𝑎, 𝑏].
• otherwise, 𝑓(𝑐) and 𝑓(𝑏) have opposite signs, so the root is in interval [𝑐, 𝑏]

Pseudo-code for describing algorithms

As a useful bridge from the mathematical desciption of an algorithm with words and formulas to actual executable code,
these notes will often describe algorithms in pseudo-code—amix of words and mathematical formulas with notation that
somewhat resembles code in a language like Julia.
This is also preferable to going straight to code in a particular programming language (such as Julia) because it makes it
easier if, later, you wish to implement algorithms in a different language.
Note well one feature of the pseudo-code used here: assignment is denoted with a left arrow:
𝑥 ← 𝑎
is the instruction to cause the value of variable x to become the current value of a.
This is to distinguish from
𝑥 = 𝑎
which is a comparison: the true-or-false assertion that the two quantities already have the same value.
Unfortunately however, Julia (like most programming languages) does not use this notation: instead assignment is done
with x = a so that asserting equality needs a differnt notation: this is done with x == a; note well that double equal
sign!
With that notational issue out of the way, the key step in the bisection strategy is the update of the interval:

2.1. Root Finding by Interval Halving (Bisection) 11



Introduction to Numerical Methods and Analysis with Julia (draft)

Algorithm 2.1 (one step of bisection)

𝑐 ← 𝑎 + 𝑏
2 if 𝑓(𝑎)𝑓(𝑐) < 0 then 𝑏 ← 𝑐 else 𝑎 ← 𝑐 end

This needs to be repeated a finite number of times, and the simplest way is to specify the number of iterations. (We will
consider more refined methods soon.)

Algorithm 2.2 (bisection, first version)
• Get an initial interval [𝑎, 𝑏] with a sign-change: 𝑓(𝑎)𝑓(𝑏) < 0.
• Choose 𝑁 , the number of iterations.

• for i from 1 to N 𝑐 ← 𝑎 + 𝑏
2 if 𝑓(𝑎)𝑓(𝑐) < 0 then 𝑏 ← 𝑐 else: 𝑎 ← 𝑐 end end

• The approximate root is the final value of 𝑐.

A Julia version of the iteration is not a lot different:

for i in 1:N
c = (a+b)/2
if f(a) * f(c) < 0

b = c
else

a = c
end

end

Remark 2.4 (On Julia)
See the notes on Iteration and Conditionals on the syntax seen here for first time.

See Exercise A.

2.1.3 Error bounds, and a more refined algorithm

The above method of iteration for a fixed number of times is simple, but usually not what is wanted in practice. Instead, a
better goal is to get an approximation with a guaranteed maximum possible error: a result consisting of an approximation
̃𝑟 to the exact root 𝑟 and also a bound 𝐸𝑚𝑎𝑥 on the maximum possible error; a guarantee that |𝑟 − ̃𝑟| ≤ 𝐸𝑚𝑎𝑥. To put it
another way, a guarantee that the root 𝑟 lies in the interval [ ̃𝑟 − 𝐸𝑚𝑎𝑥, ̃𝑟 + 𝐸𝑚𝑎𝑥].
In the above example, each iteration gives a new interval [𝑎, 𝑏] guaranteed to contain the root, and its midpoint 𝑐 =
(𝑎 + 𝑏)/2 is with a distance (𝑏 − 𝑎)/2 of any point in that interval, so at each iteration, we can have:

• ̃𝑟 is the current value of 𝑐 = (𝑎 + 𝑏)/2
• 𝐸𝑚𝑎𝑥 = (𝑏 − 𝑎)/2

12 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

2.1.4 Error tolerances and stopping conditions

The above algorthm can passively state an error bound, but it is better to be able to solve to a desired degree of accuracy;
for example, if we want a result “accurate to three decimal places”, we can specify 𝐸𝑚𝑎𝑥 ≤ 0.5 × 10−3.
So our next goal is to actively set an accuracy target or error tolerance 𝐸𝑡𝑜𝑙 and keep iterating until it is met. This can be
achieved with a while loop; here is a suitable algorithm:

Algorithm 2.3 (bisection with error tolerance)
• Input function 𝑓 , interval endpoints 𝑎 and 𝑏, and an error tolerance 𝐸𝑡𝑜𝑙

• Evaluate 𝐸𝑚𝑎𝑥 = (𝑏 − 𝑎)/2
• while 𝐸𝑚𝑎𝑥 > 𝐸𝑡𝑜𝑙: 𝑐 ← (𝑎 + 𝑏)/2 if 𝑓(𝑎)𝑓(𝑐) < 0 then 𝑏 ← 𝑐 else 𝑎 ← 𝑐 end

𝐸𝑚𝑎𝑥 ← (𝑏 − 𝑎)/2 end
• Output ̃𝑟 = 𝑐 as the approximate root and 𝐸𝑚𝑎𝑥 as a bound on its absolute error.

2.1.5 Exercises

Exercise A

Create a Julia function bisection1 which implements the first algorithm for bisection above, which performs a fixed
number 𝑁 of iterations; the usage should be: root = bisection1(f, a, b, N)

Test it with the above example: 𝑓(𝑥) = 𝑥 − cos𝑥 = 0, [𝑎, 𝑏] = [−1, 1]
Julia newcomers: see the notes introducing Julia Functions.

Exercise B

Create a Julia function implementing this better algorithm, with usage root = bisection2(f, a, b, E_tol)

Test it with the above example: 𝑓(𝑥) = 𝑥 − cos𝑥, [𝑎, 𝑏] = [−1, 1], this time accurate to within 10−4.
Use the fact that there is a solution in the interval (−1, 1).

2.2 Solving Equations by Fixed Point Iteration (of Contraction Map-
pings)

References:
• Section 1.2 Fixed-Point Iteration of [Sauer, 2019]
• Section 2.2 Fixed-Point Iteration of [Burden et al., 2016]

2.2. Solving Equations by Fixed Point Iteration (of Contraction Mappings) 13



Introduction to Numerical Methods and Analysis with Julia (draft)

2.2.1 Introduction

In the next section we will meet Newton’s Method for Solving Equations for root-finding, which you might have seen in a
calculus course. This is one very important example of a more general strategy of fixed-point iteration, so we start with
that.

using PyPlot

2.2.2 Fixed-point equations

A variant of stating equations as root-finding (𝑓(𝑥) = 0) is fixed-point form: given a function 𝑔 ∶ ℝ → ℝ or 𝑔 ∶ ℂ → ℂ
(or even 𝑔 ∶ ℝ𝑛 → ℝ𝑛; a later topic), find a fixed point of 𝑔. That is, a value 𝑝 for its argument such that

𝑔(𝑝) = 𝑝

Such problems are interchangeable with root-finding. One way to convert from 𝑓(𝑥) = 0 to 𝑔(𝑥) = 𝑥 is functionining

𝑔(𝑥) ∶= 𝑥 − 𝑤(𝑥)𝑓(𝑥)

for any “weight function” 𝑤(𝑥).
One can convert the other way too, for example functionining 𝑓(𝑥) ∶= 𝑔(𝑥) − 𝑥. We have already seen this when we
converted the equation 𝑥 = cos𝑥 to 𝑓(𝑥) = 𝑥 − cos𝑥 = 0.
Compare the two setups graphically: in each case, the 𝑥 value at the intersection of the two curves is the solution we seek.

f_1(x) = x - cos(x)
g_1(x) = cos(x);

a = -1.0
b = 1.0
x = range(a, b, 100);

figure(figsize=[10,6])
title("Zeros of y = f(x) = x - cos(x)")
plot(x, f_1.(x), label="y = f(x) = x - cos(x)")
plot([a, b], [0, 0], label="y = 0")
legend()
grid(true)

14 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

figure(figsize=[6,6])
title(L"Fixed points of the map $g_1(x) = \cos(x)$")
plot(x, g_1.(x), label=L"y = g_1(x) = \cos(x)")
plot(x, x, label="y=x")
legend()
grid(true);

2.2. Solving Equations by Fixed Point Iteration (of Contraction Mappings) 15



Introduction to Numerical Methods and Analysis with Julia (draft)

The fixed point form can be convenient partly because we almost always have to solve by successive approximations, or
iteration, and fixed point form suggests one choice of iterative procedure: start with any first approximation 𝑥0, and iterate
with

𝑥1 = 𝑔(𝑥0), 𝑥2 = 𝑔(𝑥1), … , 𝑥𝑘+1 = 𝑔(𝑥𝑘), …

Proposition 2.1
If 𝑔 is continuous, and if the above sequence {𝑥0, 𝑥1, … } converges to a limit 𝑝, then that limit is a fixed point of function
𝑔: 𝑔(𝑝) = 𝑝.

Proof. From lim
𝑘→∞

𝑥𝑘 = 𝑝, continuity gives

lim
𝑘→∞

𝑔(𝑥𝑘) = 𝑔(𝑝).

On the other hand, 𝑔(𝑥𝑘) = 𝑥𝑘+1, so

lim
𝑘→∞

𝑔(𝑥𝑘) = lim
𝑘→∞

𝑥𝑘+1 = 𝑝.

16 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

Comparing gives 𝑔(𝑝) = 𝑝.

That second “if” is a big one. Fortunately, it can often be resolved using the idea of a contraction mapping.

Definition 2.1 (Mapping)
A function 𝑔(𝑥) defined on a closed interval 𝐷 = [𝑎, 𝑏] which sends values back into that interval, 𝑔 ∶ 𝐷 → 𝐷, is
sometimes called a map or mapping.
(Aside: The same applies for a function 𝑔 ∶ 𝐷 → 𝐷 where 𝐷 is a subset of the complex numbers, or even of vectors ℝ𝑛

or ℂ𝑛.)

A mapping is sometimes thought of as moving a region 𝑆 within its domain 𝐷 to another such region, by moving each
point 𝑥 ∈ 𝑆 ⊂ 𝐷 to its image 𝑔(𝑥) ∈ 𝑔(𝑆) ⊂ 𝐷.
A very important case is mappings that shrink the region, by reducing the distance between points:

Proposition 2.2
Any continuous mapping on a closed interval [𝑎, 𝑏] has at least one fixed point.

Proof. Consider the “root-finding cousin”, 𝑓(𝑥) = 𝑥 − 𝑔(𝑥).
First, 𝑓(𝑎) = 𝑎 − 𝑔(𝑎) ≤ 0, since 𝑔(𝑎) ≥ 𝑎 so as to be in the domain [𝑎, 𝑏] — similarly, 𝑓(𝑏) = 𝑏 − 𝑔(𝑏) ≥ 0.
From the Intermediate Value Theorem, 𝑓 has a zero 𝑝, where 𝑓(𝑝) = 𝑝 − 𝑔(𝑝) = 0.
In other words, the graph of 𝑦 = 𝑔(𝑥) goes from being above the line 𝑦 = 𝑥 at 𝑥 = 𝑎 to below it at 𝑥 = 𝑏, so at some
point 𝑥 = 𝑝, the curves meet: 𝑦 = 𝑥 = 𝑝 and 𝑦 = 𝑔(𝑝), so 𝑝 = 𝑔(𝑝).

Example 2.2
Let us illustrate this with the mapping 𝑔4(𝑥) ∶= 4 cos𝑥, for which the fact that |𝑔4(𝑥)| ≤ 4 ensures that this is a map of
the domain 𝐷 = [−4, 4] into itself:

g_4(x) = 4cos(x)
a = -4.0
b = 4.0;

x = range(a, b, 100);
figure(figsize=[6,6])
title(L"Fixed points of the map $g_4(x) = 4 \cos(x)$")
plot(x, g_4.(x), label=L"y = g_4(x)")
plot(x, x, label="y=x")
legend()
grid(true);

2.2. Solving Equations by Fixed Point Iteration (of Contraction Mappings) 17



Introduction to Numerical Methods and Analysis with Julia (draft)

This example has multiple fixed points (three of them). To ensure both the existence of a unique solution, and covergence
of the iteration to that solution, we need an extra condition.

Definition 2.2 (Contraction Mapping)
A mapping 𝑔 ∶ 𝐷 → 𝐷, is called a contraction or contraction mapping if there is a constant 𝐶 < 1 such that

|𝑔(𝑥) − 𝑔(𝑦)| ≤ 𝐶|𝑥 − 𝑦|

for any 𝑥 and 𝑦 in 𝐷. We then call 𝐶 a contraction constant.
(Aside: The same applies for a domain in ℝ𝑛: just replace the absolute value | … | by the vector norm ‖ … ‖.)

Remark 2.5

It is not enough to have |𝑔(𝑥) − 𝑔(𝑦)| < |𝑥 − 𝑦| or 𝐶 = 1! We need the ratio |𝑔(𝑥) − 𝑔(𝑦)|
|𝑥 − 𝑦| to be uniformly less than

one for all possible values of 𝑥 and 𝑦.

Theorem 2.1 (A Contraction Mapping Theorem)

18 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

Any contraction mapping on a closed, bounded interval 𝐷 = [𝑎, 𝑏] has exactly one fixed point 𝑝 in 𝐷. Further, this can
be calculated as the limit 𝑝 = lim

𝑘→∞
𝑥𝑘 of the iteration sequence given by 𝑥𝑘+1 = 𝑔(𝑥𝑘) for any choice of the starting

point 𝑥0 ∈ 𝐷.

Proof. The main idea of the proof can be shown with the help of a few pictures.
First, uniqeness: between any two of the multiple fixed points above — call them 𝑝0 and 𝑝1 — the graph of 𝑔(𝑥) has
to rise with secant slope 1: (𝑔(𝑝1) − 𝑔(𝑝0)/(𝑝1 − 𝑝0) = (𝑝1 − 𝑝0)/(𝑝1 − 𝑝0) = 1, and this violates the contraction
property.
So instead, for a contraction, the graph of a contraction map looks like the one below for our favorite example, 𝑔(𝑥) =
cos𝑥 (which we will soon verify to be a contraction on interval [−1, 1]):
The second claim, about convergence to the fixed point from any initial approximation 𝑥0, will be verified below, once
we have seen some ideas about measuring errors.

An easy way of checking whether a differentiable function is a contraction

With differentiable functions, the contraction condition can often be easily verified using derivatives:

Theorem 2.2 (A derivative-based fixed point theorem)
If a function 𝑔 ∶ [𝑎, 𝑏] → [𝑎, 𝑏] is differentiable and there is a constant 𝐶 < 1 such that |𝑔"(𝑥)| ≤ 𝐶 for all 𝑥 ∈ [𝑎, 𝑏],
then 𝑔 is a contraction mapping, and so has a unique fixed point in this interval.

Proof. Using the Mean Value Theorem, 𝑔(𝑥) − 𝑔(𝑦) = 𝑔"(𝑐)(𝑥 − 𝑦) for some 𝑐 between 𝑥 and 𝑦. Rhen taking absolute
values,

|𝑔(𝑥) − 𝑔(𝑦)| = |𝑔"(𝑐)| ⋅ |(𝑥 − 𝑦)| ≤ 𝐶|(𝑥 − 𝑦)|.

Example 2.3 (𝑔(𝑥) = cos(𝑥) is a contraction on interval [−1, 1])
Our favorite example 𝑔(𝑥) = cos(𝑥) is a contraction, but we have to be a bit careful about the domain.
For all real 𝑥, 𝑔"(𝑥) = − sin𝑥, so |𝑔"(𝑥)| ≤ 1; this is almost but not quite enough.
However, we have seen that iteration values will settle in the interval 𝐷 = [−1, 1], and considering 𝑔 as a mapping of this
domain, |𝑔"(𝑥)| ≤ sin(1) = 0.841 ⋯ < 1: that is, now we have a contraction, with 𝐶 = sin(1) ≈ 0.841.
And as seen in the graph above, there is indeed a unique fixed point.

2.2. Solving Equations by Fixed Point Iteration (of Contraction Mappings) 19



Introduction to Numerical Methods and Analysis with Julia (draft)

The contraction constant 𝐶 as a measure of how fast the approximations improve (the smaller the
better)

It can be shown that if 𝐶 is small (at least when one looks only at a reduced domain |𝑥 − 𝑝| < 𝑅) then the convergence
is “fast” once |𝑥𝑘 − 𝑝| < 𝑅.
To see this, we define some jargon for talking about errors. (For more details on error concepts, see section Measures of
Error and Order of Convergence.)

Definition 2.3 (Error)
The error in ̃𝑥 as an approximation to an exact value 𝑥 is

error ∶= (approximation) − (exact value) = ̃𝑥 − 𝑥

This will often be abbreviated as 𝐸.

Definition 2.4 (Absolute Error)
The absolute error in ̃𝑥 an approximation to an exact value 𝑥 is themagnitude of the error: the absolute value |𝐸| = | ̃𝑥−𝑥|.
(Aside: This will later be extended to 𝑥 and ̃𝑥 being vectors, by again using the vector norm in place of the absolute value.
In fact, I will sometimes blur the distinction by using the “single line” absolute value notation for vector norms too.)

In the case of 𝑥𝑘 as an approximation of 𝑝, we name the error 𝐸𝑘 ∶= 𝑥𝑘 − 𝑝. Then 𝐶 measures a worst case for how fast
the error decreases as 𝑘 increases, and this is “exponentially fast”:

Proposition 2.3
|𝐸𝑘+1| ≤ 𝐶|𝐸𝑘|, or |𝐸𝑘+1|/|𝐸𝑘| ≤ 𝐶, and so

|𝐸𝑘| ≤ 𝐶𝑘|𝑥0 − 𝑝|

That is, the error decreases at worst in a geometric sequence, which is exponential decrease with respect to the variable
𝑘.

Proof. 𝐸𝑘+1 = 𝑥𝑘+1 − 𝑝 = 𝑔(𝑥𝑘) − 𝑔(𝑝), using 𝑔(𝑝) = 𝑝. Thus the contraction property gives

|𝐸𝑘+1| = |𝑔(𝑥𝑘) − 𝑔(𝑝)| ≤ 𝐶|𝑥𝑘 − 𝑝| = 𝐶|𝐸𝑘|

Applying this again,

|𝐸𝑘| ≤ 𝐶|𝐸𝑘−1| ≤ 𝐶 ⋅ 𝐶|𝐸𝑘−2| = 𝐶2|𝐸𝑘−2|

and repeating 𝑘 − 2 more times,

|𝐸𝑘| ≤ 𝐶𝑘|𝐸0| = 𝐶𝑘|𝑥0 − 𝑝|.

Remark 2.6
We will often use this “recursive” strategy of relating the error in one iterate to that in the previous iterate.

20 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

We can now complete the proof of the above contraction mapping theorem Theorem 2.1

Proof. This now follows from Proposition 2.3

For any initial approximation 𝑥0, we know that |𝐸𝑘| ≤ 𝐶𝑘|𝑥0 − 𝑝|, and with 𝐶 < 1, this can be made as small as we
want by choosing a large enough value of 𝑘. Thus

lim
𝑘→∞

|𝐸𝑘| = lim
𝑘→∞

|𝑥𝑘 − 𝑝| = 0,

which is another way of saying that lim
𝑘→∞

𝑥𝑘 = 𝑝, or 𝑥𝑘 → 𝑝, as claimed.

Example 2.4 (Solving 𝑥 = cos𝑥 with a naive fixed point iteration)
We have seen that one way to convert the example 𝑓(𝑥) = 𝑥 − cos𝑥 = 0 to a fixed point iteration is 𝑔(𝑥) = cos𝑥, and
that this is a contraction on 𝐷 = [−1, 1]
Here is what this iteration looks like:

a = 0.0
b = 1.0
x = range(a, b, 100)
iterations = 10

# Start at left
x_k = a
figure(figsize=[6,6])
title(L"Solving $x = \cos(x)$ starting to the left, at $x_0 =$"*" $a")
plot(x, x, "g")
plot(x, g_1.(x), "r")
grid(true)
println("x_0 = $x_k")
for k in 1:iterations

g_x_k = g_1(x_k)
# Graph evalation of g(x_k) from x_k:
plot([x_k, x_k], [x_k, g_1(x_k)], "b")
x_k_plus_1 = g_1(x_k)
#Connect to the new x_k on the line y = x:
plot([x_k, g_1(x_k)], [x_k_plus_1, x_k_plus_1], "b")
# Update names: the old x_k+1 is the new x_k
x_k = x_k_plus_1
println("x_$(k) = $x_k")

end

x_0 = 0.0
x_1 = 1.0
x_2 = 0.5403023058681398
x_3 = 0.8575532158463934
x_4 = 0.6542897904977791
x_5 = 0.7934803587425656
x_6 = 0.7013687736227565
x_7 = 0.7639596829006542
x_8 = 0.7221024250267077
x_9 = 0.7504177617637605
x_10 = 0.7314040424225098

2.2. Solving Equations by Fixed Point Iteration (of Contraction Mappings) 21



Introduction to Numerical Methods and Analysis with Julia (draft)

# Start at right
x_k = b
figure(figsize=[6,6])
title("Solving " * L"x = \cos(x)" * " starting to the right, at " * L"x_0 = " * "$b")
# Julia note: "*" is concatenation of strings
plot(x, x, "g")
plot(x, g_1.(x), "r")
grid(true)
println("x_0 = $x_k")
for k in 1:iterations

g_x_k = g_1(x_k)
# Graph evalation of g(x_k) from x_k:
plot([x_k, x_k], [x_k, g_1(x_k)], "b")
x_k_plus_1 = g_1(x_k)
#Connect to the new x_k on the line y = x:
plot([x_k, g_1(x_k)], [x_k_plus_1, x_k_plus_1], "b")
# Update names: the old x_k+1 is the new x_k
x_k = x_k_plus_1
println("x_$(k) = $x_k")

end

22 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

x_0 = 1.0
x_1 = 0.5403023058681398
x_2 = 0.8575532158463934
x_3 = 0.6542897904977791
x_4 = 0.7934803587425656
x_5 = 0.7013687736227565
x_6 = 0.7639596829006542
x_7 = 0.7221024250267077
x_8 = 0.7504177617637605
x_9 = 0.7314040424225098
x_10 = 0.744237354900557

In each case, one gets a “box spiral” in to the fixed point. It always looks like this when 𝑔 is decreasing near the fixed
point.
If instead 𝑔 is increasing near the fixed point, the iterates approach monotonically, either from above or below:

Example 2.5 (Solving 𝑓(𝑥) = 𝑥2 − 5𝑥 + 4 = 0 in interval [0, 3])
The roots are 1 and 4; for now we aim at the first of these, so we chose a domain [0, 3] that contains just this root.

2.2. Solving Equations by Fixed Point Iteration (of Contraction Mappings) 23



Introduction to Numerical Methods and Analysis with Julia (draft)

Let us get a fixed point for by “partially solving for 𝑥”: solving for the 𝑥 in the 5𝑥 term:

𝑥 = 𝑔(𝑥) = (𝑥2 + 4)/5

f_2(x) = x^2 - 5*x + 4;
g_2(x) = (x^2 + 4)/5;

a = 0.0;
b = 3.0;
x = range(a, b, 100);

figure(figsize=[6,6])
title(L"Solving $y = f_2(x) = x^2-5x+4 = 0$")
plot(x, f_2.(x))
plot([a, b], [0, 0])
grid(true)

24 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

figure(figsize=[6,6])
title(L"Finding fixed point of $y = g_2(x) = (x^2 + 4)/5$")
plot(x, g_2.(x))
plot(x, x)
grid(true)

iterations = 10
a = 0.0
b = 1.5
x = range(a, b, 100);

# Start at left
x_k = a
figure(figsize=[6,6])
title(L"Starting to the left, at $x_0 =$"*"$a")
grid(true)
plot(x, x, "g")
plot(x, g_2.(x), "r")
println("x_0 = $x_k")
for k in 1:iterations

(continues on next page)

2.2. Solving Equations by Fixed Point Iteration (of Contraction Mappings) 25



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

g_x_k = g_2(x_k)
# Graph evalation of g(x_k) from x_k:
plot([x_k, x_k], [x_k, g_2(x_k)], "b")
x_k_plus_1 = g_2(x_k)
#Connect to the new x_k on the line y = x:
plot([x_k, g_2(x_k)], [x_k_plus_1, x_k_plus_1], "b")
# Update names: the old x_k+1 is the new x_k
x_k = x_k_plus_1
println("x_$(k) = $x_k")

end;

x_0 = 0.0
x_1 = 0.8
x_2 = 0.9280000000000002
x_3 = 0.9722368000000001
x_4 = 0.9890488790548482
x_5 = 0.9956435370319303
x_6 = 0.9982612105666906
x_7 = 0.9993050889044148
x_8 = 0.999722132142052
x_9 = 0.9998888682989302
x_10 = 0.999955549789623

26 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

# Start at right
a = 0.0;
b = 3.0;
x = range(a, b, 100)
x_k = b;
figure(figsize=[6,6])
title(L"Starting to the right, at $x_0 =$"*"$b")
grid(true)
plot(x, x, "g")
plot(x, g_2.(x), "r")
println("x_0 = $x_k")
for k in 1:iterations

g_x_k = g_2(x_k)
# Graph evalation of g(x_k) from x_k:
plot([x_k, x_k], [x_k, g_2(x_k)], "b")
x_k_plus_1 = g_2(x_k)
#Connect to the new x_k on the line y = x:
plot([x_k, g_2(x_k)], [x_k_plus_1, x_k_plus_1], "b")
# Update names: the old x_k+1 is the new x_k
x_k = x_k_plus_1
println("x_$(k) = $x_k")

end;

2.2. Solving Equations by Fixed Point Iteration (of Contraction Mappings) 27



Introduction to Numerical Methods and Analysis with Julia (draft)

x_0 = 3.0
x_1 = 2.6
x_2 = 2.152
x_3 = 1.7262208
x_4 = 1.3959676500705283
x_5 = 1.1897451360086866
x_6 = 1.0830986977312658
x_7 = 1.0346205578054328
x_8 = 1.014087939726725
x_9 = 1.0056748698998388
x_10 = 1.0022763887896116

28 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

2.2.3 Exercises

Exercise A

The equation 𝑥3 − 2𝑥 + 1 = 0 can be written as a fixed point equation in many ways, including

1. 𝑥 = 𝑥3 + 1
2

and
2. 𝑥 = 3√2𝑥 − 1

For each of these options:
(a) Verify that its fixed points do in fact solve the above cubic equation.
(b) Determine whether fixed point iteration with it will converge to the solution 𝑟 = 1. (assuming a “good enough” initial
approximation).
Note: computational experiments can be a useful start, but prove your answers mathematically!

2.3 Newton’s Method for Solving Equations

References:
• Section 1.4 Newton’s Method in [Sauer, 2019]
• Section 2.3 Newton’s Method and Its Extensions in [Burden et al., 2016]

2.3.1 Introduction

Newton’s method for solving equations has a number of advantages over the bisection method:
• It is usually faster (but not always, and it can even fail completely!)
• It can also compute complex roots, such as the non-real roots of polynomial equations.
• It can even be adapted to solving systems of non-linear equations; that topic wil be visited later.

using PyPlot

2.3.2 Derivation as a contraction mapping with “very small contraction coefficient
𝐶”

You might have previously seen Newton’s method derived using tangent line approximations. That derivation is presented
below, but first we approach it another way: as a particularly nice contraction mapping.
To compute a root 𝑟 of a differentiable function 𝑓 , we design a contraction mapping for which the contraction constant
𝐶 becomes arbitrarily small when we restrict to iterations in a sufficiently small interval around the root: |𝑥 − 𝑟| ≤ 𝑅.
That is, the error ratio |𝐸𝑘+1|/|𝐸𝑘| becomes ever smaller as the iterations get closer to the exact solution; the error is thus
reducing ever faster than the above geometric rate 𝐶𝑘.
This effect is in turn achieved by getting |𝑔"(𝑥)| arbitrarily small for |𝑥 − 𝑟| ≤ 𝑅 with 𝑅 small enough, and then using
the above connection between 𝑔"(𝑥) and 𝐶. This can be achieved by ensuring that 𝑔"(𝑟) = 0 at a root 𝑟 of 𝑓 — so long
as the root 𝑟 is simple: 𝑓"(𝑟) ≠ 0 (which is generically true, but not always).

2.3. Newton’s Method for Solving Equations 29



Introduction to Numerical Methods and Analysis with Julia (draft)

To do so, seek 𝑔 in the above form 𝑔(𝑥) = 𝑥 − 𝑤(𝑥)𝑓(𝑥), and choose 𝑤(𝑥) appropriately. At the root 𝑟,

𝑔′(𝑟) = 1 − 𝑤′(𝑟)𝑓(𝑟) − 𝑤(𝑟)𝑓 ′(𝑟) = 1 − 𝑤(𝑟)𝑓 ′(𝑟) (using 𝑓(𝑟) = 0, )

so we ensure 𝑔′(𝑟) = 0 by requiring 𝑤(𝑟) = 1/𝑓 ′(𝑟) (hence the problem if 𝑓 ′(𝑟) = 0).
We do not know 𝑟, but that does not matter! We can just choose 𝑤(𝑥) = 1/𝑓"(𝑥) for all 𝑥 values. That gives

𝑔(𝑥) = 𝑥 − 𝑓(𝑥)/𝑓 ′(𝑥)

and thus the iteration formula

𝑥𝑘+1 = 𝑥𝑘 − 𝑓(𝑥𝑘)/𝑓 ′(𝑥𝑘)

(That is, 𝑔(𝑥) = 𝑥 − 𝑓(𝑥)/𝑓 ′(𝑥).)
You might recognize this as the formula for Newton’s method.
To explore some examples of this, here is a function implementing Newton’s method.

Remark (On Julia)
This function uses optional keyword parameters with default values for the first time; these will be described in Functions,
part 2 in Notes on the Julia Language once they have been written.

Remark (A Julia module)
This and many other functions defined in this book are also gathered in the module NumericalMethods; see the
appendix Module NumericalMethods. It can be made available with the commands

include("NumericalMethods.jl")
using .NumericalMethods: newtonmethod

The dot at the start of the module name is a litle surprising; that is needed whe the module is defined locally; in this case
by that include line.

function newtonmethod(f, Df, x0, errortolerance; maxiterations=20, demomode=false)
# Basic usage is:
# (rootapproximation, errorestimate, iterations) = newton(f, Df, x0,␣

↪errortolerance)
# There is an optional input parameter "demomode" which controls whether to
# - println intermediate results (for "study" purposes), or to
# - work silently (for "production" use).
# The default is silence.

if demomode
println("Solving by Newton's Method.")
println("maxiterations = $maxiterations")
println("errortolerance = $errortolerance")

end
x = x0
global errorestimate # make it global to this function; without this it would be␣

↪local to the "for" loop.
for iteration in 1:maxiterations

fx = f(x)

(continues on next page)

30 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

Dfx = Df(x)
# Note: a careful, robust code would check for the possibility of division by␣

↪zero here,
# but for now I just want a simple presentation of the basic mathematical␣

↪idea.
dx = fx/Dfx
x -= dx # Aside: this is shorthand for "x = x - dx"
errorestimate = abs(dx);
if demomode

println("At iteration $iteration, x = $x with estimated error
↪$errorestimate and backward error $(abs(f(x)))")

end
if errorestimate <= errortolerance

if demomode
println("Done!")

end
return (x, errorestimate, iteration)

end
end
# Note: if we get to here (no "return" above), it completed maxIterations␣

↪iterations without satisfying the accuracy target,
# but we still return the information that we have.
return (x, errorestimate, maxiterations)

end;

Example
Let’s start with our favorite equation, 𝑥 = cos𝑥.

Remark (On Julia style)
Recommended style for Julia code is that function names be alpha-numeric (possibly with the underscore _ as a “special
guest letter”), so I will avoid primes in notation for derivatives as much as possible: from now on, the derivative of 𝑓 is
most often denoted as 𝐷𝑓 rather than 𝑓 .

f1(x) = x - cos(x)
Df1(x) = 1 + sin(x);

x0 = 0.0
errortolerance = 1e-8
rei = newtonmethod(f1, Df1, x0, errortolerance; maxiterations=4, demomode=true)
root = rei[1]
errorestimate = rei[2]
iterations = rei[3]
println()
if errorestimate > errortolerance

println("Warning: the error tolerance was not achieved!")
println()

end
println("The root is approximately $root")
println("The estimated absolute error is $errorestimate")

(continues on next page)

2.3. Newton’s Method for Solving Equations 31



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

println("The backward error is $(abs(f1(root)))")
println("This required $iterations iterations")

Solving by Newton's Method.
maxiterations = 4
errortolerance = 1.0e-8
At iteration 1, x = 1.0 with estimated error 1.0 and backward error 0.

↪45969769413186023
At iteration 2, x = 0.7503638678402439 with estimated error 0.24963613215975608␣

↪and backward error 0.018923073822117442
At iteration 3, x = 0.7391128909113617 with estimated error 0.011250976928882236␣

↪and backward error 4.6455898990771516e-5
At iteration 4, x = 0.739085133385284 with estimated error 2.77575260776869e-5 and␣

↪backward error 2.847205804457076e-10

Warning: the error tolerance was not achieved!

The root is approximately 0.739085133385284
The estimated absolute error is 2.77575260776869e-5
The backward error is 2.847205804457076e-10
This required 4 iterations

Here we have introduced another way of talking about errors and accuracy, which is further discussed in Measures of
Error and Order of Convergence.

Definition (Backward Error)
• The backward error in ̃𝑥 as an approximation to a root of a function 𝑓 is 𝑓( ̃𝑥).
• The absolute backward error is its absolute value, |𝑓( ̃𝑥)|. However sometimes the latter is simply called the
backward error — as the above code does.

This has the advantage that we can actually compute it without knowing the exact solution!
The backward error also has a useful geometrical meaning: if the function 𝑓 were changed by this much to a nearbly
function ̃𝑓 then ̃𝑥 could be an exact root of ̃𝑓 . Hence, if we only know the values of 𝑓 to within this backward error
(for example due to rounding error in evaluating the function) then ̃𝑥 could well be an exact root, so there is no point in
striving for greater accuracy in the approximate root.
We will see this in the next example.

Graphing Newton’s method iterations as a fixed point iteration

Since this is a fixed point iteration with 𝑔(𝑥) = 𝑥 − (𝑥 − cos(𝑥)/(1 + sin(𝑥)), let us compare its graph to the ones seen
in Solving Equations by Fixed Point Iteration (of Contraction Mappings). Now 𝑔 is neither increasing nor decreasing at the
fixed point, so the graph has an unusual form.

g(x) = x - (x - cos(x))/(1 + sin(x))
a = 0.0
b = 1.0
# An array of x values for graphing
x = range(a, b, 100)
iterations = 4; # Not so many are needed now!

32 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

# Start at left
description = "Starting near the left end of the domain"
println(description)
x_k = 0.1

figure(figsize=[6,6])
title(description)
grid(true)
plot(x, x, "g")
plot(x, g.(x), "r")
println("x_0 = $x_k")
for k in 1:iterations

g_x_k = g(x_k)
# Graph evalation of g(x_k) from x_k:
plot([x_k, x_k], [x_k, g(x_k)], "b")
x_k_plus_1 = g(x_k)
#Connect to the new x_k on the line y = x:
plot([x_k, g(x_k)], [x_k_plus_1, x_k_plus_1], "b")
# Update names: the old x_k+1 is the new x_k
x_k = x_k_plus_1
println("x_$k = $x_k")

end;

Starting near the left end of the domain
x_0 = 0.1
x_1 = 0.9137633861014282
x_2 = 0.7446642419816996
x_3 = 0.7390919659607759
x_4 = 0.7390851332254692

2.3. Newton’s Method for Solving Equations 33



Introduction to Numerical Methods and Analysis with Julia (draft)

# Start at right
description = "Starting near the right end of the domain"
println(description)
x_k = 0.99
figure(figsize=[6,6])
title(description)
grid(true)
plot(x, x, "g")
plot(x, g.(x), "r")
println("x_0 = $x_k")
for k in 1:iterations

g_x_k = g(x_k)
# Graph evalation of g(x_k) from x_k:
plot([x_k, x_k], [x_k, g(x_k)], "b")
x_k_plus_1 = g(x_k)
#Connect to the new x_k on the line y = x:
plot([x_k, g(x_k)], [x_k_plus_1, x_k_plus_1], "b")
# Update names: the old x_k+1 is the new x_k
x_k = x_k_plus_1
println("x_$k = $x_k")

end;

34 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

Starting near the right end of the domain
x_0 = 0.99
x_1 = 0.7496384013287254
x_2 = 0.7391094534708724
x_3 = 0.7390851333457581
x_4 = 0.7390851332151607

In fact, wherever you start, all iterations take you to the right of the root, and then approach the fixed point monotonically
— and very fast. We will see an explanation for this in The Convergence Rate of Newton’s Method.

Example (Pushing to the limits of standard 64-bit computer arithmetic)
Next, demand more accuracy; this time silently. As we will see in a later section, 10−16 is about the limit of the precision
of standard (IEE64) computer arithmetic with 64-bit numbers.
So let’s try to compute the root as accurately as we can within these limits:

x0 = 0.0
errortolerance=1e-16
rei = newtonmethod(f1, Df1, x0, errortolerance)

(continues on next page)

2.3. Newton’s Method for Solving Equations 35



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

root = rei[1]
errorestimate = rei[2]
iterations = rei[3]
println()
println("The root is approximately $root")
println("The estimated absolute error is $errorestimate")
println("The backward error is $(abs(f1(root)))")
println("This required $iterations iterations")

The root is approximately 0.7390851332151607
The estimated absolute error is 0.0
The backward error is 0.0
This required 6 iterations

Observations:
• It only took one more iteration to meet the demand for twice as many decimal places of accuracy.
• The result is “exact” as fas as the computer arithmeric can tell, as shown by the zero backward error: we have
indeed reached the accuracy limits of computer arithmetic.

2.3.3 Newton’s method works with complex numbers too

This book will work almost entirely with real values and vectors in ℝ𝑛, but actually, everything above also works for
complex numbers. In particular, Newton’s method works for finding roots of functions 𝑓 ∶ ℂ → ℂ; for example when
seeking all roots of a polynomial.
(See the notes on Complex number in Julia.)

Example (All roots of a cubic)
As an example, let us seek all three cube roots of 8, by solving 𝑥3 − 8 = 0 and trying different initial values 𝑥0.

f2(x) = x^3 - 8
Df2(x) = 3x^2;

First, 𝑥0 = 1

x0 = 1.0;
errortolerance = 1e-8;
rei1 = newtonmethod(f2, Df2, x0, errortolerance; demomode=true)
root1 = rei1[1]
errorestimate1 = rei1[2]
iterations1 = rei1[3]
println()
println("The first root is approximately $root1")
println("The estimated absolute error is $errorestimate1")
println("The backward error is $(abs(f2(root1)))")
println("This required $iterations1 iterations")

Solving by Newton's Method.
maxiterations = 20

(continues on next page)

36 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

errortolerance = 1.0e-8
At iteration 1, x = 3.3333333333333335 with estimated error 2.3333333333333335 and␣

↪backward error 29.037037037037045
At iteration 2, x = 2.462222222222222 with estimated error 0.8711111111111113 and␣

↪backward error 6.92731645541838
At iteration 3, x = 2.081341247671579 with estimated error 0.380880974550643 and␣

↪backward error 1.0163315496105625
At iteration 4, x = 2.003137499141287 with estimated error 0.07820374853029163 and␣

↪backward error 0.03770908398584538
At iteration 5, x = 2.000004911675504 with estimated error 0.003132587465783101␣

↪and backward error 5.894025079733467e-5
At iteration 6, x = 2.0000000000120624 with estimated error 4.911663441917921e-6␣

↪and backward error 1.447482134153688e-10
At iteration 7, x = 2.0 with estimated error 1.2062351117801901e-11 and backward␣

↪error 0.0
Done!

The first root is approximately 2.0
The estimated absolute error is 1.2062351117801901e-11
The backward error is 0.0
This required 7 iterations

Next, start at 𝑥0 = 𝑖 (a.k.a. 𝑥0 = 𝑖𝑚):

x0 = im;
rei2 = newtonmethod(f2, Df2, x0, errortolerance; demomode=true)
root2 = rei2[1]
errorestimate2 = rei2[2]
iterations2 = rei2[3]
println()
println("The second root is approximately $root2")
println("The estimated absolute error is $errorestimate2")
println("The backward error is $(abs(f2(root2)))")
println("This required $iterations2 iterations")

Solving by Newton's Method.
maxiterations = 20
errortolerance = 1.0e-8
At iteration 1, x = -2.6666666666666665 + 0.6666666666666667im with estimated␣

↪error 2.6874192494328497 and backward error 27.23670564570405
At iteration 2, x = -1.4663590926566703 + 0.6105344098423685im with estimated␣

↪error 1.2016193667222377 and backward error 10.211311837398133
At iteration 3, x = -0.23293230984230884 + 1.1571382823138845im with estimated␣

↪error 1.3491172750968106 and backward error 7.206656519642179
At iteration 4, x = -1.9202321953438537 + 1.5120026439880303im with estimated␣

↪error 1.7242127533456901 and backward error 13.405769067901167
At iteration 5, x = -1.1754417924325344 + 1.4419675366055338im with estimated␣

↪error 0.7480759724352086 and backward error 3.7583743808280228
At iteration 6, x = -0.9389355523964149 + 1.716001974171807im with estimated error␣

↪0.36198076543966584 and backward error 0.7410133693135651
At iteration 7, x = -1.0017352527552088 + 1.7309534907089796im with estimated␣

↪error 0.06455501693838851 and backward error 0.02463614729973853
At iteration 8, x = -0.9999988050398477 + 1.7320490713246675im with estimated␣

↪error 0.0020531798639315357 and backward error 2.529258531285453e-5
At iteration 9, x = -1.0000000000014002 + 1.7320508075706016im with estimated␣

↪error 2.107719871290353e-6 and backward error 2.6654146785452274e-11
(continues on next page)

2.3. Newton’s Method for Solving Equations 37



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

At iteration 10, x = -1.0 + 1.7320508075688774im with estimated error 2.
↪2211788987828177e-12 and backward error 1.9860273225978185e-15

Done!

The second root is approximately -1.0 + 1.7320508075688774im
The estimated absolute error is 2.2211788987828177e-12
The backward error is 1.9860273225978185e-15
This required 10 iterations

This root is in fact −1 + 𝑖
√

3.
Finally, 𝑥0 = 1 − 𝑖

x0 = 1-im
rei3 = newtonmethod(f2, Df2, x0, errortolerance; demomode=false)
root3 = rei3[1]
errorestimate3 = rei3[2]
iterations3 = rei3[3]
println()
println("The third root is approximately $root3")
println("The estimated absolute error is $errorestimate3")
println("The backward error is $(abs(f2(root3)))")
println("This required $iterations3 iterations")

The third root is approximately -1.0 - 1.7320508075688772im
The estimated absolute error is 3.62974830495685e-15
The backward error is 1.9860273225978185e-15
This required 10 iterations

This root is in fact −1 − 𝑖
√

3.

2.3.4 Newton’s method derived via tangent line approximations: linearization

The more traditional derivation of Newton”s method is based on the very widely useful idea of linearization; using the
fact that a differentiable function can be approximated over a small part of its domain by a straight line — its tangent line
— and it is easy to compute the root of this linear function.
So start with a first approximation 𝑥0 to a solution 𝑟 of 𝑓(𝑥) = 0.

Step 1: Linearize at 𝑥0.

The tangent line to the graph of this function wih center 𝑥0, also know as the linearization of 𝑓 at 𝑥0, is

𝐿0(𝑥) = 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0).

(Note that 𝐿0(𝑥0) = 𝑓(𝑥0) and 𝐿′
0(𝑥0) = 𝑓 ′(𝑥0).)

38 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

Step 2: Find the zero of this linearization

Hopefully, the two functions 𝑓 and 𝐿0 are close, so that the root of 𝐿0 is close to a root of 𝑓 ; close enough to be a better
approximation of the root 𝑟 than 𝑥0 is.
Give the name 𝑥1 to this root of 𝐿0: it solves 𝐿0(𝑥1) = 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥1 − 𝑥0) = 0, so

𝑥1 = 𝑥0 − 𝑓(𝑥0)/𝑓 ′(𝑥0)

Step 3: Iterate

We can then use this new value 𝑥1 as the center for a new linearization 𝐿1(𝑥) = 𝑓(𝑥1) + 𝑓 ′(𝑥1)(𝑥 − 𝑥1), and repeat to
get a hopefully even better approximate root,

𝑥2 = 𝑥1 − 𝑓(𝑥1)/𝑓 ′(𝑥1)

And so on: at each step, we get from approximation 𝑥𝑘 to a new one 𝑥𝑘+1 with

𝑥𝑘+1 = 𝑥𝑘 − 𝑓(𝑥𝑘)/𝑓 ′(𝑥𝑘)

And indeed this is the same formula seen above for Newton’s method.
Illustration: a few steps of Newton’s method for 𝑥 − cos(𝑥) = 0.
This approach to Newton’s method via linearization and tangent lines suggests another graphical presentation; again we
use the example of 𝑓(𝑥) = 𝑥 − cos(𝑥). This has 𝐷𝑓(𝑥) = 1 + sin(𝑥), so the linearization at center 𝑎 is

𝐿(𝑥) = (𝑎 − cos(𝑎)) + (1 + sin(𝑎))(𝑥 − 𝑎)

For Newton’s method starting at 𝑥0 = 0, this gives

𝐿0(𝑥) = −1 + 𝑥

and its root — the next iterate in Newton”s method — is 𝑥1 = 1
Then the linearization at center 𝑥1 is

𝐿1(𝑥) = (1 − cos(1) + (1 + sin(1))(𝑥 − 1), ≈ 0.4596 + 1.8415(𝑥 − 1)

giving 𝑥2 ≈ 1 − 0.4596/1.8415 ≈ 0.7504.
Let’s graph a few steps.

L_0(x) = -1.0 + x;

figure(figsize=[12,6])
title(L"First iteration, from $x_0 = 0$")
left = -0.1
right = 1.1
x = range(left, right, 100)
plot(x, f1.(x), label=L"x - \cos(x)")
plot([left, right], [0, 0], "k", label="x=0") # The x-axis, in black
x_0 = 0
plot([x_0], [f1(x_0)], "g*")
plot(x, L_0.(x), "y", label=L"L_0(x)")
plot([x_0], [f1(x_0)], "g*")

(continues on next page)

2.3. Newton’s Method for Solving Equations 39



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

x_1 = x_0 - f1(x_0)/Df1(x_0)
println("x_1 = $x_1")
plot([x_1], [0], "r*")
legend()
grid(true)

x_1 = 1.0

L_1(x) = (x_1 - cos(x_1)) + (1 + sin(x_1))*(x - x_1);

figure(figsize=[12,6])
title(L"Second iteration, from $x_1 = 1$")
# Shrink the domain
left = 0.7
right = 1.05
x = range(left, right, 100)

plot(x, f1.(x), label=L"x - \cos(x)")
plot([left, right], [0, 0], "k", label="x=0") # The x-axis, in black
plot([x_1], [f1(x_1)], "g*")
plot(x, L_1.(x), "y", label=L"L_1(x)")
x_2 = x_1 - f1(x_1)/Df1(x_1)
println("x_2 = $x_2")
plot([x_2], [0], "r*")
legend()
grid(true)

x_2 = 0.7503638678402439

40 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

L_2(x) = (x_2 - cos(x_2)) + (1 + sin(x_2))*(x - x_2);

figure(figsize=[12,6])
title(L"Third iteration, from $x_2=$"*"$x_2")
# Shrink the domain some more
left = 0.735
right = 0.755
x = range(left, right, 100)
plot(x, f1.(x), label=L"x - \cos(x)")
plot([left, right], [0, 0], "k", label="x=0") # The x-axis, in black
plot([x_2], [f1(x_2)], "g*")
plot(x, L_2.(x), "y", label=L"L_2(x)")
x_3 = x_2 - f1(x_2)/Df1(x_2)
println("x_3 = $x_3")
plot([x_3], [0], "r*")
legend()
grid(true)

x_3 = 0.7391128909113617

2.3. Newton’s Method for Solving Equations 41



Introduction to Numerical Methods and Analysis with Julia (draft)

2.3.5 How accurate and fast is this?

For the bisection method, we have seen in Root Finding by Interval Halving (Bisection) a fairly simple way to get an upper
limit on the absolute error in the approximations.
For absolute guarantees of accuracy, things do not go quite as well for Newton’s method, but we can at least get a very
“probable” estimate of how large the error can be. This requires some calculus, and more specifically Taylor’s theorem,
reviewed in Taylor’s Theorem and the Accuracy of Linearization.
So we will return to the question of both the speed and accuracy of Newton’s method in The Convergence Rate of Newton’s
Method.
On the other hand, the example graphs above illustrate that the successive linearizations become ever more accurate as
approximations of the function 𝑓 itself, so that the approximation 𝑥3 looks “perfect” on the graph— the speed of Newton’s
method looks far better than for bisection. This will also be explained in The Convergence Rate of Newton’s Method.

2.3.6 Exercises

Exercise A

a) Show that Newton’s method applied to

𝑓(𝑥) = 𝑥𝑘 − 𝑎

leads to fixed point iteration with function

𝑔(𝑥) =
(𝑘 − 1)𝑥 + 𝑎

𝑥𝑘−1
𝑘 .

b) Then verify mathematically that the iteration 𝑥𝑘+1 = 𝑔(𝑥𝑘) has super-linear convergence.

42 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

Exercise B

a) Create a Julia function for Newton’s method, with usage

(root, errorEstimate, iterations, functionEvaluations) = newtonMethod(f, Df, x_0,␣
↪errorTolerance, maxIterations)

(The last input parameter maxIterations could be optional, with a default like maxIterations=100.)
b) based on your function bisection2 create a third (and final!) version with usage

(root, errorBound, iterations, functionEvaluations) = bisection(f, a, b,␣
↪errorTolerance, maxIterations)

c) Use both of these to solve the equation

𝑓1(𝑥) = 10 − 2𝑥 + sin(𝑥) = 0

i) with [estimated] absolute error of no more than 10−6, and then
ii) with [estimated] absolute error of no more than 10−15.
Note in particular how many iterations and how many function evaluations are needed.
Graph the function, which will help to find a good starting interval [𝑎, 𝑏] and initial approximation 𝑥0.
d) Repeat, this time finding the unique real root of

𝑓2(𝑥) = 𝑥3 − 3.3𝑥2 + 3.63𝑥 − 1.331 = 0

Again graph the function, to find a good starting interval [𝑎, 𝑏] and initial approximation 𝑥0.
e) This second case will behave differently than for 𝑓1 in part (c): describe the difference. (We will discuss the reasons
in class.)

2.4 Taylor’s Theorem and the Accuracy of Linearization

References:
• Theorem 0.8 in Section 0.5 Review of Calculus in [Sauer, 2019].
• Section 1.1 Review of Calculus in [Burden et al., 2016], from Theorem 1.14 onward.

2.4.1 Taylor’s theorem

Taylor’s theorem is most often stated in the form

Theorem (Taylor’s Theorem, with center 𝑎)
When all the relevant derivatives exist,

𝑓(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 1
2𝑓″(𝑎)(𝑥 − 𝑎)2 ⋯ 𝑓 (𝑘)(𝑎)

𝑘! (𝑥 − 𝑎)𝑘 + ⋯

+ 𝑓 (𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛 + 𝑅𝑛(𝑥)

(2.1)

2.4. Taylor’s Theorem and the Accuracy of Linearization 43



Introduction to Numerical Methods and Analysis with Julia (draft)

The polynomial part of this,

𝑇𝑛(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑎) + ⋯ 𝑓 (𝑘)(𝑎)
𝑘! (𝑥 − 𝑎)𝑘 + ⋯ + 𝑓 (𝑛)(𝑎)

𝑛! (𝑥 − 𝑎)𝑛 (2.2)

is the Taylor polynomial of degree 𝑛 with center 𝑎 for function 𝑓 , and the remainder is

𝑅𝑛(𝑥) = 𝑓 (𝑛+1)(𝑐𝑥)
(𝑛 + 1)! (𝑥 − 𝑎)𝑛+1 (2.3)

with the value 𝑐𝑥 lying between 𝑎 and 𝑥, and so depending on 𝑥.

This gives information about the absolute error in the polynomial 𝑇𝑛(𝑥) as an approximation of 𝑓(𝑥):

|𝑓(𝑥) − 𝑇𝑛(𝑥)| ≤ 𝑀𝑛+1
(𝑛 + 1)! |𝑥 − 𝑎|𝑛+1

where 𝑀𝑛+1 is the maximum absolute value of 𝑓 (𝑛+1) over the relevant interval between 𝑎 and 𝑥.
Of course we typically do not know much about that constant 𝑀𝑛+1, so often the most important thing is the power law
rate |𝑥 − 𝑎|𝑛+1 at which the error reduces as 𝑥 approaches 𝑎.
Taylor polynomials are therefore most useful when the quantity ℎ ∶= 𝑥 − 𝑎 is small, and we will most often use them in
situations where the limit as ℎ → 0 is relevant. It is convenient to change the notation a bit, treating ℎ as the variable:

Theorem (Taylor’s Theorem, ℎ form)
When all the relevant derivatives exist,

𝑇𝑛(ℎ) = 𝑓(𝑎) + 𝑓 ′(𝑎)ℎ + ⋯ 𝑓 (𝑘)(𝑎)
𝑘! ℎ𝑘 + ⋯ + 𝑓 (𝑛)(𝑎)

𝑛! ℎ𝑛 (2.4)

with this polynomial in ℎ approximating 𝑓(𝑎 + ℎ) in that

𝑓(𝑎 + ℎ) − 𝑇𝑛(ℎ) = 𝑅𝑛(ℎ) = 𝑓 (𝑛+1)(𝑐ℎ)
(𝑛 + 1)! ℎ𝑛+1 with |𝑐ℎ − 𝑎| < |ℎ|. (2.5)

(Note: ℎ may be negative!)
This gives a bound on the absolute error

|𝑓(𝑎 + ℎ) − 𝑇𝑛(ℎ)| ≤ 𝑀𝑛+1
(𝑛 + 1)! |ℎ|𝑛+1 (2.6)

with

𝑀𝑛+1 ∶= max
|𝑥−𝑎|≤|ℎ|

|𝑓 (𝑛+1)(𝑥)|

2.4.2 Error formula for linearization

A very common use of Taylor’s Theorem is the rather simple case 𝑛 = 1; linearization, to approximate a twice difer-
entiable function by a linear one. (This will be even more so when we come to system of equations, since the only such
systems that we can systematically solve exactly are linear systems.)
Taylor’s Theorem for the linearization 𝐿(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) of 𝑓 at 𝑎 then says that

𝑓(𝑥) − 𝐿(𝑥) = 𝑓″(𝑐𝑥)
2 ℎ2, |𝑐𝑥 − 𝑎| < |𝑥 − 𝑎|

44 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

or in terms of ℎ,

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓 ′(𝑎)ℎ + 𝑓″(𝑐ℎ)
2 ℎ2, |𝑐ℎ − 𝑎| < |ℎ|

Thus there is an error bound

|𝑓(𝑎 + ℎ) − (𝑓(𝑎) + 𝑓 ′(𝑎)ℎ)| ≤ 𝑀2
2 ℎ2, where 𝑀2 = max

|𝑥−𝑎|<|ℎ|
|𝑓″(𝑥)|

Of course sometimes it is enough to use the maximum over the whole domain, 𝑀2 = max |𝑓″(𝑥)|.

2.5 Measures of Error and Order of Convergence

References:
• Section 1.3.1 Forward and backward error of [Sauer, 2019], on measures of error;
• Section 2.4 Error Analysis for Iterative Methods of [Burden et al., 2016], on order of convergence.

These notes cover a number of small topics:
• Measures of error: absolute, relative, forward, backward, etc.
• Measuring the rate of convergence of a sequence of approximations.
• Big-O and little-o notation for describing how small a quantity (usually an error) is.

2.5.1 Error measures

Several of these have been mentioned before, but they are worth gathering here.
Consider a quantity ̃𝑥 considered as an approximation of an exact value 𝑥. (This can be a number or a vector.)

Definition 2.6 (Error)
The error in ̃𝑥 is ̃𝑥 − 𝑥 (or 𝑥 − ̃𝑥; different sources use both versions and either is fine so long as you are consistent.)

Definition 2.7 (Absolute Error)
The absolute error is the absolute value of the error: | ̃𝑥 − 𝑥|. For vector quantities this means the norm ‖ ̃𝑥 − 𝑥‖,
and it can be any norm, so long as we again choose one and use it consistently. Two favorites are the Euclidean norm
‖𝑥‖ = √∑ |𝑥𝑖|, denoted ‖𝑥‖2, and the maximum norm (also mysteriously known at the infinity norm):

‖𝑥‖max = ‖𝑥‖∞ = max
𝑖

|𝑥𝑖|.

For real-valued quantities, the absolute error is related to the number of correct decimal places: 𝑝 decimal places of
accuracy corresponds roughly to absolute error no more than 0.5 × 10−𝑝.

Definition 2.8 (Relative Error)

The relative error is the ratio of the absolute error to the size of the exact quantity: ‖ ̃𝑥 − 𝑥‖
‖𝑥‖ (again possibly with vector

norms).

2.5. Measures of Error and Order of Convergence 45



Introduction to Numerical Methods and Analysis with Julia (draft)

This is often more relevant than absolute error for inherently positive quantities, but is obviously unwise where 𝑥 = 0 is a
possibility. For real-valued quantities, this is related to the number of significant digits: accuracy to 𝑝 significant digits
corresponds roughly to relative error no more than 0.5 × 10−𝑝.
When working with computer arithmetic, 𝑝 significant bits corresponds to relative error no more than 2−(𝑝+1).

Backward error (and forward error)

An obvious problem is that we usually do not know the exact solution 𝑥, so cannot evaluate any of these; instead we
typically seek upper bounds on the absolute or relative error. Thus, when talking of approximate solutions to an equation
𝑓(𝑥) = 0 the concept of
backward error Definition 2.5 OR backward error OR Definition 2.5

introduced in section Newton’s Method for Solving Equations can be very useful, for example as a step in getting bounds
on the size of the error; to recap

Definition 2.9 (Backward Error)
The backward error in ̃𝑥 as an approxiate solution to the equation 𝑓(𝑥) = 0 is 𝑓( ̃𝑥); the amount by which function 𝑓
would have to be changed in order for ̃𝑥 to be an exact root.

For the case of solving simultaneous linear equations in matrix-vector form 𝐴𝑥 = 𝑏, this is 𝑏 − 𝐴 ̃𝑥, also known as the
residual.

Definition 2.10 (Absolute Backward Error)
The absolute backward error is — as you might have guessed — the absolute value of the backward error: |𝑓( ̃𝑥)|. This
is sometimes also called simply the backward error. (The usual disclaimer about vector quantities applies.)

For the case of solving simultaneous linear equations in matrix-vector form 𝐴𝑥 = 𝑏, this is ‖𝑏 − 𝐴 ̃𝑥‖, also known as the
residual norm.

Remark 2.10
• One obvious advantage of the backward error concept is that you can actually evaluate it without knowing the exact
solution 𝑥.

• Also, one significance of backward error is that if the values of 𝑓(𝑥) are only known to be accurate within an
absolute error of 𝐸 then any approximation with absolute backward error less than 𝐸 could in fact be exact, so
there is no point in seeking greater accuracy.

• The names forward error and absolute forward error are sometimes used as synonyms for error etc. as defined
above, when they need to be distinguished from backward errors.

46 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

2.5.2 Order of convergence of a sequence of approximations

Definition 2.11
We have seen that for the sequence of approximations 𝑥𝑘 to a quantity 𝑥 given by the fixed point iteration 𝑥𝑘+1 = 𝑔(𝑥𝑘),
the absolute errors 𝐸𝑘 ∶= |𝑥𝑘 − 𝑥| typically have

𝐸𝑘+1
𝐸𝑘

→ 𝐶 = |𝑔′(𝑥)|.

so that eventually the errors diminsh in a roughly geometric fashion: 𝐸𝑘 ≈ 𝐾𝐶𝑘. This is called linear convergence.

Aside: Why “linear” rather than “geometric”? Because there is an approximately linear relationship between consecutive
error values,

𝐸𝑛+1 ≈ 𝐶𝐸𝑛.

This is a very common behavior for iterative numerical methods, but we will also see that a few methods do even better;
for example, when Newton’s method converges to a simple root 𝑟 of 𝑓 (one with 𝑓 ′(𝑟) ≠ 0)

𝐸𝑘+1 ≈ 𝐶𝐸2
𝑘

This is called quadratic convergence. More generally:

Definition 2.12 (convergence of order 𝑝)
This is when

𝐸𝑘+1 ≈ 𝐶𝐸𝑝
𝑘 , or more precisely, lim

𝑘→∞
𝐸𝑘+1
𝐸𝑝

𝑘
is finite.

We have already observed experimentally the intermediate result that “𝐶 = 0” for Newton’s method in this case; that is,
𝐸𝑘+1
𝐸𝑘

→ 0. (2.7)

Definition 2.13 (super-linear convergence)
When the successive errors behave as in Equation (2.7) the convergence is super-linear. This includes any situation with
order of convergence 𝑝 > 1.

For most practical purposes, if you have established super-linear convergence, you can be happy, and not worry much
about refinements like the particular order 𝑝.

2.5.3 Big-O and little-o notation

Consider the error formula for approximation of a function 𝑓 with the Taylor polynomial of degree 𝑛, center 𝑎:

|𝑓(𝑎 + ℎ) − 𝑇𝑛(ℎ)| ≤ 𝑀𝑛+1
(𝑛 + 1)! |ℎ|𝑛+1 where 𝑀𝑛+1 = max |𝑓 (𝑛+1)(𝑥)|.

2.5. Measures of Error and Order of Convergence 47



Introduction to Numerical Methods and Analysis with Julia (draft)

Since the coefficient of ℎ𝑛+1 is typicaly not known in practice, it is wise to focus on the power law part, and for this the
“big-O” and little-o” notation is convenient.
If a function 𝐸(ℎ) goes to zero at least as fast as ℎ𝑝, we say that it is of order ℎ𝑝, written 𝑂(ℎ𝑝).
More precisely, 𝐸(ℎ) is no bigger than a multiple of ℎ𝑝 for ℎ small enough; that is, there is a constant 𝐶 such that for
some positive number 𝛿

|𝐸(ℎ)|
|ℎ|𝑝 ≤ 𝐶 for |ℎ| < 𝛿.

Another way to say this is in terms of the lim-sup, if you have seen that jargon:

lim sup
ℎ→0

|𝐸(ℎ)|
|ℎ|𝑝 is finite.

This can be used to rephrase the above Taylor’s theorem error bound as

𝑓(𝑥) − 𝑇𝑛(𝑥) = 𝑂(|𝑥 − 𝑎|𝑛+1)

or

𝑓(𝑎 + ℎ) − 𝑇𝑛(ℎ) = 𝑂(ℎ𝑛+1),

and for the case of the linearization,

𝑓(𝑎 + ℎ) − 𝐿(𝑥) = 𝑓(𝑎 + ℎ) − (𝑓(𝑎) + 𝑓 ′(𝑎)ℎ) = 𝑂(ℎ2).

Little-o notation, for “negligibly small terms”

Sometimes it is enough to say that some error term is small enough to be neglected, at least when ℎ is close enough to
zero. For example, with a Taylor series we might be able to neglect the powers of 𝑥 − 𝑎 or of ℎ higher than 𝑝.
We will thus say that a quantity 𝐸(ℎ) is small of order ℎ𝑝, written 𝑜(ℎ𝑝) when

lim
ℎ→0

|𝐸(ℎ)|
|ℎ|𝑝 = 0.

Note the addition of the word small compared to the above description of the big-O case!
With this, the Taylor’s theorem error bound can be stated as

𝑓(𝑥) − 𝑇𝑛(𝑥) = 𝑜(|𝑥 − 𝑎|𝑛),

or

𝑓(𝑎 + ℎ) − 𝑇𝑛(ℎ) = 𝑜(ℎ𝑛),

and for the case of the linearization,

𝑓(𝑎 + ℎ) − 𝐿(𝑥) = 𝑓(𝑎 + ℎ) − (𝑓(𝑎) + 𝑓 ′(𝑎)ℎ) = 𝑜(ℎ).

2.6 The Convergence Rate of Newton’s Method

References:

48 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

• Section 1.4.1 Quadratic Convergence of Newton’s Method in [Sauer, 2019].
• Theorem 2.9 in Section 2.4 Error Analysis of Iterative Methods in [Burden et al., 2016], but done quite differently.

Jumping to the punch line, we will see that when the iterates 𝑥𝑘 given by Newton’s method converge to a simple root 𝑟
(that is, a solution of 𝑓(𝑟) = 0 with 𝑓 ′(𝑟) ≠ 0) then the errors 𝐸𝑘 = 𝑥𝑘 − 𝑟 satisfy

𝐸𝑘+1 = 𝑂(𝐸2
𝑘) and therefore 𝐸𝑘+1 = 𝑜(𝐸𝑘)

In words, the error at each iteration is of the order of the square of the previous error, and so is small of order the previous
error.
(Yes, it this a slight abuse of the notation as defined above, but all will become clear and rigorous soon.)
The first key step is getting a recursive relationship between consecutive errors 𝐸𝑘 and 𝐸𝑘+1 from the recursion formula
for Newton’s method,

𝑥𝑘+1 = 𝑥𝑘 − 𝑓(𝑥𝑘)
𝑓 ′(𝑥𝑘) .

Start by subtracting 𝑟:

𝐸𝑘+1 = 𝑥𝑘+1 − 𝑟 = 𝑥𝑘 − 𝑓(𝑥𝑘)
𝑓 ′(𝑥𝑘) − 𝑟 = 𝐸𝑘 − 𝑓(𝑥𝑘)

𝑓 ′(𝑥𝑘)

The other key step is to show that the two terms at right are very close, using the linearization of 𝑓 at 𝑥𝑘 with the error
𝐸𝑘 as the small term ℎ, and noting that 𝑟 = 𝑥𝑘 − 𝐸𝑘:

0 = 𝑓(𝑟) = 𝑓(𝑥𝑘 − 𝐸𝑘) = 𝑓(𝑥𝑘) − 𝑓 ′(𝑥𝑘)𝐸𝑘 + 𝑂(𝐸2
𝑘)

Solve for 𝑓(𝑥𝑘) to insert into the numerator above: 𝑓(𝑥𝑘) = 𝑓 ′(𝑥𝑘)𝐸𝑘 + 𝑂(𝐸2
𝑘). (There is no need for a minus sign on

that last term; big-O terms can be of either sign, and this new one is a different but still small enough quantity!)
Inserting above,

𝐸𝑘+1 = 𝐸𝑘 − 𝑓 ′(𝑥𝑘)𝐸𝑘 + 𝑂(𝐸2
𝑘)

𝑓 ′(𝑥𝑘) = 𝐸𝑘 − 𝐸𝑘 + 𝑂(𝐸2
𝑘)

𝑓 ′(𝑥𝑘) = 𝑂(𝐸2
𝑘)

𝑓 ′(𝑥𝑘) → 𝑂(𝑒2
𝑘)

𝑓 ′(𝑟) = 𝑂(𝐸2
𝑘)

As 𝑘 → ∞, 𝑓 ′(𝐸𝑘) → 𝑓 ′(𝑟) ≠ 0, so the term at right is still no larger than a multiple of 𝐸2
𝑘 : it is 𝑂(𝐸2

𝑘), as claimed.
If you wish to verify this more carefully, note that

• this 𝑂(𝐸2
𝑘) term is no bigger than 𝑀

2 𝐸2
𝑘 where 𝑀 is an upper bound on |𝑓″(𝑥)|, and

• once 𝐸𝑘 is small enough, so that 𝑥𝑘 is close enough to 𝑟, |𝑓 ′(𝑥𝑘)| ≥ |𝑓 ′(𝑟)|/2.

Thus the term 𝑂(𝐸2
𝑘)

𝑓 ′(𝑥𝑘) has magnitude no bigger than 𝑀/2
|𝑓 ′(𝑟)|/2𝐸2

𝑘 = 𝑀
|𝑓 ′(𝑟)|𝐸

2
𝑘 , which meets the definition of being of

order 𝐸2
𝑘 .

A more careful calculation actually shows that

lim
𝑘→∞

|𝐸𝑘+1|
𝐸2

𝑘
= ∣ 𝑓″(𝑟)

2𝑓 ′(𝑟) ∣ ,

which is the way that this result is often stated in texts. For either form, it then easily follows that

lim
𝑘→∞

|𝐸𝑘+1|
|𝐸𝑘| = 0,

giving the super-linear convergence already seen using the ContractionMapping Theorem, now restated as𝐸𝑘+1 = 𝑜(𝐸𝑘).

2.6. The Convergence Rate of Newton’s Method 49



Introduction to Numerical Methods and Analysis with Julia (draft)

2.6.1 A Practical error estimate for fast-converging iterative methods

One problem for Newton’s Method (and many other numerical methods we will see) is that there is not a simple way
to get a guaranteed upper bound on the absolute error in an approximation. Our best hope is finding an interval that
is guaranteed to contain the solution, as the Bisection Method does, and we can sometimes also do that with Newton’s
Method for a real root. But that approach fails as soon as the solution is a complex number or a vector.
Fortunately, when convergnce is “fast enough” is some sense, the following heuristic or “rule of thumb” applies in many
cases:
The error in the latest approximation is typically smaller than the difference between the two most recent approximations.

When combined with the backward error, this can give a fairly reliable measure of accuracy, and so can serve as a fairly
reliable stopping condition for the loop in an iterative calculation.

When is a fixed point iteration “fast enough” for this heuristic?

This heuristic can be shown to be reliable in several important cases:

Proposition
For the iterations 𝑥𝑘 given by a contraction mapping that has 𝐶 ≤ 1/2,

|𝐸𝑘| ≤ |𝑥𝑘 − 𝑥𝑘−1|,

or in words the error in 𝑥𝑘 is smaller than the change from 𝑥𝑘−1 to 𝑥𝑘, so the above guideline is valid.

Proposition
For a super-linearly convergent iteration, eventually |𝐸𝑘+1|/|𝐸𝑘| < 1/2, and from that point onwards in the iterations,
the above applies again.

I leave verification as an exercise, or if you wish, to discuss in class.

2.7 Root-finding without Derivatives

References:
• Section 1.5 Root-finding without Derivatives of [Sauer, 2019].
• The second part of Section 2.3 Newton’s Method and Its Extensions in [Burden et al., 2016], about the Secant
method.

50 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

2.7.1 Introduction

In section Root Finding by Interval Halving (Bisection)) we have seen one method for solving 𝑓(𝑥) = 0 without needing
to know any derivatives of 𝑓 : the Bisection Method a.k.a. Interval Halving.
However, we have also seen that that method is far slower then Newton’s Method; here we explore methods that are almost
the best of both worlds: about as fast as Newton’s method but not needing derivatives.
The first of these is the Secant Method. Later in this course we will see how this has been merged with the Bisection
Method and Polynomial Interpolation to produce the current state-of-the-art approach; only perfected in the 1960’s.

using PyPlot

2.7.2 Using Linear Approximation Without Derivatives

One quirk of the Bisection Method is that it only used the sign of the values 𝑓(𝑎) and 𝑓(𝑏), not their magnitudes. If one
of these is far smaller than the other, one might guess that the root is closer to that end of the interval. This leads to the
idea of:

• starting with an interval [𝑎, 𝑏] known to contain a zero of 𝑓 ,
• connecting the two points (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)) with a straight line, and
• finding the 𝑥-value 𝑐 where this line crosses the 𝑥-axis. In the words, aproximating the function by a secant line, in
place of the tangent line used in Newton’s Method.

First Attempt: The Method of False Position

The next step requires some care. The first idea (from almost a millenium ago) was to use this new approximation 𝑐 as
done with bisection: check which of the intervals [𝑎, 𝑐] and [𝑐, 𝑏] has the sign change and use it as the new interval [𝑎, 𝑏];
this is called The Method of False Position (or Regula Falsi, since the academic world used latin in those days.)
The secant line between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)) is

𝐿(𝑥) = 𝑓(𝑎)(𝑏 − 𝑥) + 𝑓(𝑏)(𝑥 − 𝑎)
𝑏 − 𝑎

and its zero is at

𝑐 = 𝑎𝑓(𝑏) − 𝑓(𝑎)𝑏
𝑓(𝑏) − 𝑓(𝑎)

This is easy to implement, and an example will show that it sort of works, but with a weakness that hampers it a bit:
Some helper functions for displaying numbers

roundoff(x) = round(x, sigdigits=12); # Rounding off output to 12 significant digits,
↪ to clean up output

round3(x) = round(x, sigdigits=3); # For rounding off errors,wher only a few␣
↪significant digits are needed

2.7. Root-finding without Derivatives 51



Introduction to Numerical Methods and Analysis with Julia (draft)

function falseposition(f, a, b, errortolerance; maxiterations=10, demomode=false)
# Solve f(x)=0 in the interval [a, b] by the Method of False Position.
# This code also illustrates a few ideas that I encourage, such as:
# - Avoiding infinite loops, by using for loops sand break
# - Avoiding repeated evaluation of the same quantity
# - Use of descriptive variable names
# - Use of "camelCase" to turn descriptive phrases into valid Julia variable names
# - An optional "demonstration mode" to display intermediate results.

if demomode
println("Solving by the Method of False Position.")

end;
fa = f(a)
fb = f(b)
global c, errorbound # So that they persist after the end of the following for␣

↪loop!
for iteration in 1:maxiterations

if demomode
println("\nIteration $iteration:")

end;
c = (a * fb - fa * b)/(fb - fa)
fc = f(c)
if fa * fc < 0

b = c
fb = fc # N.B. When b is updated, so must be fb = f(b)

else
a = c
fa = fc

end;
errorbound = b - a
if demomode

println("The root is in interval [$(roundoff(a)), $(roundoff(b))]")
println("The new approximation is $(roundoff(c)) with error bound

↪$(round3(errorbound)), backward error $(round3(abs(fc)))")
end
if errorbound <= errortolerance

break
end;

end;
# Whether we got here due to accuracy of running out of iterations,
# return the information we have, including an error bound:
root = c # the newest value is probably the most accurate
return (root, errorbound)

end;

f(x) = x - cos(x)
a = -1.0
b = 1.0;

errortolerance = 1e-12
(root, errorbound) = falseposition(f, a, b, errortolerance; demomode=true)
println()
println("The Method of False Position gave approximate root $root")
println(" with estimate error $errorbound and backward error $(abs(f(root)))")

52 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

Solving by the Method of False Position.

Iteration 1:
The root is in interval [0.540302305868, 1.0]
The new approximation is 0.540302305868 with error bound 0.46, backward error 0.317

Iteration 2:
The root is in interval [0.728010361468, 1.0]
The new approximation is 0.728010361468 with error bound 0.272, backward error 0.

↪0185

Iteration 3:
The root is in interval [0.738527006242, 1.0]
The new approximation is 0.738527006242 with error bound 0.261, backward error 0.

↪000934

Iteration 4:
The root is in interval [0.739057166678, 1.0]
The new approximation is 0.739057166678 with error bound 0.261, backward error 4.

↪68e-5

Iteration 5:
The root is in interval [0.739083732278, 1.0]
The new approximation is 0.739083732278 with error bound 0.261, backward error 2.

↪34e-6

Iteration 6:
The root is in interval [0.739085063039, 1.0]
The new approximation is 0.739085063039 with error bound 0.261, backward error 1.

↪17e-7

Iteration 7:
The root is in interval [0.7390851297, 1.0]
The new approximation is 0.7390851297 with error bound 0.261, backward error 5.88e-

↪9

Iteration 8:
The root is in interval [0.739085133039, 1.0]
The new approximation is 0.739085133039 with error bound 0.261, backward error 2.

↪95e-10

Iteration 9:
The root is in interval [0.739085133206, 1.0]
The new approximation is 0.739085133206 with error bound 0.261, backward error 1.

↪48e-11

Iteration 10:
The root is in interval [0.739085133215, 1.0]
The new approximation is 0.739085133215 with error bound 0.261, backward error 7.

↪39e-13

The Method of False Position gave approximate root 0.7390851332147188
with estimate error 0.2609148667852812 and backward error 7.394085344003543e-13

The good news is that the approximations are approaching the zero reasonably fast — far faster than bisection — as
indicated by the backward errors improving by a factor of better than ten at each iteration.
The bad news is that one end gets “stuck”, so the interval does not shrink on both sides, and the error bound stays large.

2.7. Root-finding without Derivatives 53



Introduction to Numerical Methods and Analysis with Julia (draft)

This behavior is generic: with function 𝑓 of the same convexity on the interval [𝑎, 𝑏], the secant line will always cross on
the same side of the zero, so that one end-point persists; in this case, the curve is concave up, so the secant line always
crosses to the left of the root, as seen in the following graphs.

function graphfalseposition(f, a, b; maxiterations=3)
# Graph a few iterations of the Method of False Position for solving f(x)=0 in␣

↪the interval [a, b].

fa = f(a)
fb = f(b)
for iteration in 1:maxiterations

c = (a * fb - fa * b)/(fb - fa)
fc = f(c)
abc = [a b c]
# TODO: find min, max in julia!
left = min(a, b)
right = max(a, b)
xplot = range(left, right, 100);
figure(figsize=[12,6])
grid(true)
title("Method of False Position Iteration $iteration")
xlabel("x")
plot(xplot, f.(xplot))
plot([left, right], [f(left), f(right)]) # the secant line
plot([left, right], [0, 0], "k") # the x-axis line
plot(abc, f.(abc), "r*")
#show() # The Windows version of JupytLab might need this command; it is␣

↪harmless anyway.
if fa * fc < 0

b = c
fb = fc # N.B. When b is updated, so must be fb = f(b)

else
a = c
fa = fc

end;
end;

end;

graphfalseposition(f, a, b)

54 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

2.7. Root-finding without Derivatives 55



Introduction to Numerical Methods and Analysis with Julia (draft)

Refinement: Alway Use the Two Most Recent Approximations — The Secant Method

The basic solution is to always discard the oldest approximation — at the cost of not always having the zero surrounded!
This gives the Secant Method.
For a mathemacal description, one typically enumerates the successive approximations as 𝑥0, 𝑥1, etc., so the notation
above gets translated with 𝑎 → 𝑥𝑘−2, 𝑏 → 𝑥𝑘−1, 𝑐 → 𝑥𝑘; then the formula becomes the recursive rule

𝑥𝑘 = 𝑥𝑘−2𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)𝑥𝑘−1
𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)

Two difference from above:
• previously we could assume that 𝑎 < 𝑏, but now we do not know the order of the various 𝑥𝑘 values, and
• the root is not necessarily bewtween the two most recent values, so we no longer have tht simple error bound. (In
fact, we will see that the zero is typically surrounded two-thirds of the time!)

Instead, we use the magnitude of 𝑏 − 𝑎 which is now |𝑥𝑘 − 𝑥𝑘−1|, and this is only an estimate of the error. This is the
same as used for Newton’s Method; as there, it is still useful as a condition for ending the iterations and indeed tends to
be pessimistic, so that we typically do one more iteration than needed — but it is not on its own a complete guarantee of
having achieved the desired accuracy.

Pseduo-code for a Secant Method Algorithm

Algorithm 2.4 (Secant Method)
Input function 𝑓 , interval endpoints 𝑥0 and 𝑥1, an error tolerance 𝐸𝑡𝑜𝑙, and an iteration limit 𝑁
for k from 2 to N

𝑥𝑘 ← 𝑥𝑘−2𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)𝑥𝑘−1
𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)

56 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

Evaluate the error estimate 𝐸𝑒𝑠𝑡 ← |𝑥𝑘 − 𝑥𝑘−1|
if 𝐸𝑒𝑠𝑡 ≤ 𝐸𝑡𝑜𝑙

End the iterations
else
Go around another time

end
end
Output the final 𝑥𝑘 as the approximate root and 𝐸𝑒𝑠𝑡 as an estimate of its absolute error.

Julia Code for this Secant Method Algorithm

We could write Julia code that closely follows this notation, accumulating a list of the values 𝑥𝑘.
However, since we only ever need the two most recent values to compute the new one, we can instead just store these
three, in the same way that we recylced the variables a, b and c. Here I use more descriptive names though:

function secantmethod(f, a, b, errortolerance; maxiterations=20, demomode=false)
# Solve f(x)=0 in the interval [a, b] by the Secant Method.

if demomode
print("Solving by the Secant Method.")

end;
# Some more descriptive names
x_older = a
x_more_recent = b
f_x_older = f(x_older)
f_x_more_recent = f(x_more_recent)
for iteration in 1:maxiterations

global x_new, errorestimate
if demomode

println("\nIteration $(iteration):")
end;
x_new = (x_older * f_x_more_recent - f_x_older * x_more_recent)/(f_x_more_

↪recent - f_x_older)
f_x_new = f(x_new)
(x_older, x_more_recent) = (x_more_recent, x_new)
(f_x_older, f_x_more_recent) = (f_x_more_recent, f_x_new)
errorestimate = abs(x_older - x_more_recent)
if demomode

println("The latest pair of approximations are $(roundoff(x_older)) and
↪$(roundoff(x_more_recent)),")

println("where the function's values are $(roundoff(f_x_older)) and
↪$(roundoff(f_x_more_recent)) respectively.")

print("The new approximation is $(roundoff(x_new)),")
println("with estimated error $(round3(errorestimate)) and backward error

↪$(round3(abs(f_x_new)))")
end;
if errorestimate < errortolerance

break
end;

end;

(continues on next page)

2.7. Root-finding without Derivatives 57



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

# Whether we got here due to accuracy of running out of iterations,
# return the information we have, including an error estimate:
return (x_new, errorestimate)

end;

errortolerance = 1e-12
(root, errorestimate) = secantmethod(f, a, b, errortolerance, demomode=true)

println()
println("The Secant Method gave approximate root $root,")
print("with estimated error $errorestimate, backward error $(abs(f(root)))")

Solving by the Secant Method.
Iteration 1:
The latest pair of approximations are 1.0 and 0.540302305868,
where the function's values are 0.459697694132 and -0.317250909978 respectively.
The new approximation is 0.540302305868,with estimated error 0.46 and backward␣

↪error 0.317

Iteration 2:
The latest pair of approximations are 0.540302305868 and 0.728010361468,
where the function's values are -0.317250909978 and -0.0184893945776 respectively.
The new approximation is 0.728010361468,with estimated error 0.188 and backward␣

↪error 0.0185

Iteration 3:
The latest pair of approximations are 0.728010361468 and 0.739627012631,
where the function's values are -0.0184893945776 and 0.000907004400407␣

↪respectively.
The new approximation is 0.739627012631,with estimated error 0.0116 and backward␣

↪error 0.000907

Iteration 4:
The latest pair of approximations are 0.739627012631 and 0.739083800783,
where the function's values are 0.000907004400407 and -2.22997338051e-6␣

↪respectively.
The new approximation is 0.739083800783,with estimated error 0.000543 and backward␣

↪error 2.23e-6

Iteration 5:
The latest pair of approximations are 0.739083800783 and 0.739085133056,
where the function's values are -2.22997338051e-6 and -2.66740518562e-10␣

↪respectively.
The new approximation is 0.739085133056,with estimated error 1.33e-6 and backward␣

↪error 2.67e-10

Iteration 6:
The latest pair of approximations are 0.739085133056 and 0.739085133215,
where the function's values are -2.66740518562e-10 and 0.0 respectively.
The new approximation is 0.739085133215,with estimated error 1.59e-10 and backward␣

↪error 0.0

Iteration 7:
The latest pair of approximations are 0.739085133215 and 0.739085133215,
where the function's values are 0.0 and 0.0 respectively.

(continues on next page)

58 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

The new approximation is 0.739085133215,with estimated error 0.0 and backward␣
↪error 0.0

The Secant Method gave approximate root 0.7390851332151607,
with estimated error 0.0, backward error 0.0

Alternatively, you get a version of secantmethod from the module NumericalMethods with

import .NumericalMethods: secantmethod

function graphsecantmethod(f, a, b; maxiterations=5)
# Graph a few iterations of the Secant Method for solving f(x)=0 in the interval␣

↪[a, b].

x_older = a
x_more_recent = b
f_x_older = f(x_older)
f_x_more_recent = f(x_more_recent)
for iteration in 1:maxiterations

x_new = (x_older * f_x_more_recent - f_x_older * x_more_recent)/(f_x_more_
↪recent - f_x_older)

f_x_new = f(x_new)
latest_three_x_values = [x_older x_more_recent x_new]
left = min(x_older, x_more_recent, x_new)
right = max(x_older, x_more_recent, x_new)
xplot = range(left, right, 100);
figure(figsize=[12,6])
grid(true)
title("Secant Method iteration $iteration")
xlabel("x")
plot(xplot, f.(xplot))
plot([left, right], [f(left), f(right)]) # the secant line
plot([left, right], [0, 0], "k") # the x-axis line
plot(latest_three_x_values, f.(latest_three_x_values), "r*")
x_older = x_more_recent
f_x_older = f_x_more_recent
x_more_recent = x_new
f_x_more_recent = f_x_new
errorEstimate = abs(x_older - x_more_recent)

end;
end;

graphsecantmethod(f, a, b)

2.7. Root-finding without Derivatives 59



Introduction to Numerical Methods and Analysis with Julia (draft)

60 Chapter 2. Root-finding



Introduction to Numerical Methods and Analysis with Julia (draft)

2.7. Root-finding without Derivatives 61



Introduction to Numerical Methods and Analysis with Julia (draft)

Observation 2.1
• This converges faster than the Method of False Position (and far faster than Bisection).
• The majority of iterations have the root surrounded (sign-change in 𝑓), but every third one — the second and fifth
— do not.

• Comparing the error estimate to the backward error, the error estimate is quite pessimistic (and so fairly trustwor-
thy); in fact, it is typically of similar size to the backward error at the previous iteration.

The last point is a quite common occurence: the available error estimates are often “trailing indicators”, closer to the error
in the previous approximation in an iteration. For example, recall that we saw the same thing with Newton’s Method when
we used |𝑥𝑘 − 𝑥𝑘−1| to estimate the error 𝐸𝑘 ∶= 𝑥𝑘 − 𝑟 and saw that it is in fact closer to the previous error, 𝐸𝑘−1.

62 Chapter 2. Root-finding



CHAPTER

THREE

LINEAR ALGEBRA AND SIMULTANEOUS EQUATIONS

3.1 Row Reduction/Gaussian Elimination

References:
• Section 2.1.1 Naive Gaussian elimination of [Sauer, 2019].
• Section 6.1 Linear Systems of Equations of [Burden et al., 2016].
• Section 7.1 of [Chenney and Kincaid, 2012].

3.1.1 Introduction

The problem of solving a system of 𝑛 simultaneous linear equations in 𝑛 unknowns, with matrix-vector form 𝐴𝑥 = 𝑏, is
quite thoroughly understood as far as having a good general-purpose methods usable with any 𝑛×𝑛matrix𝐴: essentially,
Gaussian elimination (or row-reduction) as seen in most linear algebra courses, combined with some modifications to stay
well away from division by zero: partial pivoting. Also, good robust software for this general case is readily available, for
example in the Julia package LinearAlgebra.
Nevertheless, this basic algorithm can be very slow when 𝑛 is large – as it often is when dealing with differential equations
(even more so with partial differential equations). We will see that it requires about 𝑛3/3 arithmetic operations.
Thus I will summarise the basic method of row reduction or Gaussian elimination, and then build on it with methods for
doing things more robustly, and on methods for doing it faster in some important special cases:

1. When one has to solve many systems 𝐴𝑥(𝑚) = 𝑏(𝑚) with the same matrix 𝐴 but different right-hand side vectors
𝑏(𝑚).

2. When 𝐴 is banded: most elements are zero, and all the non-zero elements 𝑎𝑖,𝑗 are near the main diagonal: |𝑖 − 𝑗|
is far less than 𝑛. (Aside on notation: “far less than” is sometimes denoted ≪, as in |𝑖 − 𝑗| ≪ 𝑛.)

3. When 𝐴 is strictly diagonally dominant: each diagonal element 𝑎𝑖,𝑖 is larger in magnitude that the sum of the
magnitudes of all other elements in the same row.

Other cases not (yet) discussed in this text are
1. When 𝐴 is positive definite: symmetric (𝑎𝑖,𝑗 = 𝑎𝑗,𝑖) and with all eigenvalues positive. This last condition would

seem hard to verify, since computing all the eigenvalues of𝐴 is harder that solving𝐴𝑥 = 𝑏, but there are important
situations where this property is automatically guaranteed, such as with Galerkin and finite-element methods for
solving boundary value problems for differential equations.

2. When𝐴 is sparse: most elements are zero, but not necessarily with all the non-zero elements near the main diagonal.

63



Introduction to Numerical Methods and Analysis with Julia (draft)

3.1.2 Strategy for getting from mathematical facts to a good algorithm and then to
its implentation in [Julia] code

Here I take the opportunity to illustrate some useful strategies for getting from mathematical facts and ideas to good
algorithms and working code for solving a numerical problem. The pattern we will see here, and often later, is:

Step 1. Get a basic algorithm:

1. Start with mathematical facts (like the equations ∑𝑛
𝑗=1 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖).

2. Solve to get an equation for each unknown — or for an updated aproximation of each unknown — in terms of
other quantitities.

3. Specify an order of evaluation in which all the quantities at right are evaluated earlier.
In this, it is often best to start with a verbal description before specifying the details in more precise and detailed mathe-
matical form.

Step 2. Refine to get a more robust algorithm:

1. Identify cases that can lead to failure due to division by zero and such, and revise to avoid them.
2. Avoid inaccuracy due to problems like severe rounding error. One rule of thumb is that anywhere that a zero value

is a fatal flaw (in particular, division by zero), a very small value is also a hazard when rounding error is present.
So avoid very small denominators. (We will soon examine this through the phenomenon of loss of significance
and it extreme case catastrophic cancellation.)

Step 3. Refine to get a more efficient algorithm

For example,
• Avoid repeated evaluation of exactly the same quantity.
• Avoid redundant calculations, such as ones whose value can be determnied in advance; for example, values that can
be shown in advance to be zero.

• Compare and choose between alternative algorithms.

3.1.3 Gaussian elimination, a.k.a. row reduction

We start by considering the most basic algorithm, based on ideas seen in a linear algebra course.
The problem is best stated as a collection of equations for individual numerical values:
Given coefficients 𝑎𝑖,𝑗1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 and right-hand side values 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑛, solve for the 𝑛 unknowns
𝑥𝑗, 1 ≤ 𝑗 ≤ 𝑛 in the equations $∑𝑛

𝑗=1 𝑎𝑖,𝑗𝑥𝑗 = 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑛.$
In verbal form, the basic strategy of row reduction or Gaussian elimination is this:

• Choose one equation and use it to eliminate one chosen unknown from all the other equations, leaving that chosen
equation plus 𝑛 − 1 equations in 𝑛 − 1 unknowns.

• Repeat recursively, at each stage using one of the remaining equations to eliminate one of the remaining unknowns
from all the other equations.

• This gives a final equation in just one unknown, preceeded by an equation in that unknown plus one other, and so
on: solve them in this order, from last to first.

64 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Determining those choices, to produce a first algorithm: “naive gaussian elimination”

A precise algorithm must include rules specifying all the choices indicated above. The simplest “naive” choice, which
works in most but not all cases, is to eliminate from the top to bottom and left to right:

• Use the first equation to eliminate the first unknown from all other equations.
• Repeat recursively, at each stage using the first remaining equation to eliminate the first remaining unknown. Thus,
at step 𝑘, equation 𝑘 is used to eliminate unknown 𝑥𝑘.

• This gives one equation in just the last unknown 𝑥𝑛; another equation in the last two unknowns 𝑥𝑛−1 and 𝑥𝑛, and
so on: solve them in this reverse order, evaluating the unknowns from last to first.

This usually works, but can fail because at some stage the (updated) 𝑘-th equation might not include the 𝑘-th unknown:
that is, its coefficient might be zero, leading to division by zero.
We will refine the algorithm to deal with that in the later section Partial Pivoting.

3.1.4 The general case of solving 𝐴𝑥 = 𝑏

The problem of solving 𝐴𝑥 = 𝑏 in general, when all you know is that 𝐴 is an 𝑛 × 𝑛 matrix and 𝑏 is an 𝑛-vector, can in
most cases be handled well by using standard software rather than by writing your own code. Here is an example in Julia,
solving

⎡⎢
⎣

4 2 7
3 5 −6
1 −3 2

⎤⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

2
3
4

⎤⎥
⎦

A = [4.0 2.0 7.0; 3.0 5.0 -6.0; 1.0 -3.0 2.0]
println("A =\n$(A)")
b = [2.0; 3.0; 4.0]
println("b = $(b)")
println("A*b = $(A*b)")

A =
[4.0 2.0 7.0; 3.0 5.0 -6.0; 1.0 -3.0 2.0]
b = [2.0, 3.0, 4.0]
A*b = [42.0, -3.0, 1.0]

Remark 3.1 (On Julia)
• See the notes on Arrays or Arrays in Notes on the Julia Language.
• Julia mimics Matlab’s notation for “dividing from the left”: the solution of 𝐴𝑥 = 𝑏 is 𝑥 = 𝐴−1𝑏 and given by A\b;
it is not 𝑏𝐴−1 which is what you get from the usual “divide from the right” notation of b/A.

See the notes on Arrays or Julia arrays or Arrays in Notes on the Julia Language.

x = A\b;

println("Julia says that the solution of Ax=b is x=$(x)")

Julia says that the solution of Ax=b is x=[1.8116883116883116, -1.0324675324675323,
↪ -0.45454545454545453]

3.1. Row Reduction/Gaussian Elimination 65



Introduction to Numerical Methods and Analysis with Julia (draft)

Check the residual 𝑏 − 𝐴𝑥, a measure of backward error:

r = b-A*x;

println()
println("As a check, the residual is")
println(" r = b - Ax = $(r)")
println("and its infinity (or 'maximum') norm is")
println(" ||r|| = $(maximum(abs.(r)))")

As a check, the residual is
r = b - Ax = [0.0, 0.0, 8.881784197001252e-16]

and its infinity (or 'maximum') norm is
||r|| = 8.881784197001252e-16

Remark 3.2 (Not quite zero values and rounding)
Some values here that you might hope to be zero are instead very small non-zero numbers, with exponent 10−16, due to
rounding error in computer arithmetic. For details on this (like why “-16” in particular) seeMachine Numbers, Rounding
Error and Error Propagation.

3.1.5 The naive Gaussian elimination algorithm, in pseudo-code

Here the elements of the transformed matrix and vector after step 𝑘 are named 𝑎(𝑘)
𝑖,𝑗 and 𝑏(𝑘)

𝑘 , so that the original values
are 𝑎(0)

𝑖,𝑗 = 𝑎𝑖,𝑗 and 𝑏(0)
𝑖 = 𝑏𝑖.

The name 𝑙𝑖,𝑘 is given to the multiple of row 𝑘 that is subtracted from row 𝑖 at step 𝑘. This naming might seem redundant,
but it becomes very useful later.

Algorithm 3.1 (naive Gaussian elimination)
for k from 1 to n-1 Step k: get zeros in column k below row k:

for i from k+1 to n
Evaluate the multiple of row k to subtract from row i:

𝑙𝑖,𝑘 = 𝑎(𝑘−1)
𝑖,𝑘 /𝑎(𝑘−1)

𝑘,𝑘 If 𝑎(𝑘−1)
𝑘,𝑘 ≠ 0!

Subtract (𝑙𝑖,𝑘 times row k) from row i in matrix A …:

for j from 1 to n

𝑎(𝑘)
𝑖,𝑗 = 𝑎(𝑘−1)

𝑖,𝑗 − 𝑙𝑖,𝑘𝑎(𝑘−1)
𝑘,𝑗

end
… and at right, subtract (𝑙𝑖,𝑘 times 𝑏𝑘) from 𝑏𝑖:

𝑏(𝑘)
𝑖 = 𝑏(𝑘−1)

𝑖 − 𝑙𝑖,𝑘𝑏(𝑘−1)
𝑘

end

The rows before 𝑖 = 𝑘 are unchanged, so they are ommited from the update; however, in a situation where we need to
complete the definitions of 𝐴(𝑘) and 𝑏(𝑘) we would also need the following inside the for k loop:

66 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Algorithm 3.2 (Inserting the zeros below the main diagonal)
for i from 1 to k
for j from 1 to n

𝑎(𝑘)
𝑖,𝑗 = 𝑎(𝑘−1)

𝑖,𝑗

end
𝑏(𝑘)

𝑖 = 𝑏(𝑘−1)
𝑖

end

However, the algorithm will usually be implemented by overwriting the previous values in an array with new ones, and
then this part is redundant.
The next improvement in efficiency: the updates in the first 𝑘 columns at step 𝑘 give zero values (that is the key idea of the
algorithm!), so there is no need to compute or store those zeros, and thus the only calculations needed in the above for
j from 1 to n loop are covered by for j from k+1 to n. Thus from now on we use only the latter—except
when, for demonstration purposes, we need those zeros.
Thus, the standard algorithm looks like this:

Algorithm 3.3 (basic Gaussian elimination)
for k from 1 to n-1 Step k: Get zeros in column k below row k:

for i from k+1 to n Update only the rows that change: from k+1 on:

Evaluate the multiple of row k to subtract from row i:

𝑙𝑖,𝑘 = 𝑎(𝑘−1)
𝑖,𝑘 /𝑎(𝑘−1)

𝑘,𝑘 If 𝑎(𝑘−1)
𝑘,𝑘 ≠ 0!

Subtract (𝑙𝑖,𝑘 times row k) from row i in matrix A, in the columns that are not automaticaly zero:

for j from k+1 to n

𝑎(𝑘)
𝑖,𝑗 = 𝑎(𝑘−1)

𝑖,𝑗 − 𝑙𝑖,𝑘𝑎(𝑘−1)
𝑘,𝑗

end
and at right, subtract (𝑙𝑖,𝑘 times 𝑏𝑘) from 𝑏𝑖:

𝑏(𝑘)
𝑖 = 𝑏(𝑘−1)

𝑖 − 𝑙𝑖,𝑘𝑏(𝑘−1)
𝑘

end

3.1.6 The naive Gaussian elimination algorithm, in Julia

Conversion to actual Julia code is now quite straightforward; there is litle more to be done than:
• Change the way that indices are described, from 𝑏𝑖 to b[i] and from 𝑎𝑖,𝑗 to A[i,j].
• Use case consistently in array names, since the quirk in mathematical notation of using upper-case letters for matrix
names but lower case letters for their elements is gone! In these notes, matrix names will be upper-case and vector
names will be lower-case (even when a vector is considered as 1-column matrix).

• Rather than create a new array for each matrix 𝐴(0), 𝐴(1), etc. and each vector 𝑏(0), 𝑏(1), we overwite each in the
same array.

3.1. Row Reduction/Gaussian Elimination 67



Introduction to Numerical Methods and Analysis with Julia (draft)

for k in 1:n
for i in k+1:n

L[i,k] = A[i,k] / A[k,k]
for j in k+1:n

A[i,j] -= L[i,k] * A[k,j]
end
b[i] -= L[i,k] * b[k]

end
end

To demonstrate this, some additions are needed:
• Putting this algorithm into a function.
• Getting the value 𝑛 needed for the loop, using the fact that it is the length of vector b.
• Creating the array 𝐿.
• Copying the input arrays A and b into new ones, U and c, so that the original arrays are not changed. That is, when
the row reduction is completed, U contains 𝐴(𝑛−1) and c contains 𝑏(𝑛−1).

Also, for some demonstrations, the zero values below the main diagonal of U are inserted, though usually they would not
be needed.

function rowreduce(A, b)
# To avoid modifying the matrix and vector specified as input,
# they are copied to new arrays, with the function copy().
# Warning: it does not work to say "U = A" and "c = b";
# this makes these names synonyms, referring to the same stored data.

U = copy(A) # not "U=A", which makes U and A synonyms
c = copy(b)
n = length(b)
L = zeros(n, n)
for k in 1:n-1

for i in k+1:n
# compute all the L values for column k:
L[i,k] = U[i,k] / U[k,k] # Beware the case where U[k,k] is 0
for j in k+1:n

U[i,j] -= L[i,k] * U[k,j]
end
# Put in the zeros below the main diagonal in column k of U;
# this is not important for calculations,
# since those elements of U are not used in backward substitution,
# but it helps for displaying results and for checking the results via␣

↪residuals.
U[i,k] = 0.

c[i] -= L[i,k] * c[k]
end

end
for i in 2:n

for j in 1:i-1
U[i,j] = 0.

end
end
return (U, c)

end;

68 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Here is a helper function for displaying matrices. Since it will be used in several sections, it is also in the module Nu-
mericalMethods, along with the above function; see Module NumericalMethods.

Remark 3.3 (Julia Modules)
Modules and their usage are introduced in the notes on Using modules and packages. As explained there, these two
functions can be obtained with

include("NumericalMethods.jl")
using .NumericalMethods: rowreduce
using .NumericalMethods: printmatrix

Details about creating your own modules will be given in creating modules once those notes are written; meanwhile,
examining Module NumericalMethods could help: the actual module definition file is just the Julia code from there with
the interspersed explanatory comments removed.

Some helper functions to cleanup output

function printmatrix(A)
# A helper function to "pretty print" matrices

(rows, cols) = size(A)
print("[ ")
for row in 1:rows

if row > 1
print(" ")

end
for col in 1:cols

print(A[row,col], " ")
end
if row < rows;

println()
else

println("]")
end

end
end;

# A shorthand for rounding off to n significant digits.
import Base: round
round(x, n::Integer) = round(x, sigdigits=n);

println("A is")
printmatrix(A)
println("b = $(b)")

A is
[ 4.0 2.0 7.0
3.0 5.0 -6.0
1.0 -3.0 2.0 ]

b = [2.0, 3.0, 4.0]

(U, c) = rowreduce(A, b);

3.1. Row Reduction/Gaussian Elimination 69



Introduction to Numerical Methods and Analysis with Julia (draft)

println("Row reduction gives")
println("U =")
printmatrix(U)
println("c = $(c)")

Row reduction gives
U =
[ 4.0 2.0 7.0
0.0 3.5 -11.25
0.0 0.0 -11.0 ]

c = [2.0, 1.5, 5.0]

Let’s take advantage of the fact that we have used Julia’s built-in linear algebra command b\A to get a very accurate
approximation of the solution 𝑥 to 𝐴𝑥 = 𝑏; this should also solve 𝑈𝑥 = 𝑐, so check the backward error, a.k.a. the
residual:

r = c - U * x
println("The residual (backward error) r = c-Ux is $(round.(r,4))," *

" with maximum norm $(round(maximum(abs.(r)),4))")

The residual (backward error) r = c-Ux is [0.0, -2.22e-16, 0.0], with maximum norm␣
↪2.22e-16

Remark 3.4 (Array slicing in Julia)
Many operations in linear algebra can be expressed more concisely using array slicing and vectorization as described in
Notes on the Julia Language allowing the loops above to be expressed as

for k in 1:n
L[k+1:end,end] = A[k+1:end,k] / A[k,k]
A[k+1:end,k+1:end] -= L[k+1:end,k] * A[[k],k+1:end]
b[k+1:end] -= L[k+1:end,k] * b[k]
end

end

Remark 3.5 (Matrix slicing in Julia)
One subtlety here, as mentioned in the notes on slicing: that row slice at the end of line 3 has to be done as A[[k],
k+1:end] with brackets around the row index, in order to make it a 1-row matrix; using A[k,k+1:end] instead
would give a vector, and then the product would fail.

I will break my usual guideline of non-repetition by redefining rowreduce, since this is just a restatement of exactly
the same algorithm with different Julia notation.
While I am about it, I add a demomode, for display of intermediate results.

function rowreduce(A, b; demomode=false)
# To avoid modifying the matrix and vector specified as input,
# they are copied to new arrays, with the method .copy()
# Warning: it does not work to say "U = A" and "c = b";
# this makes these names synonyms, referring to the same stored data.

(continues on next page)

70 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

# This version vectorizes the inner loops, and all of the "i, j" loop for␣
↪updating U.

if demomode
println("rowreduce version 2: some loops vectorized")

end
U = copy(A) # not "U=A", which makes U and A synonyms
c = copy(b)
n = length(b)
L = zeros(n, n)
for k in 1:n-1

if demomode; println("Step $(k):"); end
# compute all the L values for column k:
L[k+1:end,k] = U[k+1:end,k] / U[k,k] # Beware the case where U[k,k] is 0
U[k+1:end,k+1:end] -= L[k+1:end,k] * U[[k],k+1:end]
c[k+1:end] -= L[k+1:end,k] * c[k]

# Insert the below-diagonal zeros in column k;
# this is not important for calculations,
# since those elements of U are not used in backward substitution,
# but it helps for displaying results and for checking the results via␣

↪residuals.
U[k+1:end,k] .= 0.0

if demomode
println("After step $k the matrix is")
printmatrix(U)
println("and the right-hand side is $c")

end
end
return (U, c)

end;

Repeating the above testing:

U = ones(1,3)

1×3 Matrix{Float64}:
1.0 1.0 1.0

(U, c) = rowreduce(A, b, demomode=true);
println("Row reduction gives U=")
printmatrix(U)
println("and right-hand side $c")

rowreduce version 2: some loops vectorized
Step 1:
After step 1 the matrix is
[ 4.0 2.0 7.0
0.0 3.5 -11.25
0.0 -3.5 0.25 ]

and the right-hand side is [2.0, 1.5, 3.5]
Step 2:

(continues on next page)

3.1. Row Reduction/Gaussian Elimination 71



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

After step 2 the matrix is
[ 4.0 2.0 7.0
0.0 3.5 -11.25
0.0 0.0 -11.0 ]

and the right-hand side is [2.0, 1.5, 5.0]
Row reduction gives U=
[ 4.0 2.0 7.0
0.0 3.5 -11.25
0.0 0.0 -11.0 ]

and right-hand side [2.0, 1.5, 5.0]

3.1.7 Backward substitution with an upper triangular matrix

The transformed equations have the form

𝑢1,1𝑥1 + 𝑢1,2𝑥2 + 𝑢1,3𝑥3 + ⋯ + 𝑢1,𝑛𝑥𝑛 = 𝑐1
⋮

𝑢𝑖,𝑖𝑥𝑖 + 𝑢𝑖+1,𝑖+1𝑥𝑖+1 + ⋯ + 𝑢𝑖,𝑛𝑥𝑛 = 𝑐𝑖
⋮

𝑢𝑛−1,𝑛−1𝑥𝑛−1 + 𝑢𝑛−1,𝑛𝑥𝑛 = 𝑐𝑛−1
𝑢𝑛𝑛𝑥𝑛 = 𝑐𝑛

and can be solved from bottom up, starting with 𝑥𝑛 = 𝑐𝑛/𝑢𝑛,𝑛.
All but the last equation can be written as

𝑢𝑖,𝑖𝑥𝑖 +
𝑛

∑
𝑗=𝑖+1

𝑢𝑖,𝑗𝑥𝑗 = 𝑐𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1

and so solved as

𝑥𝑖 =
𝑐𝑖 − ∑𝑛

𝑗=𝑖+1 𝑢𝑖,𝑗𝑥𝑗
𝑢𝑖,𝑖

, If 𝑢𝑖,𝑖 ≠ 0

This procedure is backward substitution, giving the algorithm

Algorithm 3.4 (Backward substitution)

𝑥𝑛 = 𝑐𝑛/𝑢𝑛,𝑛 for i from n-1 down to 1 𝑥𝑖 =
𝑐𝑖 − ∑𝑛

𝑗=𝑖+1 𝑢𝑖,𝑗𝑥𝑗
𝑢𝑖,𝑖

end

This works so long as none of the main diagonal terms 𝑢𝑖,𝑖 is zero, because when done in this order, everything on the
right hand side is known by the time it is evaluated.
For future reference, note that the elements 𝑢𝑘,𝑘 that must be non-zero here, the ones on the main diagonal of 𝑈 , are
the same as the elements 𝑎(𝑘)

𝑘,𝑘 that must be non-zero in the row reduction stage above, because after stage 𝑘, the elements
of row 𝑘 do not change any more: 𝑎(𝑘)

𝑘,𝑘 = 𝑎(𝑛−1)
𝑘,𝑘 = 𝑢𝑘,𝑘.

Remark 3.6 (Summing in Julia)
For an 𝑛-element single-index array v, the sum of its elements ∑𝑛

𝑖=1 𝑣𝑖 is given by sum(v).

72 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Thus ∑𝑏
𝑖=𝑎 𝑣𝑖, the sum over a subset of indices [𝑎, 𝑏], is given by sum(v[a:b]).

The backward substitution algorithm in Julia

With all the above Julia details, the core code for backward substitution is:

x[end] = c[end]/U[end,end]
for i in n-1:-1:1

x[i] = (c[i] - U[i,i+1:end] * x[i+1:end])) / U[i,i]
end

Observation 3.1
Note that the backward substitution algorithm and its Julia coding have a nice mathematical advantage over the row
reduction algorithm above: the precise mathematical statement of the algorithm does not need any intermediate quantities
distinguished by superscripts (𝑘) and correspondingly, all variables in the code have fixed meanings, rather than changing
at each step.
In other words, all uses of the equal sign are mathematically correct as equations!
This can be advantageous in creating algorithms and code that is more understandable and more readily verified to be
correct, and is an aspect of the functional programming approach. We will soon go part way to that functional ideal,
by rephrasing Gaussian elimination in a form where all variables have clear, fixed meanings, corresponding to the nat-
ural mathematical description of the process: the method of LU factorization introduced in Solving Ax = b with LU
factorization.

As a final demonstration, we put this second version of the code into a complete working Julia function and test it:

function backwardsubstitution(U, c; demomode=false)
n = length(c)
x = zeros(n)
x[end] = c[end]/U[end,end]
if demomode

println("x_$n = $(x[n])")
end
for i in n-1:-1:1

if demomode
println("i=$i")

end
x[i] = ( c[i] - sum(U[i,i+1:end] .* x[i+1:end]) ) / U[i,i]
if demomode

println("x_$i = $(x[i])")
end

end
return x

end;

Remark 3.7
As usual, this is also available via

using .NumericalMethods: backwardsubstitution

3.1. Row Reduction/Gaussian Elimination 73



Introduction to Numerical Methods and Analysis with Julia (draft)

x = backwardsubstitution(U, c, demomode=true)
println("x = $x")

x_3 = -0.45454545454545453
i=2
x_2 = -1.0324675324675323
i=1
x_1 = 1.8116883116883116
x = [1.8116883116883116, -1.0324675324675323, -0.45454545454545453]

println("x = $x")
r = b - A*x
println("The residual b - Ax = $(round.(r,4)), with maximum norm $(round(maximum(abs.

↪(r)),4)))")

x = [1.8116883116883116, -1.0324675324675323, -0.45454545454545453]
The residual b - Ax = [0.0, 0.0, 8.882e-16], with maximum norm 8.882e-16)

Since one is often just interested in the solution given by the two steps of row reduction and then backward substitution,
they can be combined in a single function by composition:

solvelinearsystem(A, b) = backwardsubstitution(rowreduce(A, b)...);

Remark 3.8 (The Julia “splat” operation)
The splat notation “…” takes the item to its left (here the tuple (U, c) returned by rowreduce) and unpacks it into
separate items [here U and c, as needed for input to backwardsubstitution.

3.1.8 Two code testing hacks: starting from a known solution, and using randomly
generated examples

An often useful strategy in developing and testing code is to create a test case with a known solution; another is to use
random numbers to avoid accidently using a test case that in unusually easy.

Remark 3.9 (function rand! from module Random)
• The preferred style is to have all import and using statements near the top, but since this is the first time we’ve
heard of module Random I did not want it to be mentioned mysteriously above.

• The exclamation point in rand! indicates that the function modifies its input. This will be discussed in Functions
part 2 when that section gets written.

using Random: rand!

n = length(b)
xrandom = zeros(n)
rand!(xrandom) # fill with random values, uniform in [0, 1)
(xrandom *= 2.0) .-= 1.0 # double and then subtract 1: now uniform in [-1, 1)
println("xrandom = $xrandom")

74 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

xrandom = [0.13386638477695145, -0.7305805960100351, -0.8909949807354525]

Create a right-hand side b that automatically makes xrandom the correct solution:

brandom = A * xrandom;

println("A is"); printmatrix(A)
println("\nbrandom is $brandom")
(U, crandom) = rowreduce(A, brandom)
println("\nU is"); printmatrix(U)
println("\nResidual crandom - U*xrandom = $(round.(crandom - U*xrandom,4))")
xcomputed = backwardsubstitution(U, crandom)
println("\nxcomputed is $(round.(xcomputed,12))")
r = brandom - A*xcomputed
println("\nResidual brandom-A*xcomputed is $(round.(r,4))")
println("\nBackward error is $(round(maximum(abs.(r)),4))")
xerror = xrandom - xcomputed
println("\nError xrandom - xcomputed is $(round.(xerror,4))")
println("\nAbsolute error |xrandom-xcomputed| is $(round(maximum(abs.(xerror)),4))")

A is
[ 4.0 2.0 7.0
3.0 5.0 -6.0
1.0 -3.0 2.0 ]

brandom is [-7.162660518060432, 2.0946660586933934, 0.5436182113361516]

U is
[ 4.0 2.0 7.0
0.0 3.5 -11.25
0.0 0.0 -11.0 ]

Residual crandom - U*xrandom = [0.0, 0.0, 0.0]

xcomputed is [0.133866384777, -0.73058059601, -0.890994980735]

Residual brandom-A*xcomputed is [0.0, 4.441e-16, -4.441e-16]

Backward error is 4.441e-16

Error xrandom - xcomputed is [0.0, 1.11e-16, 0.0]

Absolute error |xrandom-xcomputed| is 1.11e-16

3.1. Row Reduction/Gaussian Elimination 75



Introduction to Numerical Methods and Analysis with Julia (draft)

3.1.9 What can go wrong? Some examples

Example 3.1 (An obvious division by zero problem)
Consider the system of two equations

𝑥2 = 1
𝑥1 + 𝑥2 = 2

It is easy to see that this has the solution 𝑥1 = 𝑥2 = 1; in fact it is already in “reduced form”. However when put into
matrix form

[ 0 1
1 1 ] [ 𝑥1

𝑥2
] = [ 1

2 ]

the above algorithm fails, because the fist pivot element 𝑎11 is zero:

A1 = [0.0 1.0 ; 1.0 1.0]
b1 = [1.0 ; 1.0]

println("A1 is)"); printmatrix(A1)
println("b1 is $(b1)")

A1 is)
[ 0.0 1.0
1.0 1.0 ]

b1 is [1.0, 1.0]

(U1, c1) = rowreduce(A1, b1)
x1 = backwardsubstitution(U1, c1)

println("U1 is"); printmatrix(U1)
print("c1 is $c1")
print("x1 is $x1")

U1 is
[ 0.0 1.0
0.0 -Inf ]

c1 is [1.0, -Inf]x1 is [NaN, NaN]

Remark 3.10 (IEEE fake numbers Inf and NaN)
• Inf, meaning “infinity”, is a special value given as the result of calculations like division by zero. Surprisingly, it
can have a sign!

• NaN, meaning “Not a Number”, is a special value given as the result of a calculation like 0/0.

Example 3.2 (A less obvious division by zero problem)
Next consider this system

⎡⎢
⎣

1 1 1
1 1 2
1 2 2

⎤⎥
⎦

⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

= ⎡⎢
⎣

3
4
5

⎤⎥
⎦

76 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

The solution is 𝑥1 = 𝑥2 = 𝑥3 = 1, and this time none of th diagonal elements is zero, so it is not so obvious that a
division by zero problem will occur, but:

A2 = [1.0 1.0 1.0 ; 1.0 1.0 2.0 ; 1.0 2.0 2.]
b2 = [3.0 ; 4.0 ; 5.]

println("A2 is"); printmatrix(A2)
println("b2 is $b2")

A2 is
[ 1.0 1.0 1.0
1.0 1.0 2.0
1.0 2.0 2.0 ]

b2 is [3.0, 4.0, 5.0]

(U2, c2) = rowreduce(A2, b2)
x2 = backwardsubstitution(U2, c2)

println("U2 is"); printmatrix(U2)
println("c2 is $c2")
println("x2 is $x2")

U2 is
[ 1.0 1.0 1.0
0.0 0.0 1.0
0.0 0.0 -Inf ]

c2 is [3.0, 1.0, -Inf]
x2 is [NaN, NaN, NaN]

What happens here is that the first stage subtracts the first row from each of the others …

A2[2,:] -= A2[1,:]
b2[2] -= b2[1]
A2[3,:] -= A2[1,:]
b2[3] -= b2[1];

… and the new matrix has the same problem as above at the next stage:

println("Now A2 is"); printmatrix(A2)
println("and b2 is $(b2)")

Now A2 is
[ 1.0 1.0 1.0
0.0 0.0 1.0
0.0 1.0 1.0 ]

and b2 is [3.0, 1.0, 2.0]

Thus, the second and third equations are

[ 0 1
1 1 ] [ 𝑥2

𝑥3
] = [ 1

2 ]

with the same problem as in Example 3.1.

3.1. Row Reduction/Gaussian Elimination 77



Introduction to Numerical Methods and Analysis with Julia (draft)

Example 3.3 (Problems caused by inexact arithmetic: “divison by almost zero”)
The equations

[ 1 1016

1 1 ] [ 𝑥1
𝑥2

] = [ 1 + 1016

2 ]

again have the solution 𝑥1 = 𝑥2 = 1, and the only division that happens in the above algorithm for row reduction is by
that pivot element 𝑎11 = 1, ≠ 0, so with exact arithmetic, all would be well. But:

A3 = [1.0 1e16 ; 1.0 1.0]
b3 = [1.0 + 1e16 ; 2.0]

println("A3 is"); printmatrix(A3)
println("b3 is $b3")

A3 is
[ 1.0 1.0e16
1.0 1.0 ]

b3 is [1.0e16, 2.0]

(U3, c3) = rowreduce(A3, b3)
x3 = backwardsubstitution(U3, c3)

println("U3 is"); printmatrix(U3)
println("c3 is $c3")
println("x3 is $x3")

U3 is
[ 1.0 1.0e16
0.0 -1.0e16 ]

c3 is [1.0e16, -9.999999999999998e15]
x3 is [2.0, 0.9999999999999998]

This gets 𝑥2 = 1 fairly accurately, but 𝑥1 is completely wrong!
One hint is that 𝑏1, which should be 1 + 1016 = 1000000000000001, is instead just given as 1016.
On the other hand, all is well with less large values, like 1015:

A3a = [1.0 1e15 ; 1.0 1.0]
b3a = [1.0 + 1e15 ; 2.0]

println("A3a is"); printmatrix(A3a)
println("b3a is $b3a")

A3a is
[ 1.0 1.0e15
1.0 1.0 ]

b3a is [1.000000000000001e15, 2.0]

78 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(U3a, c3a) = rowreduce(A3a, b3a)
x3a = backwardsubstitution(U3a, c3a)

println("U3a is"); printmatrix(U3a)
println("c3a is $c3a")
println("x3a is $x3a")

U3a is
[ 1.0 1.0e15
0.0 -9.99999999999999e14 ]

c3a is [1.000000000000001e15, -9.99999999999999e14]
x3a is [1.0, 1.0]

Example 3.4 (Avoiding small denominators)
The first equation in Example 3.3 can be divided by 1016 to get an equivalent system with the same problem:

[ 10−16 1
1 1 ] [ 𝑥1

𝑥2
] = [ 1 + 10−16

2 ]

Now the problem is more obvious: this system differs from the system in Example 3.1 just by a tiny change of 10−16 in
that pivot elements 𝑎11, and the problem is division by a value very close to zero.

A4 = [1e-16 1.0 ; 1.0 1.0]
b4 = [1.0 + 1e-16 ; 2.0]

println("A4 is"); printmatrix(A4)
println("b4 is $b4")

A4 is
[ 1.0e-16 1.0
1.0 1.0 ]

b4 is [1.0, 2.0]

(U4, c4) = rowreduce(A4, b4)
x4 = backwardsubstitution(U4, c4)

println("U4 is"); printmatrix(U4)
println("c4 is $c4")
println("x4 is $x4")

U4 is
[ 1.0e-16 1.0
0.0 -1.0e16 ]

c4 is [1.0, -9.999999999999998e15]
x4 is [2.220446049250313, 0.9999999999999998]

One might think that there is no such small denominator in Example 3.3, but what counts for being “small” is magnitude
relative to other values — 1 is very small compared to 1016.
To understand these problems more (and how to avoid them) we will explore Machine Numbers, Rounding Error and
Error Propagation in the next section.

3.1. Row Reduction/Gaussian Elimination 79



Introduction to Numerical Methods and Analysis with Julia (draft)

3.1.10 When naive Guassian elimination is safe: diagonal dominance

There are several important cases when we can guarantee that these problem do not occur. One obvious case is when
the matrix 𝐴 is diagonal and non-singular (so with all non-zero elements); then it is already row-reduced and with all
denominators in backward substitution being non-zero.
A useful measure of being “close to diagonal” is diagonal dominance:

Definition 3.1 (Strict Diagonal Dominance)
A matrix 𝐴 is row-wise strictly diagonally dominant, sometimes abbreviated as just strictly diagonally dominant or
SDD, if

∑
1≤𝑘≤𝑛,𝑘≠𝑖

|𝑎𝑖,𝑘| < |𝑎𝑖,𝑖|

Loosely, each main diagonal “dominates” in size over all other elements in its row.

Definition 3.2 (Column-wise Strict Diagonal Dominance)
If instead

∑
1≤𝑘≤𝑛,𝑘≠𝑖

|𝑎𝑘,𝑖| < |𝑎𝑖,𝑖|

(so that each main diagonal element “dominates its column”) the matrix is called column-wise strictly diagonally dom-
inant.
Note that this is the same as saying that the transpose 𝐴𝑇 is SDD.

Aside: If only the corresponding non-strict inequality holds, the matrix is called diagonally dominant.

Theorem 3.1
For any strictly diagonally dominant matrix 𝐴, each of the intermediate matrices 𝐴(𝑘) given by the naive Gaussan elim-
ination algorithm is also strictly diagonally dominant, and so the final upper triangular matrix 𝑈 is. In particular, all
the diagonal elements 𝑎(𝑘)

𝑖,𝑖 and 𝑢𝑖,𝑖 are non-zero, so no division by zero occurs in any of these algorithms, including the
backward substitution solving for 𝑥 in 𝑈𝑥 = 𝑐.
The corresponding fact also true if the matrix is column-wise strictly diagonally dominant: that property is also preserved
at each stage in naive Guassian elimination.

Thus in each case the diagonal elements — the elements divided by in both row reduction and backward substitution —
are in some sense safely away from zero. We will have more to say about this in the sections on Partial Pivoting and
Solving Ax = b with LU factorization

For a column-wise SDDmatrix, more is true: at stage 𝑘, the diagonal dominance says that the pivot elemet on the diagonal,
𝑎(𝑘−1)

𝑘,𝑘 , is larger (in magnitude) than any of the elements 𝑎(𝑘−1)
𝑖,𝑘 below it, so the multipliers 𝑙𝑖,𝑘 have

|𝑙𝑖,𝑘| = |𝑎(𝑘−1)
𝑖,𝑘 /𝑎(𝑘−1)

𝑘,𝑘 | < 1.

As we will see when we look at the effects of rounding error inMachine Numbers, Rounding Error and Error Propagation
and Error bounds for linear algebra, condition numbers, matrix norms, etc., keeping intermediate value small is generally
good for accuracy, so this is a nice feature.

80 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Remark 3.11 (Positive definite matrices)
Another class of matrices for which naive Gaussian elimination works well is positive definite matrices which arise in
any important situations; that property is in some sense more natural than diagonal dominance. However that topic will
be left for later.

3.2 Machine Numbers, Rounding Error and Error Propagation

References:
• Sections 0.3 Floating Point Represenation of Real Numbers and 0.4 *Loss of Sinnificance in [Sauer, 2019].
• Section 1.2 Round-off Errors and Computer Arithmetic of [Burden et al., 2016].
• Sections 1.3 and 1.4 of [Chenney and Kincaid, 2012].

3.2.1 Overview

The naive Gaussian elimination algorithm seen in Row Reduction/Gaussian Elimination. has several related weaknesses
which make it less robust and flexible than desired.
Most obviously, it can fail even when the equations are solvable, due to its naive insistence on always working from the
top down. For example, as seen in Example 3.1 of that section, it fails with the system

[ 0 1
1 1 ] [ 𝑥1

𝑥2
] = [ 1

2 ]

because the formula for the first multiplier 𝑙2,1 = 𝑎2,1/𝑎1,1 gives 1/0.
Yet the equations are easily solvable, indeed with no reduction needed: the first equation just says 𝑥2 = 1, and then the
second gives 𝑥1 = 2 − 𝑥2 = 1.
All one has to do here to avoid this problem is change the order of the equations. Indeed we will see that such reordering
is all that one ever needs to do, so long as the original equation has a unique solution.
However, to develop a good strategy, we will also take account of errors introduced by rounding in computer arithmetic,
so that is our next topic.

3.2.2 Robustness and well-posedness

The above claim raises the concept of robustness and the importance of both existence and uniqueness of solutions.

Definition 3.3 (Well-Posed)
A problem is well-posed if it is stated in a way that it has a unique solution. (Note that this might include asking for the
set of all solutions, such as asking for all roots of a polynomial.)

For example, the problem of finding the root of a continuous, monotonic function 𝑓 ∶ [𝑎, 𝑏] → ℝ with 𝑓(𝑎) and 𝑓(𝑏) of
opposite sign is well-posed. Note the care taken with details to ensure both existence and uniqueness of the solution.

Definition 3.4 (Robust)

3.2. Machine Numbers, Rounding Error and Error Propagation 81



Introduction to Numerical Methods and Analysis with Julia (draft)

An algorithm for solving a class of problems is robust if it is guaranteed to solve any well-posed problem in the class.

For example, the bisection method is robust for the above class of problems. On the other hand, Newton’s method is
not, and if we dropped the specification of monotonicity (so allowing multiple solutons) then the bisection method in its
current form would not be robust: it would fail whenever there is more that one solution in the interval [𝑎, 𝑏].

3.2.3 Rounding error and accuracy problems due to “loss of significance”

There is a second slightly less obvious problem with the naive algorithm for Guassian elimination, closely related to the
first. As soon as the algorithm is implemented using any rounding in the arithmetic (rather than, say, working with exact
arithmetic on rational numbers) division by values that are very close to zero can lead to very large intermediate values,
which thus have very few correct decimals (correct bits); that is, very large absolute errors. These large errors can then
propagate, leading to low accuracy in the final results, as seen in Example 3.2 and Example 3.4 of Row Reduction/Gaussian
Elimination

This is the hazard of loss of significance, discussed in Section 0.4 of [Sauer, 2019] and Section 1.4 of [Chenney and
Kincaid, 2012].
So it is time to take Step 2 of the strategy described in the previous notes:

2. Refine to get a more robust algorithm

1. Identify cases that can lead to failure due to division by zero and such, and revise to avoid them.
2. Avoid inaccuracy due to problems like severe rounding error. One rule of thumb is that anywhere that a zero value

is a fatal flaw (in particular, division by zero), a very small value is also a hazard when rounding error is present.
So avoid very small denominators. …

3.2.4 The essentials of machine numbers and rounding in machine arithmetic

As a very quick summary, standard computer arithmetic handles real numbers using binary machine numbers with 𝑝
significant bits, and rounding off of other numbers to such machine numbers introduces a relative error of at most 2−𝑝.
The current dominant choice for machine numbers and arithmetic is IEEE-64, using 64 bits in total and with 𝑝 = 53
significant bits, so that 1/2𝑝 ≈ 1.11⋅10−16, giving about fifteen significant digits. (The other bits are used for an exponent
and the sign.)
(Note: in the above, I ignore the extra problems with real numbers whose magnitude is too large or too small to be
represented: underflow and overflow. Since the allowable range of magnitudes is from 2−1022 ≈ 2.2 ⋅ 10−308 to 21024 ≈
1.8 ⋅ 10308, this is rarely a problem in practice.)
With other systems of binary machine numbers (like older 32-bit versions, or higher precision options like 128 bits) the
significant differences are mostly encapsulated in that one number, themachine unit, 𝑢 = 1/2𝑝.

82 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Binary floating point machine numbers

The basic representation is a binary version of the familiar scientific or decimal floating point notation: in place of the
form ±𝑑0.𝑑1𝑑2 … 𝑑𝑝−1 × 10𝑒 where the fractional part or mantissa is 𝑓 = 𝑑0.𝑑1𝑑2 … 𝑑𝑝−1 = 𝑑0 + 𝑑1

10 + ⋯ + 𝑑𝑝−1
10𝑝−1 .

Binary floating point machine numbers with 𝑝 significant bits can be described as

±(𝑏0.𝑏1𝑏2 … 𝑏𝑝−1)2 × 2𝑒 = ± (𝑏0 + 𝑏1
2 + 𝑏2

22 + ⋯ 𝑏𝑝−1
2𝑝−1 ) × 2𝑒

Just as decimal floating point numbers are typically written with the exponent chosen to have non-zero leading digit
𝑑0 ≠ 0, normalized binary floating point machine numbers have exponent 𝑒 chosen so that 𝑏0 ≠ 0. Thus in fact 𝑏0 = 1
— and so it need not be stored; only 𝑝 − 1 bits are needed to stored for the mantissa.

Worst case rounding error

It turns out that the relative errors are determined solely by the number of significant bits in the mantissa, regardless of
the exponent, so we look at that part first.

Rounding error in the mantissa, (1.𝑏1𝑏2 … 𝑏𝑝−1)2

The spacing of consecutive mantissa values (1.𝑏1𝑏2 … 𝑏𝑝−1)2 is one in the last bit, or 21−𝑝. Thus rounding of any inter-
mediate value 𝑥 to the nearest number of this form introduces an absolute error of at most half of this: 𝑢 = 2−𝑝, which
is called the machine unit
How large can the relative error be? It is largest for the smallest possible denominator, which is (1.00 … 0)2 = 1, so the
relative error due to rounding is also at most 2−𝑝.

Rounding error in general, for ±(1.𝑏1𝑏2 … 𝑏𝑝−1)2 ⋅ 2𝑒.

The sign has no effect on the absolute error, and the exponent changes the spacing of consecutive machine numbers by a
factor of 2𝑒. This scales the maximum possible absolute error to 2𝑒−𝑝, but in the relative error calculation, the smallest
possible denominator is also scaled up to 2𝑒, so the largest possible relative error is again the machine unit, 𝑢 = 2−𝑝.
One way to describe the machine unit u (sometimes called machine epsilon) is to note that the next number above 1 is
1 + 21−𝑝 = 1 + 2𝑢. Thus 1 + 𝑢 is at the threshold between rounding down to 1 and rounding up to a higher value.

IEEE 64-bit numbers: more details and some experiments

For completely full details, you could read about the IEEE 754 Standard for Floating-Point Arithmetic and specifically
the binary64 case. (For historical reasons, this is known as “Double-precision floating-point format”, from the era when
computers were typicaly used 32-bit words, so 64-bit numbers needed two words.)
In the standard IEEE-64 number system:

• 64 bit words are used to store real numbers (a.k.a. floating point numbers, sometimes called floats.)
• There are 𝑝 = 53 bits of precision, so that 52 bits are used to store the mantissa (fractional part).
• The sign is stored with one bit 𝑠: effectively a factor of (−1)𝑠, so 𝑠 = 0 for positive, 𝑠 = 1 for negative.
• The remaining 11 bits are use for the exponent, which allows for 211 = 2048 possibilities; these are chosen in the
range −1023 ≤ 𝑒 ≤ 1024.

3.2. Machine Numbers, Rounding Error and Error Propagation 83

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Double-precision_floating-point_format


Introduction to Numerical Methods and Analysis with Julia (draft)

• However, so far, this does not allow for the value zero! This is handled by giving a special meaning for the smallest
exponent 𝑒 = −1023, so the smallest exponent for normalized numbers is 𝑒 = −1022.

• At the other extreme, the largest exponent 𝑒 = 1024 is used to encode “infinite” numbers, which can arise when a
calculation gives a value too large to represent (displayed as inf and -inf). This exponent is also used to encode
“Not a Number”, for situations like trying to divide zero by zero or multiply zero by inf (displayed as NaN).

• Thus, the exponential factors for normlaized numbers are in the range 2−1022 ≈ 2 × 10−308 to 21023 ≈ 9 × 10307.
Since the mantissa ranges from 1 to just under 2, the range of magnitudes of normalized real numbers is thus from
2−1022 ≈ 2 × 10−308 to just under 21024 ≈ 1.8 × 10308.

Some computational experiments:

p = 53
u = 2.0^(-p)
println("For IEEE-64 arithmetic, there are $(p) bits of precision and the machine␣

↪unit is u=$(u).")
println("The next numbers above 1 are 1+2u = $(1+2*u), 1+4u = $(1+4*u) and so on.")
for factor in [3, 2, 1.00000000001, 1]

one_plus_small = 1 + factor * u
println("1 + $(factor)u rounds to $(one_plus_small)")
difference = one_plus_small - 1
println("\tThis is more than 1 by $(difference), which is $(difference/u) times u

↪")
end

For IEEE-64 arithmetic, there are 53 bits of precision and the machine unit is u=1.
↪1102230246251565e-16.

The next numbers above 1 are 1+2u = 1.0000000000000002, 1+4u = 1.0000000000000004␣
↪and so on.

1 + 3.0u rounds to 1.0000000000000004
This is more than 1 by 4.440892098500626e-16, which is 4.0 times u

1 + 2.0u rounds to 1.0000000000000002
This is more than 1 by 2.220446049250313e-16, which is 2.0 times u

1 + 1.00000000001u rounds to 1.0000000000000002
This is more than 1 by 2.220446049250313e-16, which is 2.0 times u

1 + 1.0u rounds to 1.0
This is more than 1 by 0.0, which is 0.0 times u

println("On the other side, the spacing is halved:")
println("the next numbers below 1 are 1-u = $(1-u), 1-2u = $(1-2*u) and so on.")
for factor in [2., 1., 1.00000000001/2, 1/2]

one_minus_small = 1 - factor * u
println("1 - $(factor)u rounds to $(one_minus_small)")
difference = 1 - one_minus_small
println("\tThis is less than 1 by $(difference), which is $(difference/u) times u

↪")
end

On the other side, the spacing is halved:
the next numbers below 1 are 1-u = 0.9999999999999999, 1-2u = 0.9999999999999998␣

↪and so on.
1 - 2.0u rounds to 0.9999999999999998

This is less than 1 by 2.220446049250313e-16, which is 2.0 times u
1 - 1.0u rounds to 0.9999999999999999

This is less than 1 by 1.1102230246251565e-16, which is 1.0 times u

(continues on next page)

84 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

1 - 0.500000000005u rounds to 0.9999999999999999
This is less than 1 by 1.1102230246251565e-16, which is 1.0 times u

1 - 0.5u rounds to 1.0
This is less than 1 by 0.0, which is 0.0 times u

Next, look at the extremes of very small and very large magnitudes:

println("The smallest normalized positive number is 2^(-1022)=$(2.0^(-1022))")
println("The largest mantissa is binary (1.1111...) with 53 ones: 2 - 2^(-52)=$(2-2.0^

↪(-52))")
println("The largest normalized number is (2 - 2^(-52))*2^1023=$((2 - 2.0^(-52)) * (2.

↪0^1023))")
println("If instead we round that mantissa up to 2 and try again, we get 2*2^1023=$(2.

↪0 * 2.0^1023)")

The smallest normalized positive number is 2^(-1022)=2.2250738585072014e-308
The largest mantissa is binary (1.1111...) with 53 ones: 2 - 2^(-52)=1.

↪9999999999999998
The largest normalized number is (2 - 2^(-52))*2^1023=1.7976931348623157e308
If instead we round that mantissa up to 2 and try again, we get 2*2^1023=Inf

What happens if we compute positive numbers smaller than that smallest normalized positive number 2−1022?

for S in [0, 1, 2, 51, 52, 53]
exponent = -1022-S
println("2^(-1022-$(S)) = 2^($(exponent)) = $(2.0^(exponent))")

end

2^(-1022-0) = 2^(-1022) = 2.2250738585072014e-308
2^(-1022-1) = 2^(-1023) = 1.1125369292536007e-308
2^(-1022-2) = 2^(-1024) = 5.562684646268003e-309
2^(-1022-51) = 2^(-1073) = 1.0e-323
2^(-1022-52) = 2^(-1074) = 5.0e-324
2^(-1022-53) = 2^(-1075) = 0.0

These extremely small values are called denormalized numbers. Numbers with exponent 2−1022−𝑆 have fractional part
with 𝑆 leading zeros, so only 𝑝 − 𝑆 significant bits. So when the shift 𝑆 reaches 𝑝 = 53, there are no significant bits left,
and the value is truly zero.

3.2.5 Propagation of error in arithmetic

The only errors in the results of Gaussian elimination come from errors in the initial data (𝑎𝑖𝑗 and 𝑏𝑖) and from when the
results of subsequent arithmetic operations are rounded to machine numbers. Here, we consider how errors from either
source are propagated — and perhaps amplified — in subsequent arithmetic operations and rounding.
In summary:

• When multiplying two numbers, the relative error in the sum is no worse than slightly more than the sum of the
relative errors in the numbers multiplied. (the be pedantic, it is at most the sum of those relative plus their product,
but that last piece is typically far smaller.)

• When dividing two numbers, the relative error in the quotient is again no worse than slightly more than the sum of
the relative errors in the numbers divided.

3.2. Machine Numbers, Rounding Error and Error Propagation 85



Introduction to Numerical Methods and Analysis with Julia (draft)

• When adding two positive numbers, the relative error is no more that the larger of the relative errors in the numbers
added, and the absolute error in the sum is no larger than the sum of the absolute errors.

• When subtracting two positive numbers, the absolute error is again no larger than the sum of the absolute errors in
the numbers subtracted, but the relative error can get far worse!

Due to the differences between the last two cases, this discussion of error propagation will use “addition” to refer only to
adding numbers of the same sign, and “subtraction” when subtracting numbers of the same sign.
More generally, we can think of rewriting the operation in terms of a pair of numbers that are both positive, and assume
WLOG that all input values are positive numbers.

Notation: 𝑥𝑎 = 𝑥(1 + 𝛿𝑥) for errors and 𝑓𝑙(𝑥) for rounding

Two notations will be useful.
Firstly, for any approximation 𝑥𝑎 of a real value 𝑥, let 𝛿𝑥 = 𝑥𝑎 − 𝑥

𝑥 , so that 𝑥𝑎 = 𝑥(1 + 𝛿𝑥).

Thus, |𝛿𝑥| is the relative error, and 𝛿𝑥 helps keep track of the sign of the error.
Also, introduce the function 𝑓𝑙(𝑥)which does rounding to the nearest machine number. For the case of the approximation
𝑥𝑎 = 𝑓𝑙(𝑥) to 𝑥 given by rounding, the above results on machine numbers then give the bound |𝛿𝑥| ≤ 𝑢 = 2−𝑝.

Propagation of error in products

Let 𝑥 and 𝑦 be exact quantities, and 𝑥𝑎 = 𝑥(1 + 𝛿𝑥), 𝑦𝑎 = 𝑦(1 + 𝛿𝑦) be approximations. The approximate product
(𝑥𝑦)𝑎 = 𝑥𝑎𝑦𝑎 = 𝑥(1 + 𝛿𝑥)𝑦(1 + 𝛿𝑦) has error

𝑥(1 + 𝛿𝑥)𝑦(1 + 𝛿𝑦) − 𝑥𝑦 = 𝑥𝑦(1 + 𝛿𝑥 + 𝛿𝑦 + 𝛿𝑥𝛿𝑦), = 𝑥𝑦(1 + 𝛿𝑥𝑦)

Thus the relative error in the product is

|𝛿𝑥𝑦| ≤ |𝛿𝑥| + |𝛿𝑦| + |𝛿𝑥||𝛿𝑦|

For example if the initial errors are due only to rounding, |𝛿𝑥| ≤ 𝑢 − 2−𝑝 and similarly for |𝛿𝑦|, so the relative error in
𝑥𝑎𝑦𝑎 is at most 2𝑢+𝑢2 = 21−𝑝 +2−2𝑝. In this and most situations, that final “product of errors” term 𝛿𝑥𝛿𝑦 is far smaller
than the first two, giving to a very good approximation

|𝛿𝑥𝑦| ≤ |𝛿𝑥| + |𝛿𝑦|

This is the above stated “sum of relative errors” result.
When the “input errors” in 𝑥𝑎 and 𝑦𝑎 come just from rounding to machine numbers, so that each has 𝑝 bits of precision,
|𝛿𝑥|, |𝛿𝑦| ≤ 1/2𝑝 and the error bound for the product is 1/2𝑝−1: at most one bit of precision is lost.

Exercise 1

Derive the corresponding result for quotients.

86 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Propagation or error in sums (of positive numbers)

With 𝑥𝑎 and 𝑦𝑎 as above (and positive), the approximate sum 𝑥𝑎 + 𝑦𝑎 has error

(𝑥𝑎 + 𝑦𝑎) − (𝑥 + 𝑦) = (𝑥𝑎 − 𝑥) + (𝑦𝑎 − 𝑦)

so the absolute error is bounded by |𝑥𝑎 − 𝑥| + |𝑦𝑎 − 𝑦|; the sum of the absolute errors.
For the relative errors, express this error as

(𝑥𝑎 + 𝑦𝑎) − (𝑥 + 𝑦) = (𝑥(1 + 𝛿𝑥) + 𝑦(1 + 𝛿𝑦)) = 𝑥𝛿𝑥 + 𝑦𝛿𝑦

Let 𝛿 be the maximum or the relative errors, 𝛿 = max(|𝛿𝑥|, |𝛿𝑦|); then the absolute error is at most (|𝑥|+|𝑦|)𝛿 = (𝑥+𝑦)𝛿
and so the relative error is at most

(𝑥 + 𝑦)𝛿
|𝑥 + 𝑦| = 𝛿 = max(|𝛿𝑥|, |𝛿𝑦|)

That is, the relative error in the sum is at most the sum of the relative errors, again as advertised above.
When the “input errors” in 𝑥𝑎 and 𝑦𝑎 come just from rounding to machine numbers, the error bound for the sum is no
larger: no precision is lost! Thus, if you take any collection of non-negative numbers, round the to machine numbers so
that each has relative error at must 𝑢, then the sum of these rounded values also has relative error at most 𝑢.

Propagation or error in differences (of positive numbers): loss of significance/loss of precision

The above calculation for the absolute error works fine regardless of the signs of the numbers, so the absolute error of a
difference is still bounded by the sum of the absolute errors:

|(𝑥𝑎 − 𝑦𝑎) − (𝑥 − 𝑦)| ≤ |𝑥𝑎 − 𝑥| + |𝑦𝑎 − 𝑦|

But for subtraction, the denominator in the relative error formulas can be far smaller. WLOG let 𝑥 > 𝑦 > 0. The relative
error bound is

|(𝑥𝑎 − 𝑦𝑎) − (𝑥 − 𝑦)|
|𝑥 − 𝑦| ≤ 𝑥𝛿𝑥 + 𝑦𝛿𝑦

𝑥 − 𝑦

Clearly if 𝑥 − 𝑦 is far smaller than 𝑥 or 𝑦, this can be far larger than the “input” relative errors |𝛿𝑥| and |𝛿𝑦|.
The extreme case is where the values 𝑥 and 𝑦 round to the same value, so that 𝑥𝑎 − 𝑦𝑎 = 0, and the relative error is 1:
“100% error”, a case of catastrophic cancellation.

Exercise 2

Let us move slightly away from the worst case scenario where the difference is exactly zero to one where it is close to
zero; this will illustrate the idea mentioned earlier that whereever a zero value is a problem in exact aritmetic, a very small
value can be a problem in approximate arithmetic.

For 𝑥 = 8.024 and 𝑦 = 8.006,
• Round each to three significant figures, giving 𝑥𝑎 and 𝑦𝑎.
• Compute the absolute errors in each of these approximations, and in their difference as an approximation of 𝑥 − 𝑦.
• Compute the relative errors in each of these three approximations.

Then look at rounding to only two significant digits!

3.2. Machine Numbers, Rounding Error and Error Propagation 87



Introduction to Numerical Methods and Analysis with Julia (draft)

Upper and lower bounds on the relative error in subtraction

The problem is worst when 𝑥 and 𝑦 are close in relative terms, in that 𝑦/𝑥 is close to 1. In the case of the errors in 𝑥𝑎
and 𝑦𝑎 coming just from rounding to machine enumbers, we have:

Theorem 3.2 (Loss of Precision)
Consider 𝑥 > 𝑦 > 0 that are close in that they agree in at least 𝑞 significant bits and at most 𝑟 significant bits:

1
2𝑟 < 1 − 𝑦

𝑥 < 1
2𝑞 .

Then when rounded to machine numbers which are then subtracted, the relative error in that approximation of the dif-
ference is greater than that due to rounding by a factor of between 2𝑞 and 2𝑟.
That is, subtraction loses between 𝑞 and 𝑟 significant bits of precision.

Exercise 3

(a) Illustrate why computing the roots of the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 with the standard formula

𝑥 = −𝑏 ±
√

𝑏2 − 4𝑎𝑐
2𝑎

can sometimes give poor accuracy when evaluated using machine arithmetic such as IEEE-64 floating-point arithmetic.
This is not alwys a problem, so identify specifically the situations when this could occur, in terms of a condition on the
coefficents 𝑎, 𝑏, and 𝑐. (It is sufficient to consider real value of the ocefficients. Also as an aside, there is no loss of
precision problem when the roots are non-real, so you only need consider quadratics with real roots.)
(b) Then describe a careful procedure for always getting accurate answers. State the procedure first with words and
mathematical formulas, and then express it in pseudo-code.

Example 3.5 (Errors when approximating derivatives)
To deal with differential equations, we will need to approximate the derivative of function from just some values of the
function itself. The simplest approach is suggested by the definition of the derivative

𝐷𝑓(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

by using

𝐷𝑓(𝑥) ≈ 𝐷ℎ𝑓(𝑥) ∶= 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

with a small value of ℎ—but this inherently involves the difference of almost equal quantities, and so loss of significance.
Taylor’s theorem give an error bound if we assume exact arithmetic — worse for larger ℎ. Then the above results give a
measure of rounding error effects — worse for smaller ℎ.
This leads to the need to balance these error sources, to find an optimal choice for ℎ and the corresponding error bound.
Denote the error in approximately calculating 𝐷ℎ𝑓(𝑥) with machine arithmetic as �̃�ℎ𝑓(𝑥).
The error in this as an approximating of the exact derivative is

𝐸 = �̃�ℎ𝑓(𝑥) − 𝐷𝑓(𝑥) = (�̃�ℎ𝑓(𝑥) − 𝐷ℎ𝑓(𝑥)) + (𝐷ℎ𝑓(𝑥) − 𝐷𝑓(𝑥))

88 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

which we will consider as the sum of two pieces, 𝐸 = 𝐸𝐴 + 𝐸𝐷 where

𝐸𝐴 = �̃�ℎ𝑓(𝑥) − 𝐷ℎ𝑓(𝑥)

is the error due to machine Arithmetic in evaluation of the difference quotient 𝐷ℎ𝑓(𝑥), and

𝐸𝐷 = 𝐷ℎ𝑓(𝑥) − 𝐷𝑓(𝑥)

is the error in this difference quotient as an approximation of the exact derivative𝐷𝑓(𝑥), = 𝑓 ′(𝑥). This error is sometimes
called the discretization error because it arises whe we replace the derivative by a discrete algebraic calculation.
Bounding the Arithmetic error 𝐸𝐴

The first source of error is rounding of 𝑓(𝑥) to a machine number; as seen above, this gives 𝑓(𝑥)(1 + 𝛿1), with |𝛿1| ≤ 𝑢,
so absolute error |𝑓(𝑥)𝛿1| ≤ |𝑓(𝑥)|𝑢.
Similarly, 𝑓(𝑥 + ℎ) is rounded to 𝑓(𝑥 + ℎ)(1 + 𝛿2), absolute error at most |𝑓(𝑥 + ℎ)|𝑢.
Since we are interested in fairly small values of ℎ (to keep 𝐸𝐷 under control), we can assume that |𝑓(𝑥 + ℎ)| ≈ |𝑓(𝑥)|,
so this second absolute error is also very close to |𝑓(𝑥)|𝑢.
Then the absolute error in the difference in the numerator of 𝐷ℎ𝑓(𝑥) is at most 2|𝑓(𝑥)|𝑢 (or only a tiny bit greater).
Next the division. We can assume that ℎ is an exact machine number, for example by choosing ℎ to be a power of two,
so that division by ℎ simply shifts the power of two in the exponent part of the machine number. This has no effect on on
the relative error, but scales the absolute error by the factor 1/ℎ by which one is multiplying: the absolute error is now
bounded by

|𝐸𝐴| ≤ 2|𝑓(𝑥)|𝑢
ℎ

This is a critical step: the difference has a small absolute error, which conceals a large relative error due to the difference
being small; now the absolute error gets amplified greatly when ℎ is small.
Bounding the Discretization error 𝐸𝐷

As seen in Taylor’s Theorem and the Accuracy of Linearization— for the basic case of linearization — we have

𝑓(𝑥 + ℎ) − 𝑓(𝑥) = 𝐷𝑓(𝑥)ℎ + 𝑓″(𝑐𝑥)
2 ℎ2

so

𝐸𝐷 = 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ = 𝑓″(𝑐𝑥)

2 ℎ

and with 𝑀2 = max |𝑓″|,

|𝐸𝐷| ≤ 𝑀2
2 ℎ

Bounding the total absolute error, and minimizing it
The above results combine to give an upper limit on how bad the total error can be:

|𝐸| ≤ |𝐸𝐴| + |𝐸𝐷| ≤ 2|𝑓(𝑥)|𝑢
ℎ + 𝑀2

2 ℎ

As aniticipated, the errors go in opposite directions: decreasing ℎ to reduce 𝐸𝐷 makes 𝐸𝐴 worse, and vice versa. Thus
we can expect that there is a “goldilocks” value of ℎ — neither too small nor too big — that gives the best overall bound
on the total error.
To do this, let’s clean up the notation: let

𝐴 = 2|𝑓(𝑥)|𝑢, 𝐷 = 𝑀2
2 ,

3.2. Machine Numbers, Rounding Error and Error Propagation 89



Introduction to Numerical Methods and Analysis with Julia (draft)

so that the error bound for a given value of ℎ is

𝐸(ℎ) = 𝐴
ℎ + 𝐷ℎ

This can be minimized with a little calculus:
𝑑𝐸(ℎ)

𝑑ℎ = − 𝐴
ℎ2 + 𝐷

which is zero only for the unique critical point

ℎ = ℎ∗ = √ 𝐴
𝐷 = √2|𝑓(𝑥)|𝑢

𝑀2/2 = 2√|𝑓(𝑥)|
𝑀2

√𝑢, = 𝐾√𝑢

using the short-hand 𝐾 = 2√|𝑓(𝑥)|
𝑀2

.

This is easily verified to give the global mimimum of 𝐸(ℎ); thus, the best error bound we can get is for this value of ℎ:

𝐸 ≤ 𝐸∗ ∶= 𝐸(ℎ∗) = 2|𝑓(𝑥)|𝑢
𝐾√𝑢 + 𝑀2

2 𝐾√𝑢 = (2|𝑓(𝑥)|
𝐾 + 𝐾 𝑀2

2 ) √𝑢

Conclusions from this example

In practical cases, we do not know the constant 𝐾 or the coefficient of √𝑢 in parentheses — but that does not matter
much!
The most important— and somewhat disappointing— observation here is that both the optimal size of ℎ and the resulting
error bound is roughly proportional to the square root of themachine unit𝑢. For example with 𝑝 bits of precision, 𝑢 = 2−𝑝,
the best error is of the order of 2−𝑝/2, or about 𝑝/2 significant bits: at best we can hope for about half as many signnificant
bits as our machine arithmetic gives.
In decimal terms: with IEEE-64 arithmetic 𝑢 = 2−53 ≈ 10−16, so giving about sixteen significant digits, and√𝑢 ≈ 10−8,
so �̃�ℎ𝑓(𝑥) can only be expected to give about half as many; eight significant digits.
This is a first indication of why machine arithmetic sometimes needs to be so precise — more precise than any physical
measurement by a factor of well over a thousand.
It also shows that when we get to computing derivatives and solving differential equations, we will often need to do a
better job of approximating derivatives!

3.3 Partial Pivoting

References:
• Section 2.4.1 Partial Pivoting of [Sauer, 2019].
• Section 6.2 Pivoting Stratgies of [Burden et al., 2016].
• Section 7.1 of [Chenney and Kincaid, 2012].

Remark 3.12
Some references describe themethod of scaled partial pivoting, but here we present instead a version without the “scaling”,
because not only is it simpler, but modern research shows that it is esentially always as good, once the problem is set up
in a “sane” way.

90 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

3.3.1 Introduction

The basic row reductionmethod can fail due to divisoion by zero (and to have very large rouding errors when a denominator
is extremely close to zero. Amore robust modification is to swap the order of the equations to avaid these problems: partial
pivotng. Here we look at a particularly robust version of this strategy, Maximal Element Partial Pivoting.

3.3.2 What can go wrong with naive Gaussian elimination?

We have noted two problems with the naive algorithm for Gaussian elimination: total failure due the division be zero, and
loss of precision due to dividing by very small values — or more preciselt calculations the lead to intermediate values far
larger than the final results. The culprits in all cases are the same: the denominators are first the pivot elements 𝑎(𝑘−1)

𝑘,𝑘 in
evaluation of 𝑙𝑖,𝑘 during row reduction and then the 𝑢𝑘,𝑘 in back substitution. Further, those 𝑎(𝑘−1)

𝑘,𝑘 are the final updated
values at indices (𝑘, 𝑘), so are the same as 𝑢𝑘,𝑘. Thus it is exactly these main diagonal elements that we must deal with.

3.3.3 The basic fix: partial pivoting

The basic strategy is that at step 𝑘, we can swap equation 𝑘 with any equation 𝑖, 𝑖 > 𝑘. Note that this involves swapping
those rows of array A and also those elements of the array b for the right-hand side: 𝑏𝑘 ↔ 𝑏𝑖.
This approach of swapping equations (swapping rows in arrays A and b) is called pivoting, or more specifically partial
pivoting, to distinguish from the more elaborate strategy where to columns of A are also reordered (which is equivalent
to reordeting the unknowns in the equations). The row that is swapped with row 𝑘 is sometimes called the pivot row, and
the new denominator is the corresponding pivot element.
This approach is robust so long as one is using exact arithmetic: it works for any well-posed system because so long as
the 𝐴𝑥 = 𝑏 has a unique solution — so that the original matrix 𝐴 is non-singular — at least one of the 𝑎(𝑘−1)

𝑖,𝑘 , 𝑖 ≥ 𝑘
will be non-zero, and thus the swap will give a new element in position (𝑘, 𝑘) that is non-zero. (I will stop caring about
superscripts to distinguish updates, but if you wish to, the elements of the new row 𝑘 could be called either 𝑎(𝑘)

𝑘,𝑗 or even
𝑢𝑘,𝑗, since those values are in their final state.)

3.3.4 Handling rounding error: maximal element partial pivoting

The final refinement is to seek the smallest possible magnitudes for intermediate values, and thus the smallest absolute
errors in them, by making the multipliers 𝑙𝑖,𝑘 small, in turn by making the denominator 𝑎(𝑘−1)

𝑘,𝑘 = 𝑢𝑘,𝑘 as large as possible
in magnitude:

At step 𝑘, choose the pivot row 𝑝𝑘 ≥ 𝑘 so that |𝑎(𝑘−1)
𝑝𝑘,𝑘 | ≥ |𝑎(𝑘−1)

𝑖,𝑘 | for all 𝑖 ≥ 𝑘. If there is more that one such element of
largest magnitude, use the lowest value: in particular, if 𝑝𝑘 = 𝑘 works, use it and do not swap!

A consequence of this is that the mutipliers used in the row operations all have |𝑙𝑖,𝑘| = ∣ 𝑎(𝑘−1)
𝑝𝑖,𝑘

𝑎(𝑘−1)
𝑝𝑘,𝑘

∣ < 1.

Remark 3.13 (Swapping values in Julia)
In Julia (as in Python) the value of two variables a and b can be swapped via tuples with (a, b) = (b, a), and
combined with array slicing, this can also be used to swap rows (or columns)

a = 1
b = 2
(a, b) = (b, a)

3.3. Partial Pivoting 91



Introduction to Numerical Methods and Analysis with Julia (draft)

(2, 1)

A = [11 12 13 ; 21 22 23 ; 31 32 33]

3×3 Matrix{Int64}:
11 12 13
21 22 23
31 32 33

(A[1,:], A[2,:]) = (A[2,:], A[1,:])
A

3×3 Matrix{Int64}:
21 22 23
11 12 13
31 32 33

Exercise 1

Explain why we cannot just swap the relevant elements of rows 𝑘 and 𝑝 with:

for j in 1:n
A[k,j] = A[p,j]
A[p,j] = A[k,j]

end

or in vectorized form:

A[k,:] = A[p,:]
A[p,:] = A[k,:]

Describe what happens instead.

Some demonstrations

No row reduction is done here, so entire rows are swapped rather than just the elements from column 𝑘 onward:
First, get thematrix pretty-printer seen inRowReduction/Gaussian Elimination; this time fromModule NumericalMethods:

include("NumericalMethods.jl")
using .NumericalMethods: printmatrix

A = [1 -6 2 ; 3 5 -6 ; 4 2 7]
n = 3
println("Initially A is")
printmatrix(A)

92 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Initially A is
[ 1 -6 2
3 5 -6
4 2 7 ]

k = 1
p = 3
temp = copy(A[k,:])
A[k,:] = A[p,:]
A[p,:] = temp
println("After swapping rows 1 <-> 3 using slicing and a temporary row, A is")
printmatrix(A)

After swapping rows 1 <-> 3 using slicing and a temporary row, A is
[ 4 2 7
3 5 -6
1 -6 2 ]

k = 2
p = 3
for j in 1:n

( A[k,j] , A[p,j] ) = ( A[p,j] , A[k,j] )
end
println("After swapping rows 2 <-> 3 using a loop and tuples of elements (no temp) A␣

↪is:")
printmatrix(A)

After swapping rows 2 <-> 3 using a loop and tuples of elements (no temp) A is:
[ 4 2 7
1 -6 2
3 5 -6 ]

k = 1
p = 2
( A[k,:] , A[p,:] ) = ( copy(A[p,:]) , copy(A[k,:]) )
println("After swapping rows 1 <-> 2 using tuples of slices (no loop or temp) A is:")
printmatrix(A)

After swapping rows 1 <-> 2 using tuples of slices (no loop or temp) A is:
[ 1 -6 2
4 2 7
3 5 -6 ]

3.3. Partial Pivoting 93



Introduction to Numerical Methods and Analysis with Julia (draft)

3.3.5 When is it safe to do without pivoting?

Theorem 3.1 shows that diagonal dominance guarantees that pivoting is not necessary because the diagonal elements are
never zero.
In the case of the matrix 𝐴 being column-wise SDD as in Definition 3.2, the situation is even better; there is no reason
for pivoting:

Theorem 3.3
If matrix 𝐴 is column-wise SDD, maximal element partial pivoting in fact does no row-swaps; it does the same thing as
naive Gaussian elimination.

Being row-wise SDD is more “natural” and common than being column-wise SDD, because the former is a property
“within” each of the equations that go into the matrix. This might seem unfortunate, but there is a way to get the benefits
of the above nice result also for row-wise SDD matrices, which we will see in the section Solving Ax = b with LU
factorization with the Crout decomposition.

3.4 Solving 𝐴𝑥 = 𝑏 with LU factorization

References:
• Section 2.2 The LU Factorization of [Sauer, 2019].
• Section 6.5 Matrix Factorizations of [Burden et al., 2016].
• Section 8.1 Matrix Factorizations of [Chenney and Kincaid, 2012].

3.4.1 Avoiding repeated calculation, excessive rounding and messy notation: LU
factorization

Putting aside pivoting for a while, there is another direction in which the algorithm for solving linear systems 𝐴𝑥 = 𝑏 can
be improved. It starts with the idea of being more efficient when solving multiple system with the same right-hand side:
𝐴𝑥(𝑚) = 𝑏(𝑚), 𝑚 = 1, 2, ….
However it has several other benefits:

• allowing a strategy to reduce rounding error, and
• a simpler, more elegant mathematical statement.

We will see how to merge this with partial pivoting in Solving Ax = b With Both Pivoting and LU Factorization

Some useful jargon:

Definition 3.5 (Triangular matrix)
A matrix is triangular if all its non-zero elements are either on the main diagonal or to one side of it. There are two
possibilities:

• Matrix 𝑈 is upper triangular if 𝑢𝑖𝑗 = 0 for all 𝑖 > 𝑗.
• Matrix 𝐿 is lower triangular if 𝑙𝑖𝑗 = 0 for all 𝑗 > 𝑖.

94 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

One important example of an upper triangular matrix is 𝑈 formed by row reduction; note well that it is much quicker and
easier to solve 𝑈𝑥 = 𝑐 than the original system 𝐴𝑥 = 𝑏 exactly because of its triangular form.
We will soon see that the multipliers 𝑙𝑖𝑗, 𝑖 > 𝑗 for row reduction that were introduced in Row Reduction/Gaussian
Elimination help to form a very useful lower triangular matrix 𝐿.

The key to the LU factorization idea is finding a lower triangularmatrix 𝐿 and an upper triangularmatrix 𝑈 such that
𝐿𝑈 = 𝐴, and then using the fact that it is far quicker to solve a linear system when the corresponding matrix is triangular.
Indeed we will see that, if naive Gaussian elimination for 𝐴𝑥 = 𝑏 succeeds, giving row-reduced form 𝑈𝑥 = 𝑐:

1. The matrix 𝐴 can be factorized as 𝐴 = 𝐿𝑈 with 𝑈 an 𝑛 × 𝑛 upper triangular matrix and 𝐿 an 𝑛 × 𝑛 lower
triangular matrix.

2. There is a unique such factorization with the further condition that 𝐿 is unit lower triangular, which means the
extra requirement that the value on its main diagonal are unity: 𝑙𝑘,𝑘 = 1. This is called theDoolittle Factorization
of 𝐴.

3. In the Doolittle factorization, the matrix 𝑈 is the one given by naive Gaussian elimination, and the elements of 𝐿
below its main diagonal are the multipliers arising in naive Gaussian elimination. (The other elements of 𝐿, on and
above the main diagonal, are the ones and zeros dictated by it being unit lower triangular: the same as for those
elements in the 𝑛 × 𝑛 identity matrix.)

4. The transformed right-hand side 𝑐 arising from naive Gaussian elimination is the solution of the system 𝐿𝑐 = 𝑏,
and this is solvable by an procedure caled forward substitution, very similar to the backward subsitution used to
solve 𝑈𝑥 = 𝑐.

Putting all this together: if naive Gaussian elimination works for 𝐴, we can introduce the name 𝑐 for 𝑈𝑥, and note that
𝐴𝑥 = (𝐿𝑈)𝑥 = 𝐿(𝑈𝑥) = 𝐿𝑐 = 𝑏. Then solving of the system 𝐴𝑥 = 𝑏 can be done in three steps:

1. Using 𝐴, find the Doolittle factors, 𝐿 and 𝑈 .
2. Using 𝐿 and 𝑏, solve 𝐿𝑐 = 𝑏 to get 𝑐. (Forward substitution)
3. Using 𝑈 and 𝑐, solve 𝑈𝑥 = 𝑐 to get 𝑥. (Backward substitution)

3.4.2 The direct method for the Doolittle LU factorization

If you believe the above claims, we already have one algorithm for finding an LU factorization; basically, do naive Gaussian
elimination, but ignore the right-hand side 𝑏 until later. However, there is another “direct” method, which does not rely
on anything we have seen before about Gaussian elimination, and has other advantages as we will see.
(If I were to teach linear algebra, I would be tempted to start here and skip Gaussian Elimination!)
This method starts by considering the apparently daunting task of solving the 𝑛2 simultaneous and nonlinear equations
for the initially unknown elements of 𝐿 and 𝑈 :

𝑛
∑
𝑘=1

𝑙𝑖,𝑘𝑢𝑘,𝑗 = 𝑎𝑖,𝑗 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛.

The first step is to insert the known information; the already-known values of elements of 𝐿 and 𝑈 . For one thing, the
sums above stop when either 𝑘 = 𝑖 or 𝑘 = 𝑗, whichever comes first, due to all the zeros in 𝐿 nd 𝑈 :

min(𝑖,𝑗)
∑
𝑘=1

𝑙𝑖,𝑘𝑢𝑘,𝑗 = 𝑎𝑖,𝑗 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛.

Next, when 𝑖 ≤ 𝑗 — so that the sum ends at 𝑘 = 𝑖 and involves 𝑙𝑖,𝑖 —we can use 𝑙𝑖,𝑖 = 1.
So break up into two cases:

3.4. Solving 𝐴𝑥 = 𝑏 with LU factorization 95



Introduction to Numerical Methods and Analysis with Julia (draft)

On and above the main diagonal (𝑖 ≤ 𝑗, so min(𝑖, 𝑗) = 𝑖):
𝑖−1
∑
𝑘=1

𝑙𝑖,𝑘𝑢𝑘,𝑗 + 𝑢𝑖,𝑗 = 𝑎𝑖,𝑗 1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≤ 𝑗 ≤ 𝑛.

Below the main diagonal (𝑖 > 𝑗, so min(𝑖, 𝑗) = 𝑗):
𝑗−1
∑
𝑘=1

𝑙𝑖,𝑘𝑢𝑘,𝑗 + 𝑙𝑖,𝑗𝑢𝑗,𝑗 = 𝑎𝑖,𝑗 2 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑖.

In each equation, the last term in the sum has been separated, so that we can use them to “solve” for an unknown:

𝑢𝑖,𝑗 = 𝑎𝑖,𝑗 −
𝑖−1
∑
𝑘=1

𝑙𝑖,𝑘𝑢𝑘,𝑗 1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≤ 𝑗 ≤ 𝑛.

𝑙𝑖,𝑗 = 𝑎𝑖,𝑗 − ∑𝑗−1
𝑘=1 𝑙𝑖,𝑘𝑢𝑘,𝑗

𝑢𝑗,𝑗
2 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑖.

Here comes the characteristic step that gets us from valid equations to a useful algorithm: we can arrange these equations
in an order such that all the values at right are determined by an earlier equation!
First look at what they say for the first row and first column.
With 𝑖 = 1 in the first equation, there is no sum, and so:

𝑢1,𝑗 = 𝑎1,𝑗, 1 ≤ 𝑗 ≤ 𝑛,

which is the familiar fact that the first row is unchanged in naive Gaussian elimination.
Next, with 𝑗 = 1 in the second equation, there is again no sum:

𝑙𝑖,1 = 𝑎𝑖,1
𝑢1,1

, = 𝑢𝑖,1
𝑢1,1

, 2 ≤ 𝑖 ≤ 𝑛,

which is indeed the multipliers in the first step of naive Gaussian elimination.
Remember that one way to think of Gaussian elimination is recursively: after step 𝑘, one just applies the same process
recursively to the smaller 𝑛 − 𝑘 × 𝑛 − 𝑘 matrix in the bottom-right-hand corner. We can do something similar here; at
stage 𝑘:

1. First use the first of the above equations to solve first for row 𝑘 of 𝑈 , meaning just 𝑢𝑘,𝑗, 𝑗 ≥ 𝑘,
2. Then use the second equation to solve for column 𝑘 of 𝐿: 𝑙𝑖,𝑘, 𝑖 > 𝑘.

Algorithm 3.5 (Doolittle factorization)
Stage 𝑘 = 1 is handled by the simpler special equations above, and for the rest:
for k from 2 to n

for j from k to n Get the non-zero elements in row 𝑘 of 𝑈
𝑢𝑘,𝑗 = 𝑎𝑘,𝑗 − ∑𝑘−1

𝑠=1 𝑙𝑘,𝑠𝑢𝑠,𝑗

end
for i from k+1 to n Get the non-zero elements in column 𝑘 of 𝐿 (except the 1’s on its diagonal)

𝑙𝑖,𝑘 = 𝑎𝑖,𝑘 − ∑𝑘−1
𝑠=1 𝑙𝑖,𝑠𝑢𝑠,𝑘

𝑢𝑘,𝑘

96 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

end
end

Note well that in the formulas to evaluate at the right,
1. The terms 𝑙𝑘,𝑠 are for 𝑠 < 𝑘, so from a column 𝑠 that has already been computed for a previous 𝑘 value.
2. The terms 𝑢𝑠,𝑗 are for 𝑠 < 𝑘, so from a row 𝑠 that has already been computed for a previous 𝑘 value.
3. The denominator 𝑢𝑘,𝑘 in the second inner loop is computed just in time, in the first inner loop for the same 𝑘 value.

So the only thing that can go wrong is the same as with Gaussian elimination: a zero pivot element 𝑢𝑘,𝑘.

Remark 3.14 (On this algorithm)
1. For 𝑘 = 𝑛, the second inner loop is redundant, so could be eliminated. Indeed it might need to be eliminated in

actual code, where “empty loops” might not be allowed. On the other hand, allowing empty loops makes the above
correct also for 𝑘 = 1; then the for k loop encompases the entire factorization algorithm.

2. This direct factorization algorithm avoids any intermediate modification of arrays, and thus eliminates all those
superscripts like 𝑎(𝑘)

𝑖,𝑗 . This is not only nicer mathematically, but can help to avoid mistakes like code that inadver-
tently modifies the array containing the matrix 𝐴 and then uses it to compute the residual, 𝑏 − 𝐴𝑥. More generally,
such purely mathematical statements of algorithms can help to avoid coding errors; this is part of the philosophy
of the functional programming approach.

3. Careful examination shows that the product 𝑙𝑘,𝑠𝑢𝑠,𝑗 that is part of what is subtracted at location (𝑘, 𝑗) is the same
as what is subtracted there at stage 𝑘 of Gaussian elimination, just with different names. More generally, every
piece of arithmetic is the same as before, except arranged in a different order, so that the 𝑘 − 1 changes made to an
element in row 𝑘 are done together, via those sums.

include("NumericalMethods.jl")
using .NumericalMethods: printmatrix

function lu_factorize(A; demomode=false)
# Compute the Doolittle LU factorization of A.
# Sums like $\sum_{s=1}^{k-1} l_{k,s} u_{s,j}$ are done as matrix products;
# in the above case, row matrix L[k, 1:k-1] by column matrix U[1:k-1,j] gives the␣

↪sum for a give j,
# and row matrix L[k, 1:k-1] by matrix U[1:k-1,k:n] gives the relevant row vector.

n = size(A)[1] # First component of the array's size; size(A) returns "(rows,␣
↪columns)"

# Initialize U as a zero matrix;
# correct below the main diagonal, with the other entries to be computed and␣

↪filled below.
U = zeros(n,n)

# Initialize L as a zero matrix;
# correct above the main diagonal, with the other entries to be computed and␣

↪filled in below.
L = zeros(n,n)

# The first row and columm are special:
U[1,:] = A[1,:]
L[1,1] = 1.0

(continues on next page)

3.4. Solving 𝐴𝑥 = 𝑏 with LU factorization 97



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

L[2:end,1] = A[2:end,1]/U[1,1]
if demomode

println("After step k=1")
println("U="); printmatrix(U)
println("L="); printmatrix(L)

end;
for k in 2:n-1

# Julia note: it is necessary to use indices "[k]" and so on to get one-row␣
↪matrices instead of vectors.

U[[k],k:end] = A[[k],k:end] - L[[k],1:k] * U[1:k,k:end]
L[k,k] = 1.0
L[k+1:end,k] = (A[k+1:end,k] - L[k+1:end,1:k] * U[1:k,k]) / U[k,k]
if demomode

println("After step k=$k")
println("U="); printmatrix(U)
println("L="); printmatrix(L)

end;
end;
# The last row is also special: not much to do for L.
L[end,end] = 1.0
U[end,end] = A[end,end] - sum(L[[n],1:end-1] * U[1:end-1,end])
if demomode

println("After step k=$n")
println("U="); printmatrix(U)

end;
return L, U

end;

A test case on LU factorization

It will be useful to compute matrix norms as a measure or error; in particular the “maximum” or “infinity” norm of v is
given by norm(v, Inf)

using LinearAlgebra: norm

A = [4.0 2.0 7.0; 3.0 5.0 -6.0; 1.0 -3.0 2.0]
printmatrix(A)

[ 4.0 2.0 7.0
3.0 5.0 -6.0
1.0 -3.0 2.0 ]

(L, U) = lu_factorize(A, demomode=true);

After step k=1
U=
[ 4.0 2.0 7.0
0.0 0.0 0.0
0.0 0.0 0.0 ]

L=
[ 1.0 0.0 0.0

(continues on next page)

98 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

0.75 0.0 0.0
0.25 0.0 0.0 ]

After step k=2
U=
[ 4.0 2.0 7.0
0.0 3.5 -11.25
0.0 0.0 0.0 ]

L=
[ 1.0 0.0 0.0
0.75 1.0 0.0
0.25 -1.0 0.0 ]

After step k=3
U=
[ 4.0 2.0 7.0
0.0 3.5 -11.25
0.0 0.0 -11.0 ]

println("A is"); printmatrix(A)
println("L is"); printmatrix(L)
println("U is"); printmatrix(U)
println("L times U is"); printmatrix(L*U)
println("The 'residual' or 'backward error' A - LU is"); printmatrix(A - L*U)

A is
[ 4.0 2.0 7.0
3.0 5.0 -6.0
1.0 -3.0 2.0 ]

L is
[ 1.0 0.0 0.0
0.75 1.0 0.0
0.25 -1.0 1.0 ]

U is
[ 4.0 2.0 7.0
0.0 3.5 -11.25
0.0 0.0 -11.0 ]

L times U is
[ 4.0 2.0 7.0
3.0 5.0 -6.0
1.0 -3.0 2.0 ]

The 'residual' or 'backward error' A - LU is
[ 0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0 ]

3.4. Solving 𝐴𝑥 = 𝑏 with LU factorization 99



Introduction to Numerical Methods and Analysis with Julia (draft)

Forward substitution: solving 𝐿𝑐 = 𝑏 for 𝑐

This is the last piece missing. The strategy is very similar to backward substitution, but slightly simplified by the ones on
the main didogonal of 𝐿. The equations 𝐿𝑐 = 𝑏 can be written much as above, separating off the last term in the sum:

𝑛
∑
𝑗=1

𝑙𝑖,𝑗𝑐𝑗 = 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑖
∑
𝑗=1

𝑙𝑖,𝑗𝑐𝑗 = 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑛

𝑖−1
∑
𝑗=1

𝑙𝑖,𝑗𝑐𝑗 + 𝑐𝑖 = 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑛

Then solve for 𝑐𝑖:

𝑐𝑖 = 𝑏𝑖 −
𝑖−1
∑
𝑗=1

𝑙𝑖,𝑗𝑐𝑗

These are already is usable order: the right-hand side in the equation for 𝑐𝑖 involves only the 𝑐𝑗 values with 𝑗 < 𝑖,
determined by earlier equations if we run through index 𝑖 in increasing order.
First, 𝑖 = 1

𝑐1 = 𝑏1 −
0

∑
𝑗=1

𝑙1,𝑗𝑐𝑗, = 𝑏1

Next, 𝑖 = 2

𝑐2 = 𝑏2 −
1

∑
𝑗=1

𝑙2,𝑗𝑐𝑗, = 𝑏2 − 𝑙2,1𝑐1

Next, 𝑖 = 3

𝑐3 = 𝑏3 −
2

∑
𝑗=1

𝑙3,𝑗𝑐𝑗, = 𝑏3 − 𝑙3,1𝑐1 − 𝑙3,2𝑐2

Exercise 1

A) Express this forward substitution strategy as pseudo-code; spell out all the sums in explicit rather than using ‘Σ’ notation
for sums any matrix multiplication short-cut.
B) Then implement it “directly” in a Julia function, with format:

function forwardSubstitution(L, b)
. . .
return c

Again do this with explicit evaluation of each sum rather than using the function sum or any matrix multiplication short-
cut.
C) Test it, using this often-useful “reverse-engineering” tactic:

1. Create suitable test arrays L and c. (Use 𝑛 at least three, and preferably larger.)

100 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

2. Compute their product, with b = L * c

3. Check if c_solution = forwardSubstitution(L, b) gives the correct value (within rounding error.)
As usual, there is also an implementation available from module NumericalMethods, at forwardsubstitution, so this
is used here. (It is not in the form asked for in the above exercise!)

using .NumericalMethods: forwardsubstitution

A test case on forward substitution

b = [2.0, 3.0, 4.0];

c = forwardsubstitution(L, b)
print(c)

[2.0, 1.5, 5.0]

println("c = $c")
println("The residual b - Lc is $(b - L*c)")
println("\t with maximum norm $(norm(b - L*c, Inf))")

c = [2.0, 1.5, 5.0]
The residual b - Lc is [0.0, 0.0, 0.0]

with maximum norm 0.0

Completing the test case, with backward substitution

As this step is unchanged, we can just import the version seen in Row Reduction/Gaussian Elimination

using .NumericalMethods: backwardsubstitution

x = backwardsubstitution(U, c);

residual_cUx = c - U*x
println("The residual c - Ux for the backward substitution step is $residual_cUx")
println("\t with maximum norm $(norm(residual_cUx, Inf))")
residual_bAx = b - A*x
println("The residual b - Ax for the whole solving process is $residual_bAx")
println("\t with maximum norm $(norm(residual_bAx, Inf))")

The residual c - Ux for the backward substitution step is [0.0, -2.
↪220446049250313e-16, 0.0]

with maximum norm 2.220446049250313e-16
The residual b - Ax for the whole solving process is [0.0, 0.0, 8.881784197001252e-

↪16]
with maximum norm 8.881784197001252e-16

3.4. Solving 𝐴𝑥 = 𝑏 with LU factorization 101

NumericalMethods.html#forwardsubstitution


Introduction to Numerical Methods and Analysis with Julia (draft)

Exercise 2

(An ongoing activity.)
Start building a Julia module — I suggest the name MyNumericalMethods — in a file name by adding suffix “.jl”
to the module name (e.g. MyNumericalMethods.jl). Put all the functions that you create as you work through
this book; for now, just your version of forwardSubstitution(L, b), along with backwardSubstitution
from a previous section and luFactorize from above.
The syntax of the module file is like this:

module NumericalMethods
function rowReduce(A, b)

...
end;
function forwardSubstitution(L, b)

...
end;
function backwardSubstitution(U, c)

...
end;
end

As an example of creating and using a module, I am creating one for this course, NumericalMethods.jl; seeModule
NumericalMethods. For now these two modules will overlap, but your version will contain code that you create in exerices
that is not in NumericalMethodsNumericalMethods.

3.4.3 When does LU factorization work?

It was seen in the section Partial Pivoting that naive Gaussian elimination works (in the sense of avoiding division by zero)
so one good result is that

Theorem 3.4
Any SDD matrix has a Doolittle factorization 𝐴 = 𝐿𝑈 , with the diagonal elements of 𝑈 all non-zero, so backward
substitution also works.
For any column-wise SDD matrix, this LU factorization exists and is also “optimal”, in the sense that it follows what you
would do with maximal element partial pivoting.

This nice second property can be got for SDD matrices via a twist, or actually a transpose.
For an SDDmatrix, it transpose𝐵 = 𝐴𝑇 is column-wise SDD and so has the nice Doolitle factorization described above:
𝐵 = 𝐿𝐵𝑈𝐵, with 𝐿𝐵 being column-wise diagonally dominant and having ones on the main diagonal.
Transposing back, 𝐴 = 𝐵𝑇 = (𝐿𝐵𝑈𝐵)𝑇 = 𝑈𝑇

𝐵 𝐿𝑇
𝐵, and defining 𝐿 = 𝑈𝑇

𝐵 and 𝑈 = 𝐿𝑇
𝐵,

• 𝐿 is lower triangular
• 𝑈 is upper triangular, row-wise diagonally dominant and with ones on it main diagonal: it is “unit upper triangular”.
• Thus 𝐿𝑈 is another LU factorization of 𝐴, with 𝑈 rather than 𝐿 being the factor with ones on its main diagonal.

102 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

3.4.4 Crout decomposition

This sort of 𝐿𝑈 factorization is called the Crout decomposition; as with the Doolittle version, if such a factorization
exists, it is unique.

Theorem 3.5
Every SDD matrix has a Crout decomposition, and the factor 𝑈 is SDD.

Remark 3.15
As was mentioned at the end of the section Row Reduction/Gaussian Elimination naive Gausion elminaor alwo worek for
positive definitematrices,amnd thus so does th Doolittle LU factirozation. However, there is another LU factorization that
works even better in that case, the Cholesky factorization; this topic might be returned to later.

3.5 Solving 𝐴𝑥 = 𝑏 With Both Pivoting and LU Factorization

References:
• Section 2.4 The PA=LU Factorization of [Sauer, 2019].
• Section 6.5 Matrix Factorizations of [Burden et al., 2016].
• Section 8.1 Matrix Factorizations of [Chenney and Kincaid, 2012].

3.5.1 Introduction

The last step in producing an algorithm for solving the general case of 𝑛 simultaneous linear equations in 𝑛 variables
that is robust, efficient and with good control of rounding error is to combine the ideas of partial pivoting from Partial
Pivoting and LU factorization from Solving Ax = b with LU factorization.
This is sometimes described in three parts:

• permute (reorder) the rows of the matirx 𝐴 by multiplying it at left by a suitable permutation matrix 𝑃 ; one with a
single “1” in each row and each column and zeros elsewhere;

• Get the LU factorization of this matrix: 𝑃𝐴 = 𝐿𝑈 .
• To solve 𝐴𝑥 = 𝑏

– Express as 𝑃𝐴𝑥 = 𝐿𝑈𝑥 = 𝑃𝑏 (which just involves computing 𝑃𝑏, which reorders the elements of 𝑏)
– Solve 𝐿𝑐 = 𝑃 𝑏 for 𝑐 by forward substitution
– Solve 𝑈𝑥 = 𝑐 for 𝑥 by backward substitution: as before, this gives 𝐿𝑈𝑥 = 𝐿𝑐 = 𝑃𝑏 and 𝐿𝑈𝑥 = 𝑃𝐴𝑥,
so 𝑃 𝐴𝑥 = 𝑃𝑏; since a permutation matrix 𝑃 is invertible (just unravel the row swaps), this ensures that
𝐴𝑥 = 𝑏.

This gives a nice formulas in terms ofmatrices; however we can describe it a bit more compactly and efficiently by just talk-
ing about the permutation of the rows, described by a permutation vector— an 𝑛 component vector 𝜋 = [𝜋1, 𝜋2, … , 𝜋𝑛]
whose elements are the integers from 1 to 𝑛 in some order. So that is how the algorithm will be described below.
(Aside: I use the conventional name 𝜋 for a permutation vector, partly to distinguish from the notation 𝑝𝑖 used for pivot
rows; however, feel free to use the name 𝑝 instead, especially in Julia code.)

3.5. Solving 𝐴𝑥 = 𝑏 With Both Pivoting and LU Factorization 103



Introduction to Numerical Methods and Analysis with Julia (draft)

A number of details of this sketch will now be filled in, including the very useful fact that the permutation vector (or
matrix) can be contsructed “on the fly”, as rows are swapped in partial pivoting.

3.5.2 Row swapping is all you need

Let us look at maximal element partial pivoting, but described in terms of the entries of the factors 𝐿 and 𝑈 , and updating
matrix 𝐴 with a succession of row swaps.
(For now, I omit what happens to the right-hand side vector 𝑏; that is where the permutation vector 𝑝 will come in, as
addressed below.)
What happens if pivoting occurs at some stage 𝑘, with swapping of row 𝑘 with a row 𝑝𝑘 > 5?
One might fear that the process has to start again from the top using the modified version of matrix 𝐴, but in fact all
previous work can be reused, just swapping those rows “everywhere”.

Example: what happens at stage 5 (𝑘 = 5)?

To see this with a concrete example consider what happens if at stage 𝑘 = 5 we swap rows 5 and 10 of 𝐴.
A) Firstly, what happens to matrix 𝐴?
The previous steps of the LU factorization process only involved entries of 𝐴 in its first four rows and first four columns,
and this row swap has no effect of them. Likewise, in row reduction, changes at and below row 𝑘 = 5 have no effect on
the first four rows of the row reduced form, 𝑈 .
Thus, the only change here is to swap the entries of 𝐴 between rows 5 and 10. What is more, the subsequent calculations
only involve columns of index 𝑗 = 5 upwards, so in fact we only need to update those entries. This can be written as

𝑎5,𝑗 ↔ 𝑎10,𝑗, 5 ≤ 𝑗 ≤ 𝑛

Thus if we are working in Julia with 𝐴 stored in an array, the update is the slice operation

( A[5, 5:end], A[10, 5:end] ) = ( A[10, 5:end], A[5, 5:end] )

B) Next, look at the work done so far on 𝑈 .
That just consists of the previous rows 1 ≤ 𝑖 ≤ 4, and the swapping of rows 5 with 10 has no effect up there:
Values already computed in 𝑈 are unchanged.

C) Finally, look at the work done so far on the multipiers 𝑙𝑖,𝑗; that is, matrix 𝐿.
The values computed so far are the first four columns of 𝐿; the multiples 𝑙𝑖,𝑗, 1 ≤ 𝑗 ≤ 4 of row 𝑗 subtracted from row
𝑖 > 𝑗. These do change: for example, the multiple 𝑙5,2 of row 2 is now subtracted from what was row 5 but is now row
10: thus, the new value of 𝑙10,2 is the previous value of 𝑙5,2.
Likewise, the same is true in reverse: the new value of 𝑙5,2 is the previous value of 𝑙10,2. This applies for all of the first
four rows, so second index 1 ≤ 𝑗 ≤ 4:
The entries of 𝐿 computed so far are swapped between rows 5 and 10, leaving the rest unchanged.

As this is again only for some columns — the first four — the swaps needed are:

𝑙5,𝑗 ↔ 𝑙10,𝑗, 1 ≤ 𝑗 ≤ 4

or in Julia’a slice notation for an array 𝐿:

104 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

( L[5, 1:4], L[10, 1:4] ) = ( L[10, 1:4], L[5, 1:4] )

The general pattern

The example above extends to all stages 𝑘 of row reduction or computing the LU factorization of a row-permuted version
of matrix 𝐴, where we adjust the pivot element at position (𝑘, 𝑘) by first swapping row 𝑘 with a row 𝑝𝑘, ≥ 𝑘. (Allowing
that sometimes no swap is needed, so that 𝑝𝑘 = 𝑘.)
Gathering the key formulas above, this part of the algorithm is

Algorithm 3.6
for k from 1 to n-1

Find the pivot row 𝑝𝑘, ≥ 𝑘.
if 𝑝𝑘 > 𝑘
Swap 𝑙𝑘,𝑗 ↔ 𝑙𝑝𝑘,𝑗, 1 ≤ 𝑗 < 𝑘
Swap 𝑎𝑘,𝑗 ↔ 𝑎𝑝𝑘,𝑗, 𝑘 ≤ 𝑗 ≤ 𝑛

end
end

Pseudo-code for LU factorization with row swapping (first version)

Here I also adopt slice notation; for example, 𝑎𝑘,𝑘∶𝑛 denotes the slice [𝑎𝑘,𝑘 … 𝑎𝑘,𝑛].

Algorithm 3.7 (LU factorization with row swapping, I)
for k from 1 to n

Find the pivot element:

𝑝 = 𝑘 (p will be the index of the pivot row)

for i from k+1 to n
if |u_{i, k}| > |u_{p, k}|
p ← i

end
end
if p > k (Swap rows)

𝑙𝑘,1∶𝑘−1 ↔ 𝑙𝑝,1∶𝑘−1

𝑎𝑘,𝑘∶𝑛 ↔ 𝑎𝑝,𝑘∶𝑛

end
for j from k to n (Get the non-zero elements in row 𝑘 of 𝑈 )

𝑢𝑘,𝑗 = 𝑎𝑘,𝑗 − ∑𝑘−1
𝑠=1 𝑙𝑘,𝑠𝑢𝑠,𝑗

3.5. Solving 𝐴𝑥 = 𝑏 With Both Pivoting and LU Factorization 105



Introduction to Numerical Methods and Analysis with Julia (draft)

end
for i from k+1 to n (Get the non-zero elements in column 𝑘 of 𝐿 — except the 1’s on its diagonal)

𝑙𝑖,𝑘 = 𝑎𝑖,𝑘 − ∑𝑘−1
𝑠=1 𝑙𝑖,𝑠𝑢𝑠,𝑘

𝑢𝑘,𝑘

end
end

But what about the right-hand side, 𝑏?

One thing is missing from this strategy so far: if we are solving with a given right-hand-side column vector 𝑏, we would
also swap its rows at each stage, with

𝑏𝑘 ↔ 𝑏𝑝𝑘

but with the LU factorization we need to keep track of these swaps for use later.
This turns out to mesh nicely with another detail: we can avoid actually copying array entries around by just keeping track
of the order in which we use rows to get zeros in other rows. Our goal will be a permutation vector 𝜋 = [𝜋1, 𝜋2, … 𝜋𝑛]
which says:

• First use row 𝜋1 to get zeros in column 1 of the 𝑛 − 1 other rows.
• Then use row 𝜋2 to get zeros in column 2 of the 𝑛 − 2 remaining rows.
• …

To do this:
• first, initialize an array 𝜋 = [1, 2, … , 𝑛]
• at stage 𝑘, if the pivot element is in row 𝑝𝑘 ≠ 𝑘, swap the corresponding elements in 𝜋 (rather than swapping entire
rows of arrays):

𝜋𝑘 ↔ 𝜋𝑝𝑘

Introducing the name 𝐴′ for the new version of matrix 𝐴, its row 𝑘 has entries 𝑎′
𝑘,𝑗 = 𝑎𝜋𝑘,𝑗.

This pattern persists through each row swap: instead of computing a succesion of updated versions of matrix 𝐴, we leave
it alone and just change the row indices:
All references to entries of 𝐴 are now done with permuted row index: 𝑎𝜋𝑖,𝑗

The same applies to the array 𝐿 of multipliers:
All references to entries of 𝐿 are now done with 𝑙𝜋𝑖,𝑗.
Finally, since these row swaps also apply to the right-hand side 𝑏, we do the same there:
All references to entries of 𝑏 are now done with 𝑏𝜋𝑖

.

106 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Pseudo-code for LU factorization with a permutation vector

Algorithm 3.8 (LU factorization with row swapping, II)
Initialize the permutation vector, 𝜋 ← [1, 2, … , 𝑛]
for k from 1 to n

Find the pivot element:

𝑝 ← 𝑘 (p will be the index of the pivot row)

for i from k+1 to n
if |𝑢𝑖,𝑘| > |𝑢𝑝,𝑘|:

𝑝 ← 𝑖
end

if p > k (Just swap indices, not rows)

𝜋𝑘 ↔ 𝜋𝑝

end
for j from k to n (Get the non-zero elements in row 𝑘 of 𝑈 )

𝑢𝑘,𝑗 ← 𝑎𝑘,𝑗 − ∑𝑘−1
𝑠=1 𝑙𝑘,𝑠𝑢𝑠,𝑗

end
for i from k+1 to n (Get the non-zero elements in column 𝑘 of 𝐿 — except the 1’s on its diagonal)

𝑙𝑖,𝑘 ← 𝑎𝑖,𝑘 − ∑𝑘−1
𝑠=1 𝑙𝑖,𝑠𝑢𝑠,𝑘

𝑢𝑘,𝑘

end
end

Remark 3.16
For the version with a permutation matrix 𝑃 , instead:

• start with an array 𝑃 that is the identity matrix, and then
• swap its rows 𝑘 ↔ 𝑝𝑘 at stage 𝑘 instead of swapping the entries of 𝜋 or the rows of 𝐴 and 𝐿.

using LinearAlgebra: norm
using LinearAlgebra: ⋅ # For the dot product (the centered dot can be typed as \cdot␣

↪then tab)

include("NumericalMethods.jl")
using .NumericalMethods: printmatrix

3.5. Solving 𝐴𝑥 = 𝑏 With Both Pivoting and LU Factorization 107



Introduction to Numerical Methods and Analysis with Julia (draft)

function plu(A; demomode=false)
# Compute the Doolittle PA=LU factorization of A —
# but with the permutation recorded as permutation vector, not as the permutation␣

↪matrix P.
# Sums like $\sum_{s=1}^{k-1} l_{k,s} u_{s,j}$ are done as matrix products;
# in the above case, row matrix L[k, 1:k-1] by column matrix U[1:k-1,j] gives the␣

↪sum for a give j,
# and row matrix L[k, 1:k-1] by matrix U[1:k-1,k:n] gives the relevant row vector.

n = size(A)[1] # gives the number of rows in the 2D array.
# Julia can use Greek letters (and in fact, UNICODE):
# to insert character π, type \pi, hit tab, and select "π" from the menu.
# Or just call it "perm" or such.
π = collect(1:n)
# Julia language note: function "collect" converts the abstract entity "1:n" into␣

↪an array of numbers.

# Initialize U as the zero matrix;
# correct below the main diagonal, with the other entries to be computed below.
U = zeros(n,n)

# Initialize L as zeros;
# correct above the main diagonal, with the other entries to be computed below,
# including the ones on the diagonal.
L = zeros(n,n)

for k in 1:n-1
if demomode; println("k=$k"); end
# Find the pivot element in column k:
pivotrow = k
abs_u_ik_max = abs(A[π[k],k])
for row in k+1:n

abs_u_ik = abs(A[π[row],k])
if abs_u_ik > abs_u_ik_max

pivotrow = row
abs_u_ik_max = abs_u_ik

end
end
if pivotrow > k # swap rows, virtually

if demomode; println("Swap row $k with row $pivotrow"); end
(π[k], π[pivotrow]) = (π[pivotrow], π[k])

else
if demomode; println("No row swap needed."); end

end
U[k,k:end] = A[[π[k]],k:end] - L[[π[k]],1:k] * U[1:k,k:end]
L[π[k],k] = 1.
for row in k+1:n

L[π[row],k] = ( A[π[row],k] - L[π[row],1:k] ⋅ U[1:k,k] ) / U[k,k]
# Julia note: To enter the centered dot notation for the dot product,␣

↪type "\cdot" and then hit the tab key.
end
if demomode

println("permuted A is:")
for row in 1:n

println(A[π[row],:])
end
println("Intermediate L is"); printmatrix(L)

(continues on next page)

108 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

println("Intermediate U is"); printmatrix(U)
end

end
# The last row (index "end") is special: nothing to do for L except put in the 1␣

↪on the "permuted main diagonal"
L[π[end],end] = 1.
U[end,end] = A[π[end],end] - L[π[end],1:end-1] ⋅ U[1:end-1,end]
if demomode

println("After the final step, k=$(n-1)")
println("L is"); printmatrix(L)
println("U is"); printmatrix(U)

end
return (L, U, π)

end;

A = [ 1.0 -3.0 22.0 ; 3.0 5.0 -6.0 ; 4.0 235.0 7.0 ]
println("A is"); printmatrix(A)
(L, U, π) = plu(A, demomode=true)
println("\nFunction plu gives")
println("L="); printmatrix(L)
println("U="); printmatrix(U)
println("row permution $(π)")
println("The 'residual' or 'backward error' A-LU is"); printmatrix(A - L*U)

A is
[ 1.0 -3.0 22.0
3.0 5.0 -6.0
4.0 235.0 7.0 ]

k=1
Swap row 1 with row 3
permuted A is:
[4.0, 235.0, 7.0]
[3.0, 5.0, -6.0]
[1.0, -3.0, 22.0]
Intermediate L is
[ 0.25 0.0 0.0
0.75 0.0 0.0
1.0 0.0 0.0 ]

Intermediate U is
[ 4.0 235.0 7.0
0.0 0.0 0.0
0.0 0.0 0.0 ]

k=2
No row swap needed.
permuted A is:
[4.0, 235.0, 7.0]
[3.0, 5.0, -6.0]
[1.0, -3.0, 22.0]
Intermediate L is
[ 0.25 0.3605839416058394 0.0
0.75 1.0 0.0
1.0 0.0 0.0 ]

Intermediate U is
[ 4.0 235.0 7.0
0.0 -171.25 -11.25

(continues on next page)

3.5. Solving 𝐴𝑥 = 𝑏 With Both Pivoting and LU Factorization 109



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

0.0 0.0 0.0 ]
After the final step, k=2
L is
[ 0.25 0.3605839416058394 1.0
0.75 1.0 0.0
1.0 0.0 0.0 ]

U is
[ 4.0 235.0 7.0
0.0 -171.25 -11.25
0.0 0.0 24.306569343065693 ]

Function plu gives
L=
[ 0.25 0.3605839416058394 1.0
0.75 1.0 0.0
1.0 0.0 0.0 ]

U=
[ 4.0 235.0 7.0
0.0 -171.25 -11.25
0.0 0.0 24.306569343065693 ]

row permution [3, 2, 1]
The 'residual' or 'backward error' A-LU is
[ 0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0 ]

Matrix 𝐿 is not actually lower triangular, due to the permutation of its rows, but is still fine for a version of forward
substitution, because

• row 𝜋1 only involves 𝑥1 (multiplied by 1) and so can be used to solve for 𝑥1

• row 𝜋2 only involves 𝑥1 and 𝑥2 (the latter multiplied by 1) and so can be used to solve for 𝑥2

• …

Definition 3.6 (Psychologically [lower] triangular)
A matrix like this — one that is a row-permutation of a [lower] triangular matrix — is called psychologically [lower]
triangular. (Maybe because it believes itself to be such?)

Forward and backward substitution with a permutation vector

To solve 𝐿𝑐 = 𝑏, all one has to change from the formulas for forward substitution seen in the previous section Solving Ax
= b with LU factorization is to put the permuted row index 𝜋𝑖 in both 𝐿 and 𝑏:

𝑐𝑖 = 𝑏𝜋𝑖
−

𝑖−1
∑
𝑗=1

𝑙𝜋𝑖,𝑗𝑐𝑗, 1 ≤ 𝑖 ≤ 𝑛

function forwardsubstitution(L, b, π)
# Version 2: with permutation of rows
# Solve L c = b for c, with permutation of the rows of L and of b.
n = length(b)
c = zeros(n)

(continues on next page)

110 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

c[1] = b[π[1]]
for i in 2:n

c[i] = b[π[i]] - L[π[i], 1:i] ⋅ c[1:i]
end
return c

end;

b = [2.0, 3.0, 4.0];

c = forwardsubstitution(L, b, π)
print("c = $c")

c = [4.0, 0.0, 1.0]

Then the final step, solving 𝑈𝑥 = 𝑏 for 𝑥, needs no change, because 𝑈 had no rows swapped, so we are done; we can
import the function backwardSubstitution seen previously

using .NumericalMethods: backwardsubstitution

x = backwardsubstitution(U, c)
println("x = $x")
Ax = A*x
r = b - A*x
println("The residual r = b - Ax is \n$r\nwith maximum norm $(norm(r, Inf))")

x = [1.0867867867867869, -0.002702702702702703, 0.04114114114114114]
The residual r = b - Ax is
[0.0, 0.0, 0.0]
with maximum norm 0.0

3.6 Error bounds for linear algebra, condition numbers, matrix
norms, etc.

References:
• Section 2.3.1 Error Magnification and Condition Number of [Sauer, 2019].
• Section 7.5 Error Bounds and Iterative Refinement of [Burden et al., 2016] — but you may skip the last part, on
Iterative Refinement; that is not relevant here.

• Section 8.4 of [Chenney and Kincaid, 2012].

3.6. Error bounds for linear algebra, condition numbers, matrix norms, etc. 111



Introduction to Numerical Methods and Analysis with Julia (draft)

3.6.1 Residuals, backward errors, forward errors, and condition numbers

For an approximation 𝑥𝑎 of the solution 𝑥 of 𝐴𝑥 = 𝑏, the residual 𝑟 = 𝐴𝑥𝑎 − 𝑏 measures error as backward error, often
measured by a single number, the residual norm ‖𝐴𝑥𝑎 − 𝑏‖. Any norm could be used, but the maximum norm is usualt
preferred, for reasons that we will see soon.
The corresponding (dimensionless) measure of relative error is defined as

‖𝑟‖
‖𝑏‖ .

However, these can greatly underestimate the forward errors in the solution: the absolute error ‖𝑥−𝑥𝑎‖ and relative error

𝑅𝑒𝑙(𝑥𝑎) = ‖𝑥 − 𝑥𝑎‖
‖𝑥‖

To relate these to the residual, we need the concepts of a matrix norm and the condition number of a matrix.

3.6.2 Matrix norms induced by vector norms

Given any vector norm ‖ ⋅ ‖ — such as the maximum (“infinity”) norm ‖ ⋅ ‖∞ or the Euclidean norm (length) ‖ ⋅ ‖2 — the
correponding induced matrix norm is

‖𝐴‖ ∶= max
𝑥≠0

‖𝐴𝑥‖
‖𝑥‖ , = max

‖𝑥‖=1
‖𝐴𝑥‖

This maximum exists for ethe rof these vector norms, and for the infinity norm there ia an explicit formula for it: for any
𝑚 × 𝑛 matrix,

‖𝐴‖∞ = 𝑚max
𝑖=1

𝑛
∑
𝑗=1

|𝑎𝑖𝑗|

(On the other hand, it is far harder to compute the Euclidean norm of a matrix: the formula requires computing eigen-
values.)
Note that when the matrix is a vector considered as a matrix with a single column— so 𝑛 = 1 — the sum goes away, and
this agrees with the infinity vector norm. This allows us to consider vectors as being just matrices with a single column,
which we will often do from now on.

3.6.3 Properties of (induced) matrix norms

These induced matrix norms have many properties in common with Euclidean length and other vector norms, but there
can also be products, and then one has to be careful.

1. ‖𝐴‖ ≥ 0 (positivity)
2. ‖𝐴‖ = 0 if and only if 𝐴 = 0 (definiteness)
3. ‖𝑐𝐴‖ = |𝑐| ‖𝐴‖ for any constant 𝑐 (absolute homogeneity)
4. ‖𝐴 + 𝐵‖ ≤ ‖𝐴‖ + ‖𝐵‖ (sub-additivity or the triangle inequality),

and when the product of two matrices makes sense (including matrix-vector products),
5. ‖𝐴𝐵‖ ≤ ‖𝐴‖ ‖𝐵‖ (sub-multiplicativity)

112 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Note the failure to always have equality with products. Indeed one can have 𝐴𝐵 = 0 with 𝐴 and 𝐵 both non-zero, such
as when 𝐴 is a singular matrix and 𝐵 is a null-vector for it.

Remark 3.17 (Other matrix norms)
There are other matrix norms of use in some contexts, in particular the Frobenius norm. Then the above properties are
often used to define what it is to be a matrix form, much as the first four define what it is to be a vector norm.

Remark 3.18 (Julia functions norm and opnorm)
Julia package LinearAlgebra provides the functions norm and opnorm for evaluating matrix norms, as seen in the
examples in the previous section Solving Ax = b With Both Pivoting and LU Factorization, where norm computes the
vector norms ‖𝑣‖𝑝 and opnorm computes the coresponding matrix norms (“operator norms”) ‖𝐴‖𝑝.

• If 𝑝 is omitted, it defaults to 𝑝 = 2, so norm(v) is the familiar Euclidean vector norm.
• To get the “maximum” or “∞” norm, use value Inf for p.

Warning. Even if the argument of norm is a matrix, it is treated as a vector: for example, norm(A, Inf) returns the
maximum of all the absolute values of the elements of an array A.

3.6.4 Relative error bound and condition number

It can be proven that, for any choice of norm,

𝑅𝑒𝑙(𝑥𝑎) = ‖𝑥 − 𝑥𝑎‖
‖𝑥‖ ≤ ‖𝐴‖‖𝐴−1‖ ‖𝑟‖

‖𝑏‖ ,

where the last factor is the relative backward error.
Since we can (though often with considerable effort, due to the inverse!) compute the right-hand side when the infinity
norm is used, we can compute an upper bound on the relative error. From this, an upper bound on the absolute error can
be computed if needed.
The growth factor between the relative backward error measured by the residual and the relative (forward) error is called
the condition number, 𝐾(𝐴):

𝜅(𝐴) ∶= ‖𝐴‖‖𝐴−1‖

so that the above bound on the relative error can be restated as

Rel(𝑥𝑎) = ‖𝑥 − 𝑥𝑎‖
‖𝑥‖ ≤ 𝜅(𝐴)‖𝑟‖

‖𝑏‖

Actually there is one condition number for each choice of norm, so we work with

𝜅∞(𝐴) ∶= ‖𝐴‖∞‖𝐴−1‖∞

Note that for a singular matrix, this is undefined: we can intuitively say that the condition number is then infinite.
At the other extreme, the identity matrix 𝐼 has norm 1 and condition number 1 (using any norm), and this is the best
possible because in general 𝜅(𝐴) ≥ 1. (This follows from sub-multiplicativity.)

3.6. Error bounds for linear algebra, condition numbers, matrix norms, etc. 113

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm


Introduction to Numerical Methods and Analysis with Julia (draft)

Aside: estimating ‖𝐴−1‖∞ and thence the condition number

In Julia, good approximations of condition numbers are given by the function cond from package LinearAlgebra.
As with functions norm and opnorm, the simple form cond(A) defaults to 𝜅2(𝐴) based on the Euclidian length ‖ ⋅ ‖2
for vectors; to get the infinity norm version 𝜅∞(𝐴) use cond(A, Inf).
This is not done exactly, since computing the inverse is a lot of work for large matrices and good estimates can be got far
more quickly. The basic idea is start with the formula

‖𝐴−1‖ = max
‖𝑥‖=1

‖𝐴−1𝑥‖

and instead compute the maximum over some finite selection of values for 𝑥: call them 𝑥(𝑘). Then to evaluate 𝑦(𝑘) =
𝐴−1𝑥(𝑘), express this through the equation 𝐴𝑦(𝑘) = 𝑥(𝑘). Once we have an LU factorization for 𝐴 (which one probably
would have when exploring errors in a numerical solution of 𝐴𝑥 = 𝑏) each of these systems can be solved relatively fast:
Then

‖𝐴−1‖ ≈ max
𝑘

‖𝑦(𝑘)‖.

3.6.5 Well-conditioned and ill-conditioned problems and matrices

Condition numbers, giving upper limit on the ratio of forward error to backward error, measure the amplification of errors,
and have counterparts in other contexts. For example, with an approximation 𝑟𝑎 of a root 𝑟 of the equation 𝑓(𝑥) = 0, the
ratio of forward error to backward error is bounded by max 1/|𝑓 ′(𝑥)| = 1

min |𝑓 ′(𝑥)| , where the maximum only need be
taken over an interval known to contain both the root and the approximation. This condition number becomes “infinite”
for a multiple root, 𝑓 ′(𝑟) = 0, related to the problems we have seen in that case.
Careful calculation of an approximate solution 𝑥𝑎 of 𝐴𝑥 = 𝑏 can often get a residual that is at the level of machine
rounding error, so that roughly the relative backward error is of size comparable to the machine unit, 𝑢. The condition
number then guarantees that the (forward) relative error is no greater than about 𝑢 𝜅(𝐴).
In terms of significant bits, with 𝑝 bit machine arithmetic, one can hope to get 𝑝− log2(𝜅(𝐴)) significant bits in the result,
but can not rely on more, so one loses log2(𝜅(𝐴)) significant bits. Compare this to the observation that one can expect to
lose at least 𝑝/2 significant bits when using the approximation 𝐷𝑓(𝑥) ≈ 𝐷ℎ𝑓(𝑥) − (𝑓(𝑥 + ℎ) = 𝑓(𝑥))/ℎ.
A well-conditioned problem is one that is not too highly sensitive to errors in rounding or input data; for an eqution
𝐴𝑥 = 𝑏, this corresponds to the condition number of 𝐴 not being to large; the matrix 𝐴 is then sometimes also called
well-conditioned. This is of course vague, but might typicallymean that 𝑝−log2(𝜅(𝐴)) is a sufficient number of significant
bits for a particular purpose.
A problem that is not deemed well-conditioned is called ill-conditioned, so that a matrix of uncomfortably large condition
number is also sometimes called ill-conditioned. An ill-conditioned problem might still be well-posed, but just requiring
careful and precise solution methods.

Example 3.6 (the Hilbert matrices)
The 𝑛 × 𝑛 Hilbert matrix 𝐻𝑛 has elements

𝐻𝑖,𝑗 = 1
𝑖 + 𝑗 − 1

For example

𝐻4 =
⎡
⎢⎢
⎣

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

⎤
⎥⎥
⎦

114 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

and for larger or smaller 𝑛, one simply adds or remove rows below and columns at right.
These matrices arise in important situations like finding the polynomial of degree 𝑛 − 1 that fits given data in the sense
of minimizing the root-mean-square error — as we will discuss later in this course if there is time and interest.
Unfortunately as 𝑛 increases the condition number grows rapidly, causing severe rounding error problems. To illustrate
this, I will do something that one should usually avoid: compute the inverse of these matrices. This is also a case that
shows the advatage of the LU factorization, since one computes the inverse by succesively computing each column, by
solving 𝑛 different systems of equations, each with the same matrix 𝐴 on the left-hand side.

include("NumericalMethods.jl")
using .NumericalMethods: lu_factorize, forwardsubstitution, backwardsubstitution,␣

↪solvelinearsystem, printmatrix

using LinearAlgebra: norm, opnorm, cond

using Random: rand

function inverse(A, demomode=false)
# Use sparingly; there is usually a way to avoid computing inverses that is␣

↪faster and with less rounding error!
n = size(A)[1] # First index of the size, which is (n, n)
A_inverse = zeros(size(A))
(L, U) = lu_factorize(A)
for i in 1:n

if demomode; println("i=$i"); end
e_i = zeros(n)
e_i[i] = 1.0
if demomode; println("e_$i=$e_i"); end
c = forwardsubstitution(L, e_i)
A_inverse[:,i] = backwardsubstitution(U, c)
#A_inverse[:,i] = solvelinearsystem(A, e_i)

end
return A_inverse

end;

function hilbert(n)
H = zeros(n,n)
for i in 1:n

for j in 1:n
H[i,j] = 1.0/(i + j - 1.0)

end
end
return H

end;

for n in 2:5
H_n = hilbert(n)
println("H_$n is")
printmatrix(round.(H_n, sigdigits=4))
H_n_inverse = inverse(H_n)
println("and its inverse is")
printmatrix(round.(H_n_inverse, sigdigits=4))

(continues on next page)

3.6. Error bounds for linear algebra, condition numbers, matrix norms, etc. 115



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

println("to verify, their product is")
printmatrix(round.(H_n * H_n_inverse, sigdigits=2))
println()

end

H_2 is
[ 1.0 0.5
0.5 0.3333 ]

and its inverse is
[ 4.0 -6.0
-6.0 12.0 ]

to verify, their product is
[ 1.0 0.0
0.0 1.0 ]

H_3 is
[ 1.0 0.5 0.3333
0.5 0.3333 0.25
0.3333 0.25 0.2 ]

and its inverse is
[ 9.0 -36.0 30.0
-36.0 192.0 -180.0
30.0 -180.0 180.0 ]

to verify, their product is
[ 1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0 ]

H_4 is
[ 1.0 0.5 0.3333 0.25
0.5 0.3333 0.25 0.2
0.3333 0.25 0.2 0.1667
0.25 0.2 0.1667 0.1429 ]

and its inverse is
[ 16.0 -120.0 240.0 -140.0
-120.0 1200.0 -2700.0 1680.0
240.0 -2700.0 6480.0 -4200.0
-140.0 1680.0 -4200.0 2800.0 ]

to verify, their product is
[ 1.0 0.0 2.3e-13 -1.1e-13
-1.3e-16 1.0 1.1e-13 -1.5e-13
-2.3e-15 2.2e-14 1.0 -4.5e-14
-4.0e-15 6.8e-14 -6.4e-14 1.0 ]

H_5 is
[ 1.0 0.5 0.3333 0.25 0.2
0.5 0.3333 0.25 0.2 0.1667
0.3333 0.25 0.2 0.1667 0.1429
0.25 0.2 0.1667 0.1429 0.125
0.2 0.1667 0.1429 0.125 0.1111 ]

and its inverse is
[ 25.0 -300.0 1050.0 -1400.0 630.0
-300.0 4800.0 -18900.0 26880.0 -12600.0
1050.0 -18900.0 79380.0 -117600.0 56700.0
-1400.0 26880.0 -117600.0 179200.0 -88200.0

(continues on next page)

116 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

630.0 -12600.0 56700.0 -88200.0 44100.0 ]
to verify, their product is
[ 1.0 5.9e-13 -8.3e-13 1.2e-12 8.5e-13
2.3e-14 1.0 8.2e-14 -1.0e-12 2.0e-13
-9.4e-16 3.6e-13 1.0 -6.0e-13 -8.7e-13
-1.4e-14 6.8e-13 -2.7e-12 1.0 -1.8e-12
-8.6e-15 2.5e-13 -1.8e-12 1.8e-12 1.0 ]

Note how the inverses have some surprisingly large elements; this is the matrix equivalent of a number being very close
to zero and so with a very large reciprocal.
Since we have the inverses, we can compute the matrix norms of each 𝐻𝑛 and its inverse, and thence their condition
numbers.

for n in 2:5
H_n = hilbert(n)
println("H_$n is")
printmatrix(round.(H_n, sigdigits=6))
println("with infinity norm $(round(opnorm(H_n, Inf), sigdigits=4))")
H_n_inverse = inverse(H_n)
println("and its inverse is")
printmatrix(round.(H_n_inverse, sigdigits=6))
println("with infinity norm $(round(opnorm(H_n_inverse, Inf), sigdigits=4))")
println("Thus the condition number of H_$n is $(round(opnorm(H_n, Inf) * opnorm(H_

↪n_inverse, Inf), sigdigits=4))")
println()

end

H_2 is
[ 1.0 0.5
0.5 0.333333 ]

with infinity norm 1.5
and its inverse is
[ 4.0 -6.0
-6.0 12.0 ]

with infinity norm 18.0
Thus the condition number of H_2 is 27.0

H_3 is
[ 1.0 0.5 0.333333
0.5 0.333333 0.25
0.333333 0.25 0.2 ]

with infinity norm 1.833
and its inverse is
[ 9.0 -36.0 30.0
-36.0 192.0 -180.0
30.0 -180.0 180.0 ]

with infinity norm 408.0
Thus the condition number of H_3 is 748.0

H_4 is
[ 1.0 0.5 0.333333 0.25
0.5 0.333333 0.25 0.2
0.333333 0.25 0.2 0.166667
0.25 0.2 0.166667 0.142857 ]

(continues on next page)

3.6. Error bounds for linear algebra, condition numbers, matrix norms, etc. 117



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

with infinity norm 2.083
and its inverse is
[ 16.0 -120.0 240.0 -140.0
-120.0 1200.0 -2700.0 1680.0
240.0 -2700.0 6480.0 -4200.0
-140.0 1680.0 -4200.0 2800.0 ]

with infinity norm 13620.0
Thus the condition number of H_4 is 28370.0

H_5 is
[ 1.0 0.5 0.333333 0.25 0.2
0.5 0.333333 0.25 0.2 0.166667
0.333333 0.25 0.2 0.166667 0.142857
0.25 0.2 0.166667 0.142857 0.125
0.2 0.166667 0.142857 0.125 0.111111 ]

with infinity norm 2.283
and its inverse is
[ 25.0 -300.0 1050.0 -1400.0 630.0
-300.0 4800.0 -18900.0 26880.0 -12600.0
1050.0 -18900.0 79380.0 -117600.0 56700.0
-1400.0 26880.0 -117600.0 179200.0 -88200.0
630.0 -12600.0 56700.0 -88200.0 44100.0 ]

with infinity norm 413300.0
Thus the condition number of H_5 is 943700.0

Next, experiment with solving equations, to compare residuals with actual errors.
I will use the testing strategy of starting with a known solution 𝑥, from which the right-hand side 𝑏 is computed; then
slight simulated error is introduced to 𝑏. Running this repeatedly with use of different random “errors” gives an idea of
the actual error.

Remark 3.19 (Julia function collect)
The function collect converts the abstract “range” object given by function range into an ordinary 1D array.

for n in 2:5
println("n=$n")
H_n = hilbert(n)
x = collect(range(1.0, n, n))
println("x is $x")
b = H_n * x
println("b is $b")
error_scale = 1e-8
b_imperfect = b + 2.0 * error_scale * (rand(Float64, (n)) .- 0.5) # add random

↪"errors" between -error_scale and error_scale
println("b has been slightly changed to $b_imperfect")
x_computed = solvelinearsystem(H_n, b_imperfect)
residual = b - H_n * x_computed
relative_backward_error = norm(residual, Inf)/norm(b, Inf)
println("The residual maximum norm is $(round(norm(residual, Inf), sigdigits=2))")
println("and the relative backward error ||r||/||b|| is $(round(relative_backward_

↪error, sigdigits=2))")
absolute_error = norm(x - x_computed, Inf)
relative_error = absolute_error/norm(x, Inf)
println("The absolute error is $(round(absolute_error, sigdigits=2))")

(continues on next page)

118 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

println("The relative error is $(round(relative_error, sigdigits=2))")
error_bound = cond(H_n, Inf) * relative_backward_error
println("For comparison, the relative error bound from the formula above is

↪$(round(error_bound, sigdigits=2))")
println("\nBeware: the relative error is larger than the relative backward error␣

↪by a factor ",
"$(round(relative_error/relative_backward_error, sigdigits=2))")

println()
end

n=2
x is [1.0, 2.0]
b is [2.0, 1.1666666666666665]
b has been slightly changed to [2.0000000080803297, 1.1666666764748042]
The residual maximum norm is 9.8e-9
and the relative backward error ||r||/||b|| is 4.9e-9
The absolute error is 6.9e-8
The relative error is 3.5e-8
For comparison, the relative error bound from the formula above is 1.3e-7

Beware: the relative error is larger than the relative backward error by a factor␣
↪7.1

n=3
x is [1.0, 2.0, 3.0]
b is [3.0, 1.9166666666666665, 1.4333333333333333]
b has been slightly changed to [2.999999991652919, 1.9166666621675716, 1.

↪433333325752684]
The residual maximum norm is 8.3e-9
and the relative backward error ||r||/||b|| is 2.8e-9
The absolute error is 8.1e-7
The relative error is 2.7e-7
For comparison, the relative error bound from the formula above is 2.1e-6

Beware: the relative error is larger than the relative backward error by a factor␣
↪96.0

n=4
x is [1.0, 2.0, 3.0, 4.0]
b is [4.0, 2.716666666666667, 2.1, 1.7214285714285713]
b has been slightly changed to [4.000000006782543, 2.7166666759068043, 2.

↪099999995598059, 1.72142857008299]
The residual maximum norm is 9.2e-9
and the relative backward error ||r||/||b|| is 2.3e-9
The absolute error is 4.6e-5
The relative error is 1.2e-5
For comparison, the relative error bound from the formula above is 6.6e-5

Beware: the relative error is larger than the relative backward error by a factor␣
↪5000.0

n=5
x is [1.0, 2.0, 3.0, 4.0, 5.0]
b is [5.0, 3.5500000000000003, 2.8142857142857145, 2.3464285714285715, 2.

↪0174603174603174]

(continues on next page)

3.6. Error bounds for linear algebra, condition numbers, matrix norms, etc. 119



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

b has been slightly changed to [5.000000006354475, 3.5500000045593687, 2.
↪814285713289512, 2.346428570499546, 2.0174603141398526]

The residual maximum norm is 6.4e-9
and the relative backward error ||r||/||b|| is 1.3e-9
The absolute error is 0.00036
The relative error is 7.1e-5
For comparison, the relative error bound from the formula above is 0.0012

Beware: the relative error is larger than the relative backward error by a factor␣
↪56000.0

We see in these experiments that:
• As the condition number increases, the relative error becomes increasingly larger than the backward error computed
from the residual.

• It is less than the above bound Rel(𝑥𝑎) = ‖𝑥 − 𝑥𝑎‖
‖𝑥‖ ≤ 𝜅(𝐴)‖𝑟‖

‖𝑏‖ , and typically quite a bit less.

3.7 Iterative Methods for Simultaneous Linear Equations

References:
• Section 2.5 Iterative Methods in [Sauer, 2019], sub-sections 2.5.1 to 2.5.3.
• Chapter 7 Iterative Techniques in Linear Algebra in [Burden et al., 2016], sections 7.1 to 7.3.
• Section 8.4 in [Chenney and Kincaid, 2012].

3.7.1 Introduction

This topic is a huge area, with lots of ongoing research; this section just explores the first few methods in the field:
1. The Jacobi Method.
2. The Gauss-Seidel Method.

The next three major topics for further study are:
1. The Method of Succesive Over-Relaxation (“SOR”). This is usually done as a modification of the Gauss-Seidel

method, though the strategy of “over-relaxation” can also be applied to other iterative methods such as the Jacobi
method.

2. The Conjugate Gradient Method (“CG”). This is beyond the scope of this course; I mention it because in the realm
of solving linear systems that arise in the solution of differential equations, CG and SOR are the basis of many of
the most modern, advanced methods.

3. Preconditioning.

120 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

3.7.2 The Jacobi method

The basis of the Jacobi method for solving 𝐴𝑥 = 𝑏 is splitting 𝐴 as 𝐷 + 𝑅 where 𝐷 is the diagonal of 𝐴:

𝑑𝑖,𝑖 = 𝑎𝑖,𝑖
𝑑𝑖,𝑗 = 0, 𝑖 ≠ 𝑗

so that 𝑅 = 𝐴 − 𝐷 has

𝑟𝑖,𝑖 = 0
𝑟𝑖,𝑗 = 𝑎𝑖,𝑗, 𝑖 ≠ 𝑗

Visually

𝐷 =
⎡
⎢⎢
⎣

𝑎11 0 0 …
0 𝑎22 0 …
0 0 𝑎33 …
⋮ ⋮ ⋮ ⋱

⎤
⎥⎥
⎦

It is easy to solve 𝐷𝑥 = 𝑏: the equations are just 𝑎𝑖𝑖𝑥𝑖 = 𝑏𝑖 with solution 𝑥𝑖 = 𝑏𝑖/𝑎𝑖𝑖.
Thus we rewrite the equation 𝐴𝑥 = 𝐷𝑥 + 𝑅𝑥 = 𝑏 in the fixed point form

𝐷𝑥 = 𝑏 − 𝑅𝑥

and then use the familiar fixed point iteration strategy of inserting the currect approximation at right and solving for the
new approximation at left:

𝐷𝑥(𝑘) = 𝑏 − 𝑅𝑥(𝑘−1)

Note: We could make this look closer to the standard fixed-point iteration form 𝑥𝑘 = 𝑔(𝑥𝑘−1) by dividing out 𝐷 to get

𝑥(𝑘) = 𝐷−1(𝑏 − 𝑅𝑥(𝑘−1)),

but — as is often the case — it will be better to avoid matrix inverses by instead solving this easy system. This “inverse
avoidance” becomes far more important when we get to the Gauss-Seidel method!

Exercise 1: Implement and test the Jacobi method

Write and test Python functions for this.
A) As usual start with a most basic version that does a fixed number of iterations

x = jacobi_basic(A, b, n)

B) Then refine this to apply an error tolerance, but also avoiding infinite loops by imposing an upper limit on the number
of iterations:

x = jacobi(A, b, errorTolerance, maxIterations)

Test this with the matrices of form 𝑇 below for several values of 𝑛, increasingly geometrically. To be cautious initially,
try 𝑛 = 2, 4, 8, 16, …

3.7. Iterative Methods for Simultaneous Linear Equations 121



Introduction to Numerical Methods and Analysis with Julia (draft)

3.7.3 The underlying strategy

To analyse the Jacobi method — answering questions like for which matrices it works, and how quickly it converges —
and also to improve on it, it helps to described a key strategy underlying it, which is this: approximate the matrix 𝐴 by
another one𝐸 one that is easier to solve with, chosen so that the discrepacy𝑅 = 𝐴−𝐸 is small enough. Thus, repeatedly
solving the new easier equations 𝐸𝑥(𝑘) = 𝑏(𝑘) plays a similar role to repeatedly solving tangent line approximations in
Newton’s method.
Of course to be of any use, 𝐸 must be somewhat close to 𝐴; the remainder 𝑅 must be small enough. We can make
this requirement precise with the use of matrix norms introduced in Error bounds for linear algebra, condition numbers,
matrix norms, etc. and an upgrade of the contraction mapping theorem seen in Solving Equations by Fixed Point Iteration
(of Contraction Mappings).
Thus consider a general splitting of 𝐴 as 𝐴 = 𝐸 + 𝑅. As above, we rewrite 𝐴𝑥 = 𝐸𝑥 + 𝑅𝑥 = 𝑏 as 𝐸𝑥 = 𝑏 − 𝑅𝑥 and
thence as 𝑥 = 𝐸−1𝑏 − (𝐸−1𝑅)𝑥. (It is alright to use the matrix inverse here, since we are not actually computing it; only
using it for a theoretical argument!) The fixed point iteration form is thus

𝑥(𝑘) = 𝑔(𝑥(𝑘−1)) = 𝑐 − 𝑆𝑥(𝑘−1)

where 𝑐 = 𝐸−1𝑏 and 𝑆 = 𝐸−1𝑅.
For vector-valued functions we extend the previous Definition 2.2 in Section Solving Equations by Fixed Point Iteration
(of Contraction Mappings) as:

Definition 3.7 (Vector-valued contraction mapping)
For a set 𝐷 of vectors in ℝ𝑛, a mapping 𝑔 ∶ 𝐷 → 𝐷 is called a contraction or contraction mapping if there is a constant
𝐶 < 1 such that

‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐶‖𝑥 − 𝑦‖

for any 𝑥 and 𝑦 in 𝐷. We then call 𝐶 a contraction constant.

Next, the contraction mapping theorem Theorem 2.1 extends to

Theorem 3.6 (Contraction mapping theorem for vector-valued functions)
• Any contraction mapping 𝑔 on a closed, bounded set 𝐷 ∈ ℝ𝑛 has exactly one fixed point 𝑝 in 𝐷.
• This can be calculated as the limit 𝑝 = lim

𝑘→∞
𝑥(𝑘) of the iteration sequence given by 𝑥(𝑘) = 𝑔(𝑥(𝑘−1)) for any choice

of the starting point 𝑥(0) ∈ 𝐷.
• The errors decrease at a guaranteed minimum speed: ‖𝑥(𝑘) − 𝑝‖ ≤ 𝐶‖𝑥(𝑘−1) − 𝑝‖, so ‖𝑥(𝑘) − 𝑝‖ ≤ 𝐶𝑘‖𝑥(0) − 𝑝‖.

With this, it turns out that the above iteration converges if 𝑆 is “small enough” in the sense that ‖𝑆‖ = 𝐶 < 1 — and it
is enough that this works for any choice of matrix norm!

Theorem 3.7
If𝑆 ∶= 𝐸−1𝑅 = 𝐸−1𝐴−𝐼 has ‖𝑆‖ = 𝐶 < 1 for any choice ofmatrix norm, then the iterative scheme𝑥(𝑘) = 𝑐−𝑆𝑥(𝑘−1)

with 𝑐 = 𝐸−1𝑏 converges to the solution of 𝐴𝑥 = 𝑏 for any choice of the initial approximation 𝑥(0). (Aside: the zero
vector is an obvious and popular choice for 𝑥(0).)
Incidentally, since this condition guarantees that there exists a unique solution to 𝐴𝑥 = 𝑏, it also shows that 𝐴 is non-
singular.

122 Chapter 3. Linear Algebra and Simultaneous Equations

linear-equations-5-error-bounds-condition-numbers.ipynb#matrix-norms


Introduction to Numerical Methods and Analysis with Julia (draft)

Proof. (sketch)
The main idea is that for 𝑔(𝑥) = 𝑐 − 𝑆𝑥,

‖𝑔(𝑥) − 𝑔(𝑦)‖ = ‖(𝑐 − 𝑆𝑥) − (𝑐 − 𝑆𝑦)‖ = ‖𝑆(𝑦 − 𝑥)‖ ≤ ‖𝑆‖‖𝑦 − 𝑥‖ ≤ 𝐶‖𝑥 − 𝑦‖,

so with 𝐶 < 1, it is a contraction.
(The omitted more “technical” detail is to find a suitable bounded domain 𝐷 that all the iterates x^{(k)} stay inside it.)

What does this say about the Jacobi method?

For the Jacobi method, 𝐸 = 𝐷 so 𝐸−1 is the diagonal matrix with elements 1/𝑎𝑖,𝑖 on the main diagonal, zero elsewhere.
The product 𝐸−1𝐴 then multiplies each row 𝑖 of 𝐴 by 1/𝑎𝑖,𝑖, giving

𝐸−1𝐴 =
⎡
⎢⎢
⎣

1 𝑎1,2/𝑎1,1 𝑎1,2/𝑎1,1 …
𝑎2,1/𝑎2,2 1 𝑎2,3/𝑎2,2 …
𝑎3,1/𝑎3,3 𝑎3,2/𝑎3,3 1 …

⋮ ⋮ ⋮ ⋱

⎤
⎥⎥
⎦

so that subtracting the identity matrix to get 𝑆 cancels the ones on the main diagonal:

𝑆 = 𝐸−1𝐴 − 𝐼 =
⎡
⎢⎢
⎣

0 𝑎1,2/𝑎1,1 𝑎1,2/𝑎1,1 …
𝑎2,1/𝑎2,2 0 𝑎2,3/𝑎2,2 …
𝑎3,1/𝑎3,3 𝑎3,2/𝑎3,3 0 …

⋮ ⋮ ⋮ ⋱

⎤
⎥⎥
⎦

Here is one of many places that using the maximum-norm, a.k.a. ∞-norm, makes life much easier! Recalling that this is
given by

‖𝐴‖∞ = 𝑛max
𝑖=1

(
𝑛

∑
𝑗=1

|𝑎𝑖,𝑗|) ,

• First, sum the absolute values of elements in each row 𝑖; with the common factor 1/|𝑎𝑖,𝑖|, this gives
(|𝑎𝑖,1| + |𝑎𝑖,2| + ⋯ |𝑎𝑖,𝑖−1| + |𝑎𝑖,𝑖+1| + ⋯ |𝑎𝑖,𝑛|) /|𝑎𝑖,𝑖|.
Such a sum, skipping index 𝑗 = 𝑖, can be abbreviated as

( ∑
1≤𝑗≤𝑛,𝑗≠𝑖

|𝑎𝑖,𝑗|) /|𝑎𝑖,𝑖|

• Then get the norm as the maximum of these:

𝐶 = ‖𝐸−1𝐴‖∞ = 𝑛max
𝑖=1

[( ∑
1≤𝑗≤𝑛,𝑗≠𝑖

|𝑎𝑖,𝑗|) /|𝑎𝑖,𝑖|]

and the contraction condition 𝐶 < 1 becomes the requirement that each of these 𝑛 “row sums” is less than 1:
Multiplying each of the inequalities by the denominator |𝑎𝑖,𝑖| gives 𝑛 conditions

( ∑
1≤𝑗≤𝑛,𝑗≠𝑖

|𝑎𝑖,𝑗|) < |𝑎𝑖,𝑖|

This is strict diagonal dominance, as inDefinition 3.1 in the section Row Reduction/Gaussian Elimination, and as discussed
there, one way to think of this is that such a matrix 𝐴 is close to its main diagonal 𝐷, which is the intuitive condition that
the approximation of 𝐴 by 𝐷 as done in the Jacobi method is “good enough”.

3.7. Iterative Methods for Simultaneous Linear Equations 123



Introduction to Numerical Methods and Analysis with Julia (draft)

And indeed, combining this result with Theorem 3.7 gives:

Theorem 3.8 (Convergence of the Jacobi method)
The Jacobi Method converges if 𝐴 is strictly diagonally dominant, for any initial approximation 𝑥(0).
Further, the error goes down by at least a factor of ‖𝐼 − 𝐷−1𝐴‖ at each iteration.

By the way, other matrix norms give other conditions guaranteeing convergence; perhaps the most useful of these others
is that it is also sufficient for 𝐴 to be column-wise strictly diagonally dominant as in Definition 3.2.

3.7.4 The Gauss-Seidel method

To recap, two key ingredients for a splitting 𝐴 = 𝐸 + 𝑅 to be useful are that
• the matrix 𝐸 is “easy” to solve with, and
• it is not too far from 𝐴.

The Jacobi method choice of 𝐸 being the main diagonal of 𝐴 strongly emphasizes the “easy” part, but we have seen
another larger class of matrices for which it is fairly quick and easy to solve 𝐸𝑥 = 𝑏: triangular matrices, which can be
solved with forward or backward substitution, not needing row reduction.
The Gauss-Seidel Method takes 𝐸 be the lower triangular part of 𝐴, which intuitively leaves more of its entries closer to
𝐴 and makes the remainder 𝑅 = 𝐴 − 𝐸 “smaller”.
To discuss this and other splittings, we write the matrix as 𝐴 = 𝐿 + 𝐷 + 𝑈 where:

• 𝐷 is the diagonal of 𝐴, as for Jacobi
• 𝐿 is the strictly lower diagonal part of 𝐴 (just the elements with 𝑖 > 𝑗)
• 𝑈 is the strictly upper diagonal part of 𝐴 (just the elements with 𝑖 < 𝑗)

That is,

𝐴 =
⎡
⎢⎢
⎣

𝑎1,1 𝑎1,2 𝑎1,3 …
𝑎2,1 𝑎2,2 𝑎2,3 …
𝑎3,1 𝑎3,2 𝑎3,3 …

⋮ ⋮ ⋮ ⋱

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

0 0 0 …
𝑎2,1 0 0 …
𝑎3,1 𝑎3,2 0 …

⋮ ⋮ ⋮ ⋱

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

𝑎1,1 0 0 …
0 𝑎2,2 0 …
0 0 𝑎3,3 …
⋮ ⋮ ⋮ ⋱

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

0 𝑎1,2 𝑎1,3 …
0 0 𝑎2,3 …
0 0 0 …
⋮ ⋮ ⋮ ⋱

⎤
⎥⎥
⎦

= 𝐿 + 𝐷 + 𝑈

Thus 𝑅 = 𝐿 + 𝑈 for the Jacobi method.
So now we use 𝐸 = 𝐿 + 𝐷, which will be called 𝐴𝐿, the lower triangular part of 𝐴, and the remainder is 𝑅 = 𝑈 . The
fixed point form becomes

𝐴𝐿𝑥 = 𝑏 − 𝑈𝑥

giving the fixed point iteration

𝐴𝐿𝑥(𝑘) = 𝑏 − 𝑈𝑥(𝑘−1)

Here we definitely do not use the inverse of 𝐴𝐿 when calculating! Instead, solve with forward substitution.
However to analyse convergence, the mathematical form

𝑥(𝑘) = 𝐴−1
𝐿 𝑏 − (𝐴−1

𝐿 𝑈)𝑥(𝑘−1)

is useful: the iteration map is now 𝑔(𝑥) = 𝑐 − 𝑆𝑥 with 𝑐 = (𝐿 + 𝐷)−1𝑏 and 𝑆 = (𝐿 + 𝐷)−1𝑈 .

124 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Arguing as above, we see that convergence is guaranteed if ‖(𝐿 + 𝐷)−1𝑈‖ < 1. However it is not so easy in general to
get a formula for ‖(𝐿 + 𝐷)−1𝑈‖; what one can get is slightly disappointing in that, despite the 𝑅 = 𝑈 here being in some
sense “smaller” than the 𝑅 = 𝐿 + 𝑈 for the Jacobi method, the general convergence guarantee looks no better:

Theorem 3.9 (Convergence of the Gasuss-Seidel method)
The Gauss-Seidel method converges if 𝐴 is strictly diagonally dominant, for any initial approximation 𝑥(0).

However, in practice the convergence rate as given by 𝐶 = 𝐶𝐺𝑆 = ‖(𝐿 + 𝐷)−1𝑈‖ is often better than for the 𝐶 =
𝐶𝐽 = ‖𝐷−1(𝐿 + 𝑈)‖ for the Jacobi method.
Sometimes this reduces the number of iterations enough to outweigh the extra computational effort involved in each
iteration and make this faster overall than the Jacobi method — but not always.

Exercise 2: Implement and test the Gauss-Seidel method, and compare to Jacobi

Do the two versions as above and use the same test cases.
Then compare the speed/cost of the two methods: one way to do this is by using Julia’s “wall clock time” function time
or the macro @time; see the linked descriptions in the Julia manual.

3.7.5 A family of test cases, arising from boundary value problems for differential
equations

The tri-diagonal matrices 𝑇 of the form

𝑡𝑖,𝑖 = 1 + 2ℎ2

𝑡𝑖,𝑖+1 = 𝑡𝑖,𝑖+1 = −ℎ2

𝑡𝑖,𝑗 = 0, |𝑖 − 𝑗| > 1

and variants of this arise in the solutions of boundary value problems for ODEs like

−𝑢″(𝑥) + 𝐾𝑢 = 𝑓(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏
𝑢(𝑎) = 𝑢(𝑏) = 0

and related problems for partial differential equations.
Thus these provide useful initial test cases — usually with ℎ = (𝑏 − 𝑎)/𝑛.

3.8 Faster Methods for Solving 𝐴𝑥 = 𝑏 for Tridiagonal and Banded
matrices, and Strict Diagonal Dominance

Reference:
Section 6.6 Special Types of Matrices in [Burden et al., 2016], the sub-sections on BandMatrices and Tridiagonal Matrices.

3.8. Faster Methods for Solving 𝐴𝑥 = 𝑏 for Tridiagonal and Banded matrices, and Strict Diagonal
Dominance

125

https://docs.julialang.org/en/v1/base/base/#Base.Libc.time-Tuple%7B%7D
https://docs.julialang.org/en/v1/manual/profile/#@time


Introduction to Numerical Methods and Analysis with Julia (draft)

3.8.1 Tridiagonal systems

Differential equations often lead to the need to solve systems of equations 𝑇 𝑥 = 𝑏 where the matrix 𝑇 is tri-diagonal:
the only non-zero elements are on the main diagonal and the diagonals adjacent to it on either side, so that 𝑇𝑖,𝑗 = 0 if
|𝑖 − 𝑗| > 1. That is, the system looks like:

Definition 3.8 (Tridiagonal matrix)
Amatrix 𝑇 is tridiagonal if the only non-zero elements are on the main diagonal and the diagonals adjacent to it on either
side, so that 𝑇𝑖,𝑗 = 0 if |𝑖 − 𝑗| > 1. That is, the system looks like:

𝑇 𝑥 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑑1 𝑢1
𝑙1 𝑑2 𝑢2

𝑙2 𝑑3 𝑢3
⋱ ⋱ ⋱

𝑙𝑛−2 𝑑𝑛−1 𝑢𝑛−1
𝑙𝑛−1 𝑑𝑛

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑏1
𝑏2
⋮

𝑏𝑛

⎤
⎥⎥
⎦

with all “missing” entries being zeros. The notation used here suggests one efficient way to store such a matrix: as three
1D arrays 𝑑, 𝑙 and 𝑢.

(Such equations also arise in other important situations, such as Spline Interpolation.)
It can be verified that LU factorization preserves all the non-zero values, so that the Doolittle algorithm — if it succeeds
without any division by zero — gives 𝑇 = 𝐿𝑈 with the form

𝐿 =

⎡
⎢
⎢
⎢
⎢
⎣

1
𝐿1 1

𝐿2 1
⋱ ⋱

𝐿𝑛−2 1
𝐿𝑛−1 1

⎤
⎥
⎥
⎥
⎥
⎦

, 𝑈 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐷1 𝑢1
𝐷2 𝑢2

𝐷3 𝑢3
⋱ ⋱

𝐷𝑛−1 𝑢𝑛−1
𝐷𝑛

⎤
⎥
⎥
⎥
⎥
⎦

Note that the first non-zero element in each column is unchanged, as with a full matrix, but now it means that the upper
diagonal elements 𝑢𝑖 are unchanged.
Again, one way to describe and store this information is with just the two new 1D arrays𝐿 and𝐷, alongwith the unchanged
array 𝑢.

3.8.2 Algorithms

Algorithm 3.9 (LU factorization)
𝐷1 = 𝑑1

for i from 2 to n

𝐿𝑖−1 = 𝑙𝑖−1/𝐷𝑖−1

𝐷𝑖 = 𝑑𝑖 − 𝐿𝑖−1𝑢𝑖−1

end

Algorithm 3.10 (Forward substitution)

126 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

𝑐1 = 𝑏1

for i from 2 to n

𝑐𝑖 = 𝑏𝑖 − 𝐿𝑖−1𝑐𝑖−1

end

Algorithm 3.11 (Backward substitution)
𝑥𝑛 = 𝑐𝑛/𝐷𝑛

for i from n-1 down to 1

𝑥𝑖 = (𝑐𝑖 − 𝑢𝑖𝑥𝑖+1)/𝐷𝑖

end

3.8.3 Generalizing to banded matrices

As we have seen, approximating derivatives to higher order of accuracy and approximating derivatives of order greater
than two requires more than three nodes, but the locations needed are all close to the ones where the derivative is being
approximated. For example, the simplest symmetric approximation of the fourth derivative 𝐷4𝑓(𝑥) used values from
𝑓(𝑥 − 2ℎ) to 𝑓(𝑥 + 2ℎ). Then row 𝑖 of the corresponding matrix has all its non-zero elements at locations (𝑖, 𝑖 − 2) to
(𝑖, 𝑖 + 2): the non-zero elements lie in the narrow “band” where |𝑖 − 𝑗| ≤ 2, and thus on five “central” diagonals.
This is a penta-digonal matrix, and an example of the larger class of banded matrices: ones in which all the non-zero
elements have indices −𝑝 ≤ 𝑗 − 𝑖 ≤ 𝑞 for 𝑝 and 𝑞 smaller than 𝑛 — usually far smaller; 𝑝 = 𝑞 = 2 for a penta-digonal
matrix.
Let us recap the general Doolittle algorithm for computing an LU factorization:

Algorithm 3.12 (Doolittle algorithm for computing an LU factorization)
The top row is unchanged:

for j from 1 to n

𝑢1,𝑗 = 𝑎1,𝑗

end

The left column requires no sums:

for i from 2 to n

𝑙𝑖,1 = 𝑎𝑖,1/𝑢1,1

end

The main loop: for k from 2 to n

for j from k to n

𝑢𝑘,𝑗 = 𝑎𝑘,𝑗 − ∑𝑘−1
𝑠=1 𝑙𝑘,𝑠𝑢𝑠,𝑗

end

for i from k+1 to n

𝑙𝑖,𝑘 = (𝑎𝑖,𝑘 − ∑𝑘−1
𝑠=1 𝑙𝑖,𝑠𝑢𝑠,𝑘) /𝑢𝑘,𝑘

3.8. Faster Methods for Solving 𝐴𝑥 = 𝑏 for Tridiagonal and Banded matrices, and Strict Diagonal
Dominance

127



Introduction to Numerical Methods and Analysis with Julia (draft)

end

end

Eliminating redundant calculation in the above

With a banded matrix, many of the entries at right are zero, particularly in the two sums, which is where most of the
operations are. Thus we can rewrite, exploiting the fact that all elements with indices 𝑗 − 𝑖 < −𝑝 or 𝑗 − 𝑖 > 𝑞 are
zero. To start with, the top diagonal is not modified, as already noted for the tridiagonal case: 𝑢𝑘,𝑘+𝑞 = 𝑎𝑘,𝑘+𝑞 for
1 ≤ 𝑘 ≤ 𝑛 − 𝑞.

Algorithm 3.13 (LU factorization of a banded matrix)
The top row is unchanged:

for j from 1 to 1+q

𝑢1,𝑗 = 𝑎1,𝑗

end

The top non-zero diagonal is unchanged:

for k from 1 to n - q

𝑢𝑘,𝑘+𝑞 = 𝑎𝑘,𝑘+𝑞

end

The left column requires no sums:

for i from 2 to 1+p

𝑙𝑖,1 = 𝑎𝑖,1/𝑢1,1

end

The main loop:

for k from 2 to n

for j from k to min(n, k+q-1)

𝑢𝑘,𝑗 = 𝑎𝑘,𝑗 −
𝑘−1
∑

𝑠=𝑚𝑎𝑥(1,𝑘−𝑝,𝑗−𝑞)
𝑙𝑘,𝑠𝑢𝑠,𝑗

end

for i from k+1 to min(n,k+p-1)

𝑙𝑖,𝑘 = ⎛⎜
⎝

𝑎𝑖,𝑘 −
𝑘−1
∑

𝑠=𝑚𝑎𝑥(1,𝑖−𝑝,𝑘−𝑞)
𝑙𝑖,𝑠𝑢𝑠,𝑘⎞⎟

⎠
/𝑢𝑘,𝑘

end

end

It is common for a banded matrix to have equal band-width on either side, 𝑝 = 𝑞, as with tridiagonal and pentadiagonal
matrices. Then the algorithm is somewhat simpler:

Algorithm 3.14 (LU factorization of a banded matrix, 𝑝 = 𝑞)

128 Chapter 3. Linear Algebra and Simultaneous Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

The top row is unchanged:

for j from 1 to 1+p

𝑢1,𝑗 = 𝑎1,𝑗

end The top non-zero diagonal is unchanged: for k from 1 to n - p

𝑢𝑘,𝑘+𝑝 = 𝑎𝑘,𝑘+𝑝

end

The left column requires no sums:

for i from 2 to 1+p

𝑙𝑖,1 = 𝑎𝑖,1/𝑢1,1

end

The main loop:

for k from 2 to n

for j from k to min(n, k+p-1)

𝑢𝑘,𝑗 = 𝑎𝑘,𝑗 −
𝑘−1
∑

𝑠=𝑚𝑎𝑥(1,𝑗−𝑝)
𝑙𝑘,𝑠𝑢𝑠,𝑗

end

for i from k+1 to min(n,k+p)

𝑙𝑖,𝑘 = ⎛⎜
⎝

𝑎𝑖,𝑘 −
𝑘−1
∑

𝑠=𝑚𝑎𝑥(1,𝑖−𝑝)
𝑙𝑖,𝑠𝑢𝑠,𝑘⎞⎟

⎠
/𝑢𝑘,𝑘

end

end

3.8.4 Strict diagonal dominance helps again

These algorithms for banded matrices do no pivoting, and that is highly desirable, because pivoting creates non-zero
elements outside the “band” and so can force one back to the general algorithm. Fortunately, we have seen one case
where this is fine: the matrix being either row-wise or column-wise strictly diagonally dominant.

3.9 Computing Eigenvalues and Eigenvectors: the Power Method,
and a bit beyond

References:
• Section 12.1 Power Iteration Methods of [Sauer, 2019].
• Section 7.2 Eigenvalues and Eigenvectors of [Burden et al., 2016].
• Chapter 8, More on Linear Equations of [Chenney and Kincaid, 2012], in particular section 3 Power Method, and
also section 2 Eigenvalues and Eigenvectors as background reading.

3.9. Computing Eigenvalues and Eigenvectors: the Power Method, and a bit beyond 129



Introduction to Numerical Methods and Analysis with Julia (draft)

The eigenproblem for a square 𝑛 × 𝑛 matrix 𝐴 is to compute some or all non-trivial solutions of

𝐴 ⃗𝑣 = 𝜆 ⃗𝑣.

(By non-trivial, I mean to exclude ⃗𝑣 = 0, which gives a solution for any 𝜆.) That is, to compute the eigenvalues 𝜆 (of
which generically there are 𝑛, but sometimes less) and the eigenvectors ⃗𝑣 corresponding to each.
With eigenproblems, and particularly those arising from differential equations, one often needs only the few smallest
and/or largest eigenvalues. For these, the power method described next can be adapted, leading to the shifted inverse
power method.
Here we often restict our attention to the case of a real symmetric matrix (𝐴𝑇 = 𝐴, or 𝐴𝑖𝑗 = 𝐴𝑗𝑖), or a Hermitian matrix
(𝐴𝑇 = 𝐴∗), for which many things are a bit simpler:

• all eigenvalues are real,
• for symmetric matrices, all eigenvectors are also real,
• there is a complete set of orthogonal eigenvectors ⃗𝑣𝑘, 1 ≤ 𝑖 ≤ 𝑛 that form a basis for all vectors, and so on.

However, the methods described here can be used more generally, or can be made to work with minor adjustments.
The eigenvalue are roots of the characteristic polynomial, det(𝐴 − 𝜆𝐼); repeated roots are possible, and they will all be
named, so there are always values 𝜆𝑖, 1 ≤ 𝑖 ≤ 𝑛. Here, these eigenvalues will be enumerated in decreasing order of
magnitude:

|𝜆1| ≥ |𝜆2| ⋯ ≥ |𝜆𝑛|.

Generically, all the magnitudes are different, which makes things works more easily, so that will sometimes be assumed
while developing the intuition of the method.

3.9.1 The Power Method

The basic tool is the Power Method, which will usually but not always succeed in computing the eigenvalue of largest
magnitude, 𝜆1, and a corresponding eigenvector ⃗𝑣1. Its success mainly involves assuming there being a unique largest
eigenvalue: 𝜆1 > 𝜆𝑖 for 𝑖 > 1.
In its simplest form, one starts with a unit-length vector ⃗𝑥0, so ‖ ⃗𝑥0‖ = 1, constructs the successive multiples ⃗𝑦 𝑘 = 𝐴𝑘 ⃗𝑥0

by successive multiplications, and rescales at each stage to the unit vectors ⃗𝑥𝑘 = ⃗𝑦 𝑘/‖ ⃗𝑦 𝑘‖.
Note that ⃗𝑦 𝑘+1 = 𝐴 ⃗𝑥𝑘, so that once ⃗𝑥𝑘 is approximately an eigenvector for eigenvalue 𝜆, ⃗𝑦 𝑘+1 ≈ 𝜆 ⃗𝑥𝑘, leading to the
eigenvalue approximation

𝑟(𝑘) ∶= ⟨ ⃗𝑦 𝑘+1, ⃗𝑥𝑘⟩ ≈ ⟨𝜆 ⃗𝑥𝑘, ⃗𝑥𝑘⟩ ≈ 𝜆

Remark 3.20 (dot products in Julia)
Here and below, I use ⟨ ⃗𝑎, ⃗𝑏⟩ to denote the inner product (a.k.a. dot product or scalar product) of two vectors.
With Julia arrays this is given by function dot(a,b) from package LinearAlgebra, obtained with

using LinearAlgebra: dot

You can even type this as

130 Chapter 3. Linear Algebra and Simultaneous Equations

https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.dot
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/


Introduction to Numerical Methods and Analysis with Julia (draft)

a ⋅ b

(To get that centered dot in Julia, type \cdot and then tab.)

Algorithm 3.15 (A basic version of the power method)
Choose initial vector ⃗𝑦0, maybe with a random number generator.
Normalize to ⃗𝑥0 = ⃗𝑦 0/‖ ⃗𝑦 0‖.
for 𝑘 from 0 to 𝑘𝑚𝑎𝑥

⃗𝑦 𝑘+1 = 𝐴 ⃗𝑥𝑘

𝑟(𝑘) = ⟨ ⃗𝑦 𝑘+1, ⃗𝑥𝑘⟩
⃗𝑥𝑘+1 = ⃗𝑦 𝑘+1/‖ ⃗𝑦 𝑘+1‖

end
The final values of 𝑟(𝑘) and ⃗𝑥𝑘 approximate 𝜆1 and ⃗𝑣1 respectively.

Exercise 1

Implement this algorithm and test it on the real, symmetric matrix

𝐴 = ⎡⎢
⎣

3 1 1
1 8 1
1 1 4

⎤⎥
⎦

This all real eigenvalues, all within 2 of the diagonal elements (this claim should be explained as part of the project
write-up), so start with it.
As a debugging strategy, you could replace all those off-diagonal ones by a small value 𝛿:

𝐴𝛿 = ⎡⎢
⎣

3 𝛿 𝛿
𝛿 8 𝛿
𝛿 𝛿 4

⎤⎥
⎦

Then the Gershgorin circle theorem ensures that each eigenvalue is within 2𝛿 of an entry on the main diagonal. Further-
more, if 𝛿 is small enough that the circles of radius 2𝛿 centered on the diagonal elements do not overlap, then there is one
eigenvalue in each circle.
You could even start with 𝛿 = 0, for which you know exactly the eigenvalues: they are the diagonal elements.
Here and below you could check your work with Julia, using function eigvals from package LinearAlgebra.
However, that is almost cheating, so note that there is also a backward error check: see how small ‖𝐴𝑣 − 𝜆𝑣‖/‖𝑣‖ is.

using LinearAlgebra: eigvals

include("NumericalMethods.jl")
using .NumericalMethods: printmatrix

delta = 0.01
A = [3.0 delta delta ; delta 8.0 delta ; delta delta 4.0]
eigenvalues = eigvals(A);

3.9. Computing Eigenvalues and Eigenvectors: the Power Method, and a bit beyond 131

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.eigvals
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/


Introduction to Numerical Methods and Analysis with Julia (draft)

println("With delta=$(delta), so that A is"); printmatrix(A)
println("the eigenvalues are $(eigenvalues)")

With delta=0.01, so that A is
[ 3.0 0.01 0.01
0.01 8.0 0.01
0.01 0.01 4.0 ]

the eigenvalues are [2.999880409987068, 4.000074490251736, 8.00004509976119]

Remark 3.21 (On Julia)
That package LinearAlgebra also has a function eigvecs for computing eignevevctors.
It can compute them “from scratch” with eigenvectors = eigvecs(A), which returns them in the columns of
that matrix eigenvectors.
However, if you already have the eigenvalues, the calculation is much quicker by using them: that is done with eigen-
vectors = eigvecs(A, eigenvalues)

Refinement: deciding the iteration count

Some details are omitted above; above all, how to decide the number of iterations.
One approach is to use the fact that an eigenvector-eigenvalue pair satisfies 𝐴 ⃗𝑣 − 𝜆 ⃗𝑣 = 0, so the “residual norm”

‖𝐴 ⃗𝑥𝑘 − 𝑟(𝑘) ⃗𝑥𝑘‖
‖ ⃗𝑥𝑘‖ , = ‖ ⃗𝑦 𝑘+1 − 𝑟(𝑘) ⃗𝑥𝑘‖ since ‖ ⃗𝑥𝑘‖ = 1

is a measure of “relative backward error”.
Thus one could repace the above for loop by a while loop based on a condition like stopping when

‖ ⃗𝑦 𝑘+1 − 𝑟(𝑘) ⃗𝑥𝑘‖ ≤ 𝜖.

Alternatively, keep the for loop, but exit early (with break) if this condition is met.
I generally recommend this for-if-break form for implementing iterative methods, because it makes avoidance of
infinite loops simpler, and avoids the common while loop issue that you do not yet have an error estimate when the loop
starts.

Exercise 2

Modify your code from Exercise 1 to implement this accuracy control.

132 Chapter 3. Linear Algebra and Simultaneous Equations

https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.eigvecs


Introduction to Numerical Methods and Analysis with Julia (draft)

3.9.2 The Inverse Power Method

The next step is to note that if 𝐴 is nonsingular, its inverse 𝐵 = 𝐴−1 has the same eigenvectors, but with eigenvalues
𝜇𝑖 = 1/𝜆𝑖.
Thus we can apply the power method to 𝐵 in order to compute its largest eigenvalue, which is 𝜇𝑛 = 1/𝜆𝑛, along with
the corresponding eigenvector ⃗𝑣𝑛.
The main change to the above is that

⃗𝑦 𝑘+1 = 𝐴−1 ⃗𝑥𝑘.

However, as usual one can (and should) avoid actually computing the inverse. Instead, express the above as the sysem of
equations.

𝐴 ⃗𝑦 𝑘+1 = ⃗𝑥𝑘.

Here is an important case where the LU factorization method can speed things up greatly: a single LU factorization is
needed, after which for each 𝑘 one only has to do the far quicker forward and backward substitution steps: 𝑂(𝑛2) cost
for each iteration instead of 𝑂(𝑛3/3).

Algorithm 3.16 (A basic version of the inverse power method)
Choose initial vector ⃗𝑦0, maybe with a random number generator.
Normalize to ⃗𝑥0 = ⃗𝑦 0/‖ ⃗𝑦 0‖.
Compute an LU factorization 𝐿𝑈 = 𝐴.
for 𝑘 from 0 to 𝑘𝑚𝑎𝑥

Solve 𝐿 ⃗𝑧 𝑘+1 = ⃗𝑥𝑘

Solve 𝑈 ⃗𝑦 𝑘+1 = ⃗𝑧 𝑘+1

𝑟(𝑘) = ⟨ ⃗𝑦 𝑘+1, ⃗𝑥𝑘⟩
⃗𝑥𝑘+1 = ⃗𝑦 𝑘+1/‖ ⃗𝑦 𝑘+1‖

end
(If all goes well) the final values of 𝑟(𝑘) and ⃗𝑥𝑘 approximate 𝜆𝑛 and ⃗𝑣𝑛 respectively.

Exercise 3

Implement this basic algorithm (with a fixed iteration count, as in Example 1), and then create a second version that
imposes an accuracy target (as in Example 2).

3.9.3 Getting other eigenvalues with the Shifted Inverse Power Method

The inverse power method computes the eigenvalue closest to 0; by shifting, we can compute the eigenvalue closest to any
chosen value 𝑠. Then by searching various values of 𝑠, we can hope to find all the eigenvectors. As a variant, once we
have 𝜆1 and 𝜆𝑛, we can search nearby for other large or small eigenvalues: often the few largest and/or the few smallest
are most important.
With a symmetric (or Hermitian) matrix, once the eigenvalue of largest magnitude, 𝜆1 is known, the rest are known to
be real values in the interval [−|𝜆1|, |𝜆1|], so we know roughly where to seek them.

3.9. Computing Eigenvalues and Eigenvectors: the Power Method, and a bit beyond 133



Introduction to Numerical Methods and Analysis with Julia (draft)

The main idea here is that for any number 𝑠, matrix 𝐴 − 𝑠𝐼 has eigenvalues 𝜆𝑖 − 𝑠, with the same eigenvectors as 𝐴:

(𝐴 − 𝑠𝐼) ⃗𝑣𝑖 = (𝜆𝑖 − 𝑠) ⃗𝑣𝑖

Thus, applying the inverse power method to 𝐴 − 𝑠𝐼 computes its largest eigenvalue 𝛾, and then 𝜆 = 1/(𝛾 + 𝑠) is the
eigenvalue of 𝐴 closest to 𝑠.

Exercise 4

As above, implement this, probably sarting with a fixed iteration count version.
For the test case above, some plausible initial choices for the shifts are each if the entries on the main diagonal, and as
above, testing with 𝐴𝑠

3.9.4 Further topics: getting all the eigenvalues with the QR Method, etc.

The above methods are not ideal when many or all of the eigenvalues of a matrix are wanted; then a variety of more
advanced methods have been developed, starting with the QR (factorization) method.
We will not address the details of that method in this course, but one way to think about it for a symmetric matrix is that:

• The eigenvectors are orthogonal.
• Thus, if after computing 𝜆1 and ⃗𝑣1, one uses the power iteration starting with ⃗𝑥0,2 orthogonal to ⃗𝑣1, then all the
new iterates ⃗𝑥𝑘,2 will stay orthogonal, and one will get the eigenvector corresponding to the largest remaining
eigenvector: you get ⃗𝑣2 and 𝜆2.

• Continuing likewise, one can get the eigenvalues in descending order of magnitude.
• As a modification, one can do all these almost in parallel: at iteration 𝑘, have an approximation ⃗𝑥𝑘,𝑖 for each 𝜆𝑖 and
at each stage, got by adjusting these new approximations so that ⃗𝑥𝑘,𝑖 is orthogonal to all the approximations ⃗𝑥𝑘,𝑗,
𝑗 < 𝑖, for all the previous (larger) eigenvalues. This uses a variant of the Gram-Schmidt method for orthogonalizing
a set of vectors.

3.10 Solving Nonlinear Systems of Equations by generalizations of
Newton’s Method — a brief introduction

References:
• Section 2.7 Nonlinear Systems of Equations of [Sauer, 2019]; in particular Sub-section 2.7.1Multivariate Newton’s
Method.

• Chapter 10 Numerical Solution of Nonlinear Systems of Equations of [Burden et al., 2016]; in particular Sections
10.1 and 10.2.

134 Chapter 3. Linear Algebra and Simultaneous Equations

https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process


Introduction to Numerical Methods and Analysis with Julia (draft)

3.10.1 Background

A system of simultaneous nonlinear equations

𝐹(𝑥) = 0, 𝐹 ∶ ℝ𝑛 → ℝ𝑛

can be solved by a variant of Newton’s method.

Remark (Some notation)
For the sake of emphasise analogies between results for vector-valued quantities and what we have already seen for real-
or compex-valued quantities, several notational choices are made in thes notes:

• Using the same notation for vectors as for real or complex numbers (no over arrows or bold face).
• Often denoting the derivative of function 𝑓 as 𝐷𝑓 rather than 𝑓 ′, and higher derivatives as 𝐷𝑝𝑓 rather than 𝑓 (𝑝).
Partial derivatives of 𝑓(𝑥, 𝑦, … ) are 𝐷𝑥𝑓 , 𝐷𝑦𝑓 , etc., and for vector arguments 𝑥 = (𝑥1, … , 𝑥𝑗, … 𝑥𝑛), they
are 𝐷𝑥1

𝑓, … , 𝐷𝑥𝑗
𝑓, … , 𝐷𝑥𝑛

𝑓 , or more concisely, 𝐷1𝑓 … , 𝐷𝑗𝑓, … , 𝐷𝑛𝑓 . (This also fits better with Julia code
notation — even for partial derivatives.)

• Subscripts will mostly be reserved for components of vectors, labelling the terms of a sequence with superscripts,
𝑥(𝑘) and such.

• Explicit division is avoided.
However, I use capital letters for vector-valued functions, for analogy to the use of capital letter for matrices.

Rewriting Newton’s method according to this new style, $𝑥(𝑘+1) = 𝑥(𝑘) − 𝑓(𝑥(𝑘))
𝐷𝑓(𝑥(𝑘))$

or to avoid explicit division and introducing the useful increment 𝛿(𝑘) ∶= 𝑥(𝑘+1) − 𝑥(𝑘),

𝐷𝑓(𝑥(𝑘))(𝛿(𝑘)) = 𝑓(𝑥(𝑘)), 𝑥(𝑘+1) = 𝑥(𝑘) + 𝛿(𝑘).

3.10.2 Newton’s method iteration formula for systems

For vector valued functions, we will see in a while that an analogous result is true:

(𝐷F(𝑥(𝑘))(𝛿(𝑘)) = F(𝑥(𝑘)), 𝑥(𝑘+1) = 𝑥(𝑘) + 𝛿(𝑘)

where 𝐷𝐹(𝑥) is the 𝑛 × 𝑛 matrix of all the partial derivatives (𝐷𝑥𝑗
𝐹𝑖)(𝑥) or (𝐷𝑗𝐹𝑖)(𝑥), where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛).

Justification: linearization for function of several variables

To justify the above result, we need at least a case of Taylor’s Theorem for functions of several variables, for both
𝑓 ∶ ℝ𝑛 → ℝ and 𝐹 ∶ ℝ𝑛 → ℝ𝑛; just for linear approximations. This material from multi-variable calculus will be
reviewed when we need it.
Warning: although mathematically this can be written with matrix inverses as

X(𝑘+1) = X(𝑘) − (𝐷F(X(𝑘))−1(F(X(𝑘)),

evaluation of the inverse is in general about three times slower than solving the linear system, so is best avoided. (We
have seen a good compromise; Solving Ax = b with LU factorization the LU factorization of a matrix.)
Even avoidingmatrix inversion, this involves repeatedly solving systems of𝑛 simultaneous linear equations in𝑛 unknowns,
𝐴𝑥 = 𝑏, where the matrix 𝐴 is 𝐷F(𝑥(𝑘)), and that will be seen to involve about 𝑛3/3 arithmetic operations.

3.10. Solving Nonlinear Systems of Equations by generalizations of Newton’s Method — a brief
introduction

135



Introduction to Numerical Methods and Analysis with Julia (draft)

It also requires computing the new values of these 𝑛2 partial derivatives at each iteration, also potentially with a cost
proportional to 𝑛3.
When 𝑛 is large, as is common with differential equations problems, this factor of 𝑛3 indicates a potentially very large
cost per iteration, so various modifications have been developed to reduce the computational cost of each iteration (with
the trade-off being that more iterations are typically needed): so-called quasi-Newton methods.

136 Chapter 3. Linear Algebra and Simultaneous Equations



CHAPTER

FOUR

POLYNOMIAL COLLOCATION AND APPROXIMATION

References:
• Chapter 3 Interpolation of [Sauer, 2019].
• Chapter 3 Interpolation and Polynomial Approximation of [Burden et al., 2016].
• Chapter 4 of [Kincaid and Chenney, 1990].

4.1 Polynomial Collocation (Interpolation/Extrapolation) and Approx-
imation

References:
• Section 3.1 Data and Interpolating Functions in [Sauer, 2019].
• Section 3.1 Interpolation and the Lagrange Polynomial in [Burden et al., 2016].
• Section 4.1 in [Chenney and Kincaid, 2012].

4.1.1 Introduction

Numerical methods for dealing with functions require describing them, at least approximately, using a finite list of num-
bers, and the most basic approach is to approximate by a polynomial. (Other important choices are rational functions and
“trigonometric polynomials”: sums of multiples of sines and cosines.) Such polynomials can then be used to aproximate
derivatives and integrals.
The simplest idea for approximating 𝑓(𝑥) on domain [𝑎, 𝑏] is to start with a finite collection of node values 𝑥𝑖 ∈ [𝑎, 𝑏],
0 ≤ 𝑖 ≤ 𝑛 and then seek a polynomial 𝑝 which collocates with 𝑓 at those values: 𝑝(𝑥𝑖) = 𝑓(𝑥𝑖) for 0 ≤ 𝑖 ≤ 𝑛. Actually,
we can put the function aside for now, and simply seek a polynomial that passes through a list of points (𝑥𝑖, 𝑦𝑖); later we
will achieve collocation with 𝑓 by choosing 𝑦𝑖 = 𝑓(𝑥𝑖).
In fact there are infinitely many such polynomials: given one, add to it any polynomial with zeros at all of the 𝑛 + 1 notes.
So to make the problem well-posed, we seek the collocating polynomial of lowest degree.

Theorem 4.1 (Existence and uniqueness of a collocating polynomial)
Given 𝑛 + 1 distinct values 𝑥𝑖, 0 ≤ 𝑖 ≤ 𝑛, and corresponding 𝑦-values 𝑦𝑖, there is a unique polynomial 𝑃 of degree at
most 𝑛 with 𝑃(𝑥𝑖) = 𝑦𝑖 for 0 ≤ 𝑖 ≤ 𝑛.
(Note: although the degree is typically 𝑛, it can be less; as an extreme example, if all 𝑦𝑖 are equal to 𝑐, then 𝑃(𝑥) is that
constant 𝑐.)

137



Introduction to Numerical Methods and Analysis with Julia (draft)

Historically there are several methods for finding 𝑃𝑛 and proving its uniqueness, in particular, the divided difference
method introduced by Newton and the Lagrange polynomial method. However for our purposes, and for most modern
needs, a different method is easiest, and it also introduces a strategy that will be of repeated use later in this course: the
Method of Undertermined Coefficients orMUC.
In general, this method starts by assuming that the function wanted is a sum of unknown multiples of a collection of
known functions. Here, 𝑃(𝑥) = 𝑐0 + 𝑐1𝑥 + ⋯ + 𝑐𝑛−1𝑥𝑛−1 + 𝑐𝑛𝑥𝑛 = ∑𝑛

𝑗=0 𝑐𝑗𝑥𝑗.

(Note: any of the 𝑐𝑖 could be zero, including 𝑐𝑛, in which case the degree is less than 𝑛.)
The unknown factors (𝑐0 ⋯ 𝑐𝑛) are the undetermined coefficients.
Next one states the problem as a system of equations for these undetermined coefficients, and solves them.
Here, we have 𝑛 + 1 conditions to be met:

𝑃(𝑥𝑖) =
𝑛

∑
𝑗=0

𝑐𝑗𝑥𝑗
𝑖 = 𝑦𝑖, 0 ≤ 𝑖 ≤ 𝑛

This is a system if 𝑛 + 1 simultaneous linear equations in 𝑛 + 1 unknowns, so the question of existence and uniqueness is
exactly the question of whether the corresponding matrix is singular, and so is equivalent to the case of all 𝑦𝑖 = 0 having
only the solution with all 𝑐𝑖 = 0.
Back in terms of polynomials, this is the claim that the only polynomial of degree at most 𝑛 with zeros 𝑥0 … 𝑥𝑛. And this
is true, because any non-trivial polynomial with those 𝑛 + 1 distinct roots is of degree at least 𝑛 + 1, so the only “degree
n” polynomial fitting this data is 𝑃(𝑥) ≡ 0. The theorem is proven.
The proof of this theorem is completely constructive, and it gives the only numerical method we need.
Briefly, the algorithm is this (indexing from 0 !)

• Create the 𝑛 + 1 × 𝑛 + 1 matrix 𝑉 with elements

𝑣𝑖,𝑗 = 𝑥𝑗
𝑖 , 0 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑗 ≤ 𝑛

and the 𝑛 + 1-element column vector 𝑦 with elements 𝑦𝑖 as above.
• Solve 𝑉 𝑐 = 𝑦 for the vector of coefficients 𝑐𝑗 as above.

I use the name 𝑉 because this is called the Vandermonde Matrix.
Enable graph plotting; PyPlot is an interface to the Python package matplotlib.pyplot
If this does not work in a downloaded notebook, see the instructions in the introduction.

using PyPlot

# A helper function, short-hand for rounding
import Base: round
round(x, n) = Base.round(x, sigdigits=n);

Example 4.1 (Exact fit)
As usual, I concoct a first example with known correct answer, by using a polynomial as 𝑓 :

𝑓(𝑥) = 4 + 7𝑥 − 2𝑥2 − 5𝑥3 + 2𝑥4

using the nodes 𝑥0 = 1, 𝑥1 = 2, 𝑥2 = 0, 𝑥3 = 3.3 and 𝑥4 = 4 (They do not need to be in order.)

138 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

f(x) = 4 + 7x -2x^2 - 5x^3 + 2x^4;

Remark 4.1 (A Julia shorthand for products)
Note the convenient short-hand of writing products by juxtapositon, without *. This works when the first factor is a literal
number, not a variable name.
To avoid ambiguity with the use of dots for vectorization introduced below, avoid ending a floating point number with a
period when it it an integer; for example you can use

f(x) = 4 + 7x ...

or

f(x) = 4 + 7.0x ...

but not

f(x) = 4 + 7.x + ...

xnodes = [1., 2., 0., 3.3, 4.] # They do not need to be in order
println("The x nodes 'x_i' are $(xnodes)")
ynodes = f.(xnodes)
println("The y values at the nodes are $(round.(ynodes, 6))") # Rounded for nicer␣

↪display

The x nodes 'x_i' are [1.0, 2.0, 0.0, 3.3, 4.0]
The y values at the nodes are [6.0, 2.0, 4.0, 62.8192, 192.0]

Remark 4.2 (Vectorizing a Julia function)
Appending the “point” to the function name (so it is f.(...) instead of f(...)) does vectorization: the function f
is applied “pointwise”, to each element of the input array x_nodes in turn, with the results returned in an aray of the
same size and shape.
If there are several arguments, all are vectorized.
See Vectorization of Functions in the Notes on the Julia Language.
We will see this again soon.

The Vandermonde matrix:

nnodes = length(xnodes)
n = nnodes-1
V = zeros(nnodes, nnodes)
for i in 0:n

for j in 0:n
V[i+1,j+1] = xnodes[i+1]^j # Shift the array indices up by one, since Julia␣

↪counts from 1, not 0.
end

end

4.1. Polynomial Collocation (Interpolation/Extrapolation) and Approximation 139



Introduction to Numerical Methods and Analysis with Julia (draft)

Solve, using our functions seen in earlier sections and gathered in Module NumericalMethods

include("NumericalMethods.jl")
using .NumericalMethods: solvelinearsystem, printmatrix

c_A = solvelinearsystem(V, ynodes)
# It helps the visual presentation to round off;
c_A = round.(c_A, 6)
println("The coefficients of P are $c_A")

The coefficients of P are [4.0, 7.0, -2.0, -5.0, 2.0]

These are correct!
To compare the computed values P[i] to what they shoudl be (y_nodes[i]) we use the convenient tool zip for looping
over two or more “parallel” lists of values: zip(x,y) effectively produces a list of pairs [(x[1], y[1]), (x[2],
y[2]) ...) up till one or both arrays runs out of elements, and it also works for three or more lists.
We can also check the resulting values of the polynomial:

P = c_A[1] .+ c_A[2]*xnodes + c_A[3]*xnodes.^2 + c_A[4]*xnodes.^3 + c_A[5]*xnodes.^4;

Remark 4.3 (Vectorizing operators and broadcasting values in Julia)
The period prefix in the exponential notation .^ and the sum notation .+ is vectorization and broadcasting:

• vectorization: a.^b means that if one of a and b are arrays (or both are arrays, of the same shape and size) then
the exponentiation is applied to each element in turn, producing an array of the same size and shape;

• brodcasting of the addition: that first addition is “number plus array”; the notation .+ indicates that this be done
by promoting the number to an array matching the other addend.

Vectorization can also be applied to other binary operations such as multiplication and division.
See the notes on Arithmetic operations on arrays: vectorization and broadcasting in Notes on the Julia Language.

Now we can check the 𝑦 values

Remark 4.4 (Zipping arrays together in Julia)
The function zip takes two or more arrays (preferably of the same size and shape) and turns them into an array with
each element a tuple of values, one from the corresponding position in each input array.
For example, with 1D arrays x and y of length n, zip(x, y) is [ ( x[1], y[1] ), ( x[2], y[2] ) ...
( x[n], y[n] ) ]

for (x, y, P_i) in zip(xnodes, ynodes, P)
println("P($x) should be $(round(y, 6)); it is $(round(P_i, 6))")

end

P(1.0) should be 6.0; it is 6.0
P(2.0) should be 2.0; it is 2.0
P(0.0) should be 4.0; it is 4.0

(continues on next page)

140 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

P(3.3) should be 62.8192; it is 62.8192
P(4.0) should be 192.0; it is 192.0

4.1.2 Functions for computing the coefficients and evaluating the polynomials

We will use this procedure several times, so it time to put it into a functions. The names polyfit and polyval come
from very similar functions that are standard in Python and Matlab.
We also add a pretty printer for polynomials, and import the pretty printer printmatrix for matrices.

function polyfit(x, y)
# Compute the coeffients c_i of the polynomial of lowest degree that collocates␣

↪the points (x[i], y[i]).
# These are returned in an array c of the same length as x and y, even if the␣

↪degree is less than the normal length(x)-1,
# in which case the array has some trailing zeroes.
# The polynomial is thus p(x) = c[1] + c[2]x + ... c[n+1] x^n where n=length(x)-1,

↪ the nominal degree.

nnodes = length(x)
n = nnodes - 1
V = zeros(nnodes, nnodes)
for i in 0:n

for j in 0:n
V[i+1,j+1] = x[i+1]^j # Shift the array indices up by one, since Julia␣

↪counts from 1, not 0.
end

end
c = solvelinearsystem(V, y)
return c

end;

function polyval(x; coeffs) # coeffs has to be a keyword argument in order that only␣
↪x gets vectorized

# Evaluate the polynomial with coefficients in c (as given by polyfit, for␣
↪example).

n = length(coeffs) - 1
powers = collect(0:n) # function collect turns the "AbstractRange" 0:n into an␣

↪array of numbers.
y = sum(coeffs .* x.^powers)
return y

end;

function displaypolynomial(c; sigdigits=6)
# Note that the function "print" does not end by going to a new line as `println`␣

↪does;
# this is useful when you want to create a line of output piece-by-piece, as done␣

↪here.

c = round.(c, sigdigits) # Clean up by rounding to sigdigits significant digits;␣
↪yes, that's vectorization again.

degree=length(c)-1
print("P_$(degree)(x) = ")

(continues on next page)

4.1. Polynomial Collocation (Interpolation/Extrapolation) and Approximation 141



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

print(c[1])
if degree > 0

c_1 = c[2]
if c_1 > 0

print(" + $(c_1)x")
elseif coeff < 0

print(" - $(-c_1) x")
end

end
if degree > 1

for j in 2:degree
c_j = c[j+1]
if c_j > 0

print(" + $(c_j)x^$j")
elseif c_j < 0

print(" - $(-c_j)x^$j")
end
# Note: if c_j=0, there is nothing to say.

end
end
println()

end;

Example 4.2 (𝑓(𝑥) not a polynomial of degree ≤ 𝑛)
Make an exact fit impossible by using the same function but using only four nodes and reducing the degree of the inter-
polating 𝑃 to three: 𝑥0 = 1, 𝑥1 = 2, 𝑥2 = 3 and 𝑥3 = 4

xnodes = [1., 2., 3., 4.];
println("The x nodes 'x_i' are $xnodes")
ynodes = f.(xnodes)
println("The y values at the nodes are $ynodes")
c_B = polyfit(xnodes, ynodes);
displaypolynomial(c_B)

The x nodes 'x_i' are [1.0, 2.0, 3.0, 4.0]
The y values at the nodes are [6.0, 2.0, 34.0, 192.0]
P_3(x) = -44.0 + 107.0x - 72.0x^2 + 15.0x^3

There are several ways to assess the accuracy of this fit; we start graphically, and later consider the maximum and root-
mean-square (RMS) errors.

xplot = range(0.9, 4.1, 100) # for graphing: go a bit beyond the nodes
fplot = f.(xplot);
Pplot = polyval.(xplot, coeffs=c_B);

figure(figsize=[12,6])
plot(xplot, fplot, label="f(x)")
plot(xnodes, ynodes, "*", label="nodes")
plot(xplot, Pplot, label=L"y = $P_3(x)$")
legend()
grid(true);

142 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

Perror = fplot - Pplot
figure(figsize=[12,6])
title(L"Error in $P_3(x)$")
plot(xplot, Perror)
plot(xnodes, zero(xnodes), "*")
grid(true)

Example 4.3 (𝑓(𝑥) not a polynomial at all)
𝑓(𝑥) = 𝑒𝑥 with five nodes, equally spaced from −1 to 1

4.1. Polynomial Collocation (Interpolation/Extrapolation) and Approximation 143



Introduction to Numerical Methods and Analysis with Julia (draft)

g(x) = exp(x)
a_g = -1.0
b_g = 1.0;

degree = 4
n_nodes = degree + 1

xnodes = range(a_g, b_g, n_nodes)
gnodes = g.(xnodes)
c_C = polyfit(xnodes, gnodes)
println("node x values $xnodes")
println("node y values $(round.(gnodes, 4))")
displaypolynomial(c_C, sigdigits=4)

node x values -1.0:0.5:1.0
node y values [0.3679, 0.6065, 1.0, 1.649, 2.718]
P_4(x) = 1.0 + 0.9979x + 0.4996x^2 + 0.1773x^3 + 0.04344x^4

For comparison, the degree 4 Taylor polynomial for 𝑒𝑥 with center 0 is (to the same 6 significant digits)

1 + 𝑥 + 0.5𝑥2 + 0.1667𝑥3 + 0.04167𝑥4

xplot = range(a_g - 0.2, b_g + 0.2, 100) # Go a bit beyond the nodes in each␣
↪direction

gplot = g.(xplot)
Pplot_g = polyval.(xplot, coeffs=c_C);

figure(figsize=[12,6])
plot(xplot, gplot, label=L"y = g(x) = e^x")
plot(xnodes, gnodes, "*", label="nodes")
plot(xplot, Pplot_g, label="y = P(x)")
legend()
grid(true)

144 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

Perror_g = gplot - Pplot_g
figure(figsize=[12,6])
degree = 8
title(L"Error in $P_4(x)$ for $g(x) = e^x$")
plot(xplot, Perror_g)
plot(xnodes, zero(xnodes), "*")
grid(true)

4.2 Error Formulas for Polynomial Collocation

References:
• Section 3.2.1 Interpolation error formula in [Sauer, 2019].
• Section 3.1 Interpolation and the Lagrange Polynomial in [Burden et al., 2016].
• Section 4.2 Errors in Polynomial Interpolation in [Kincaid and Chenney, 1990]..

4.2.1 Introduction

When a polynomial 𝑃𝑛 is given by collocation to 𝑛 + 1 points (𝑥𝑖, 𝑦𝑖), 𝑦𝑖 = 𝑓(𝑥𝑖) on the graph of a function 𝑓 , one can
ask how accurate it is as an approximation of 𝑓 at points 𝑥 other than the nodes: what is the error 𝐸(𝑥) = 𝑓(𝑥) − 𝑃(𝑥)?
As is often the case, the result is motivated by considering the simplest “non-trival case”: 𝑓 a polynomial of degree one
too high for an exact fit, so of degree 𝑛+1. The result is also analogous to the familiar error formula for Taylor polynonial
approximations.

using PyPlot

include("NumericalMethods.jl")
using .NumericalMethods: polyfit, polyval

4.2. Error Formulas for Polynomial Collocation 145



Introduction to Numerical Methods and Analysis with Julia (draft)

4.2.2 Error in 𝑃𝑛(𝑥) collocating a polynomial of degree 𝑛 + 1

With 𝑓(𝑥) = 𝑐𝑛+1𝑥𝑛+1 + 𝑐𝑛𝑥𝑛 + ⋯ + 𝑐0 a polynomial of degree 𝑛 + 1 and 𝑃𝑛(𝑥) the unique polynomial of degree at
most 𝑛 that collocates with it at the 𝑛 + 1 nodes 𝑥0, … 𝑥𝑛, the error

𝐸𝑛(𝑥) = 𝑓(𝑥) − 𝑃(𝑥)

is a polynomial of degree 𝑛 + 1 with all its roots known: the nodes 𝑥𝑖. Thus it can be factorized as

𝐸𝑛(𝑥) = 𝐶(𝑥 − 𝑥0) ⋅ (𝑥 − 𝑥1) ⋯ (𝑥 − 𝑥𝑛) (4.1)
= 𝐶𝑥𝑛+1 + lower powers of 𝑥. (4.2)

On the other hand, the only term of degree 𝑥𝑛+1 in 𝑓(𝑥)−𝑃(𝑥) is the leading term of 𝑓(𝑥), 𝑐𝑛+1𝑥𝑛+1. Thus𝐶 = 𝑐𝑛+1.
It will be convenient to note that the order 𝑛 + 1 derivative of 𝑓 is the constant 𝑓 (𝑛+1)𝐷𝑛+1𝑓(𝑥) = (𝑛 + 1)!𝑐𝑛+1, so the
error can be written as

𝐸𝑛(𝑥) = 𝑓(𝑥) − 𝑃𝑛(𝑥) = 𝐷𝑛+1𝑓(𝑥)
(𝑛 + 1)! (𝑥 − 𝑥0) ⋯ (𝑥 − 𝑥𝑛) = 𝐷𝑛+1𝑓(𝑥)

(𝑛 + 1)!
𝑛

∏
𝑖=0

(𝑥 − 𝑥𝑖). (4.3)

4.2.3 Error in 𝑃𝑛(𝑥) when collocating with a sufficiently differentiable function

Theorem 4.2
For a function 𝑓 with continuous derivative of order 𝑛 + 1 𝐷𝑛+1𝑓 , the polynomial 𝑃𝑛 of degree at most 𝑛 that fits the
points (𝑥𝑖, 𝑓(𝑥𝑖)) 0 ≤ 𝑖 ≤ 𝑛 differs from 𝑓 by

𝐸𝑛(𝑥) = 𝑓(𝑥) − 𝑃𝑛(𝑥) = 𝐷𝑛+1𝑓(𝜉𝑥)
(𝑛 + 1)!

𝑛
∏
𝑖=0

(𝑥 − 𝑥𝑖) (4.4)

for some value of 𝜉𝑥 that is amongst the 𝑛 + 2 points 𝑥0, … 𝑥𝑛 and 𝑥.
In particular, when 𝑎 ≤ 𝑥0 < 𝑥1 ⋯ < 𝑥𝑛 ≤ 𝑏 and 𝑥 ∈ [𝑎, 𝑏], then also 𝜉𝑥 ∈ [𝑎, 𝑏].

Observation 4.1
This is rather similar to the error formula for the Taylor polynomial 𝑝𝑛 with center 𝑥0:

𝑒𝑛(𝑥) = 𝑓(𝑥) − 𝑝𝑛(𝑥) = 𝐷𝑛+1𝑓(𝜉)
(𝑛 + 1)! (𝑥 − 𝑥0)𝑛+1, some 𝜉 between 𝑥0 and 𝑥. (4.5)

This is effectively the limit of Equation (4.4) when all the 𝑥𝑖 congeal to 𝑥0.

4.2.4 Error bound with equally spaced nodes is 𝑂(ℎ𝑛+1), but …

An important special case is when there is a single parameter ℎ describing the spacing of the nodes; when they are the
equally spaced values 𝑥𝑖 = 𝑎 + 𝑖ℎ, 0 ≤ 𝑖 ≤ 𝑛, so that 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏 with ℎ = 𝑏 − 𝑎

𝑛 . Then there is a somewhat
more practically usable error bound:

Theorem 4.3

146 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

For 𝑥 ∈ [𝑎, 𝑏] and the above equaly spaced nodes in that interval [𝑎, 𝑏],

|𝐸𝑛(𝑥)| = |𝑓(𝑥) − 𝑃𝑛(𝑥)| ≤ 𝑀𝑛+1
𝑛 + 1 ℎ𝑛+1, = 𝑂(ℎ𝑛+1), (4.6)

where 𝑀𝑛+1 = max
𝑥∈[𝑎,𝑏]

|𝐷𝑛+1𝑓(𝑥)|.

4.2.5 Possible failure of convergence

A major practical problem with this error bound is that is does not in general guarantee convergence 𝑃𝑛(𝑥) → 𝑓(𝑥) as
𝑛 → ∞ with fixed interval [𝑎, 𝑏], because in some cases 𝑀𝑛+1 grows too fast.
A famous example is the “Witch of Agnesi” (so-called because it was introduced by Maria Agnesi, author of the first
textbook on differential and integral calculus).

agnesi(x) = 1.0/(1 + x^2);

function graph_agnesi_collocation(a, b, n)
figure(figsize=[12, 6])
title("The Witch of Agnesi and collocating polynomial of degree n=$n")
x = range(a, b, 200) # Plot 200 points as some fine detail is needed
y = agnesi.(x)
plot(x, y, label="Witch of Agnesi")
xnodes = range(a, b, n+1)
ynodes = agnesi.(xnodes)
c = polyfit(xnodes, ynodes)
P_n = polyval.(x, coeffs=c)
plot(xnodes, ynodes, "r*", label="Collocation nodes")
plot(x, P_n, label="P_$n(x)")
legend()
grid(true)

figure(figsize=[12, 6])
title("Error curve")
E_n = P_n - y
plot(x, E_n)
grid(true)

end;

Start with 𝑛 = 4, which seems somewhat well-behaved:

graph_agnesi_collocation(-4.0, 4.0, 4)

4.2. Error Formulas for Polynomial Collocation 147



Introduction to Numerical Methods and Analysis with Julia (draft)

Now increase the number of inervals, doubling each time.

graph_agnesi_collocation(-4.0, 4.0, 8)

148 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

The curve fits better in the central part, but gets worse towards the ends!
One hint as to why is to plot the polynomial factor in the error formula above:

function graph_error_formula_polynomial(a, b, n)
figure(figsize=[12, 6])
title("The polynomial factor in the error formula for degree $n")
n_plot_points = 200
x = range(a, b, n_plot_points)
x_nodes = range(a, b, n+1)
polynomial_factor = ones(n_plot_points)
for x_node in x_nodes

polynomial_factor .*= (x .- x_node)
end

(continues on next page)

4.2. Error Formulas for Polynomial Collocation 149



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

plot(x, polynomial_factor)
grid(true)

end;

graph_error_formula_polynomial(-4.0, 4.0, 4)
graph_error_formula_polynomial(-4.0, 4.0, 8)

As n increases, it just gets worse:

graph_agnesi_collocation(-4.0, 4.0, 16)
graph_error_formula_polynomial(-4.0, 4.0, 16)

150 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

4.2. Error Formulas for Polynomial Collocation 151



Introduction to Numerical Methods and Analysis with Julia (draft)

4.2.6 Two solutions: piecewise interpolation and least squares approximation

The approach of least squares approximation is introduced in the next section Least-Squares Fitting to Data; that can
be appropriate when the original data is not exact (due ot measureknet eror in an experiment, for example) so a good
approximation at each node can be more appropriate than exact collocation at each but with implausable behavior between
the nodes.
When instead exact collocation is sought, piecewise interpolation is typically used. This involves collocation with multiple
polynomials of a fixed degree, ech on a prt of the domain. Then for each such polynomial𝑀𝑚+1 in the above error formula
is independnt of the number 𝑁 of nodes and with the nodes on interval [𝑎, 𝑏] at equal spacing ℎ = (𝑏 − 𝑎)/(𝑁 − 1), one
has the convergence result

|𝐸𝑚(𝑥) ≤ 𝑀𝑚+1
𝑚 + 1 ℎ𝑚+1 = 𝑂(ℎ𝑚+1) = 𝑂 ( 1

𝑁𝑚+1 ) , → 0 as 𝑁 → ∞.

This only requires that 𝑓 has a continuous derivatives up to order 𝑚 + 1.
The simplest case of this — quite often used in comuter graphics, including PyPlot.plot— is to divide the domain
into 𝑁 − 1 sub-intervals of equal width separated by nodes 𝑥𝑖 = 𝑎 + 𝑖ℎ, 0 ≤ 𝑖 ≤ 𝑛, and then approximate 𝑓(𝑥) linearly
on each sub-interval by using the two surrounding nodes 𝑥𝑖 and 𝑥𝑖+1 determined by having 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1: this is
piecewise linear interpolation.
This gives the approximating function 𝐿𝑁(𝑥), and the above error formula, now with 𝑚 = 1, says that the worst absolute
error anywhere in the interval [𝑎, 𝑏] is

|𝐸2(𝑥)| = |𝑓(𝑥) − 𝐿𝑁(𝑥)| ≤ 𝑀2
2 ℎ2, 𝑀2 = max

𝑥∈[𝑎,𝑏]
|𝑓″(𝑥)|.

Thus for any 𝑓 that is is twice continuously differentiable the error at each 𝑥-value converges to zero as 𝑁 → ∞. Further,
it is uniform convergence: the maximum error over all points in the domain goes to zero.

152 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

Preview: definite integrals (en route to solving differential equations)

Integrating this piecewise linear approximation over interval [𝑎, 𝑏] gives the Compound Trapezoid Rule approximation of
∫𝑏
𝑎 𝑓(𝑥)𝑑𝑥. As we will soon see, this also has error at worst 𝑂(ℎ2), = 𝑂(1/𝑁2): each doubling of effort reduces errors
by a factor of about four.
Also, you might have heard of Simpson’s Rule for approximating definite integrals (and anyway, you will soon!): that uses
piecewise quadratic interpolation and we will see that this improves the errors to 𝑂(ℎ4), = 𝑂(1/𝑁4): each doubling of
effort reduces errors by a factor of about 16.

Remark 4.5 (Computer graphics and smoother approximating curves)
As mentioned, computer graphics often draws graphs from data points this way, most often with either piecewise linear
or piecewise cubic (𝑚 = 3) approximation.
However, this can give sharp “corners” at the nodes, so many modes are needed to make this visually acceptable. That is
unavoidable with piecewise linear curves, but for higher degrees there are modifications of this strategy that give smoother
curves: piecewise cubics turn out to work very nicely for that, and these are inroduced in the section Piecewise Polynomial
Approximating Functions: Splines and Hermite Cubics.

4.3 Choosing the collocation points: the Chebyshev method

Co-authored with Stephen Roberts of the Australian National University.
References:

• Section 3.1 Data and Interpolating Functions in [Sauer, 2019].
• Section 3.1 Interpolation and the Lagrange Polynomial in [Burden et al., 2016].
• Section 4.2 of [Chenney and Kincaid, 2012].
• Section 6.1 of [Kincaid and Chenney, 1990].

In some situations, one can choose the points 𝑥𝑖 to use in polynomial collocations (these points are also called the nodes)
and a natural objective is to minimise the worst case error over some interval [𝑎, 𝑏] on which the approximation is to
be used. As discussed previously, the best one can do in most cases is to minimise the maximum absolute value of the
polynomial 𝑤𝑛+1(𝑥) ∶= ∏𝑛

𝑖=0(𝑥 − 𝑥𝑖) arising in the error formula.
The intuitive idea of using equally spaced points is not optimal as 𝑤𝑛+1 reaches considerably larger values between the
outermost pairs of nodes than elsewhere. Better intuition suggests that moving the nodes a bit closer in these regions of
large error will reduce the maximum error there while not increasing it too much elsewhere,and reduce the maximum
error. Further it would seem that this strategy is possible so long as the maximum amplitude in some of the intervals
between the nodes is larger than others: the endpoints 𝑎 and 𝑏 need not be nodes so there are 𝑛 + 2 such intervals.
This suggests the conjecture that the smallest possible maximum amplitude of 𝑤𝑛+1(𝑥) on an interval [𝑎, 𝑏] will be
obtained for a set of nodes such that |𝑤𝑛+1(𝑥)| takes it maximum value 𝑛+2 times, once in each of the interval separated
by the nodes. Indeed this is true, and the nodes achieving this result are the so-called Chebyshev points, given by the
simple formula

𝑎 + 𝑏
2 + 𝑏 − 𝑎

2 cos( 2𝑖 + 1
2𝑛 + 2𝜋) , 0 ≤ 𝑖 ≤ 𝑛 (4.7)

To understand this result, consider the case where the interval of interest is [−1, 1], so that these special nodes are
cos ( 2𝑖+1

2𝑛+2 𝜋) The general case then follows by using the change of variables 𝑥 = (𝑎 + 𝑏)/2 + 𝑡(𝑏 − 𝑎)/2. The reason
that this works is that these are the roots of the function

𝑇𝑛+1(𝑥) ∶= cos((𝑛 + 1) cos−1 𝑥) (4.8)

4.3. Choosing the collocation points: the Chebyshev method 153



Introduction to Numerical Methods and Analysis with Julia (draft)

which turns out to be a polynomial of degree 𝑛 + 1 that takes its maximum absolute value of 1 at the 𝑛 + 2 points
cos ( 𝑖

𝑛+1 𝜋) , 0 ≤ 𝑖 ≤ 𝑛 + 1.
There are a number of claims here: most are simple consequences of the definition and what is known about the roots
and extreme values of cosine. The one surprising fact is that 𝑇𝑛(𝑥) is a polynomial of degree 𝑛, known as a Chebyshev
polynomial. The notation comes from an old transliteration, Tchebychev, of this Russian name.
This can be checked by induction. The first few cases are easy to check: 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥 and 𝑇2(𝑥) = cos 2𝜃 =
2 cos2 𝜃 − 1 = 2𝑥2 − 1. In general, let 𝜃 = cos−1 𝑥 so that cos 𝜃 = 𝑥. Then trigonometric identities give

𝑇𝑛+1(𝑥) = cos(𝑛 + 1)𝜃
= cos𝑛𝜃 cos 𝜃 − sin𝑛𝜃 sin 𝜃
= 𝑇𝑛(𝑥)𝑥 − sin𝑛𝜃 sin 𝜃

and similarly

𝑇𝑛−1(𝑥) = cos(𝑛 − 1)𝜃
= cos𝑛𝜃 cos 𝜃 + sin𝑛𝜃 sin 𝜃
= 𝑇𝑛(𝑥)𝑥 + sin𝑛𝜃 sin 𝜃

Thus 𝑇𝑛+1(𝑥) + 𝑇𝑛−1(𝑥) = 2𝑥𝑇𝑛(𝑥) or
𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥) (4.9)

Since 𝑇0 and 𝑇1 are known to be polynomials, the same follows for each successive 𝑛 from this formula. The induction
also shows that

𝑇𝑛(𝑥) = 2𝑛−1𝑥𝑛 + terms involving lower powers of 𝑥
so in particular the degree is 𝑛.
With this information, the error formula can be written in a special form. Firstly 𝑤𝑛+1 is then a polynomial of degree
𝑛 + 1 with the same roots as 𝑇𝑛+1, so is a multiple of the latter function. Secondly, the leading coefficient of 𝑤𝑛+1 is
1, compared to 2𝑛+1 for the Chebyshev polynomial, so 𝑤𝑛+1 = 𝑇𝑛+1/2𝑛. Finally, the maximum of 𝑤𝑛+1 is seen to be
1/2𝑛 and we have the result that

Theorem 4.4
When a polynomial approximation 𝑝(𝑥) to a function 𝑓(𝑥) on the interval [−1, 1] is constructed by collocation at the
roots of 𝑇𝑛+1, the error is bounded by

|𝑓(𝑥) − 𝑝(𝑥)| ≤ 1
2𝑛(𝑛 + 1)! max

−1≤𝑡≤1
|𝑓 (𝑛+1)(𝑡)|

When the interval is [𝑎, 𝑏] and the collocation points are the appropriately rescaled Chebychev points as given in (4.7).

|𝑓(𝑥) − 𝑝(𝑥)| ≤ (𝑏 − 𝑎)𝑛+1

22𝑛+1(𝑛 + 1)! max
𝑎≤𝑥≤𝑏

|𝑓 (𝑛+1)(𝑥)|

This method works well in many cases. Further, it is known that any continuous on any interval [𝑎, 𝑏] can be approximated
arbitrarily well by polynomials, in the sense that the maximum error over the whole interval can be made as small as one
likes [this is theWeierstrass Approximation Theorem]. However, collocation at these Chebyshev nodes will not work for
all continuous functions: indeed no choice of points will work for all cases, as is made precise in theorem 6 on page 288
of Kincaid&Chenney. One way to understand the problem is that the error bound relies on derivatives of ever higher
order, so does not even apply to some continuous functions.
This suggests a new strategy: break the interval [𝑎, 𝑏] into smaller interval, approximate on each interval by a polynomial
of some small degree, and join these polynomials together. Hopefully, the errors will only depend on a few derivatives,
and so will be more controllable, while using enough nodes and small enough intervals will allow the errors to be made
as small as desired. This fruitful idea is dealt with next.

154 Chapter 4. Polynomial Collocation and Approximation

../docs/references.html#Kincaid-Chenney


Introduction to Numerical Methods and Analysis with Julia (draft)

4.4 Piecewise Polynomial Approximating Functions: Splines and
Hermite Cubics

Co-authored with Stephen Roberts of the Australian National University.
References:

• Sections 3.6, 6.2, 6.4 of [Kincaid and Chenney, 1990].
• Section 3.4 Cubic Splines in [Sauer, 2019].
• Sections 3.5 Cubic Spline Interpolation and 3.4 Hermite Interpolation of [Burden et al., 2016].
• Sections 6.1 and 6.2 of Chapter 6 Spline Functions [Chenney and Kincaid, 2012].

The idea of approximating a function (or interpolating between a set of data points) with a function that is piecewise
polynomial takes its simplest form using continuous piecewise linear functions. Indeed, this is the method most commonly
used to produce a graph from a large set of data points: for example, the command plot from matplotlib.pyplot
(for Python) or PyPlot (for Julia) does it.
The idea is simply to draw straight lines between each successive data point. It is worth analysing this simple method
before considering more accurate approaches.
Consider a set of 𝑛 + 1 points (𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) again, this time requiring the 𝑥 values to be in increasing
order. Then define the linear functions

𝐿𝑖(𝑥) = 𝑦𝑖 + (𝑥 − 𝑥𝑖)
𝑦𝑖+1 − 𝑦𝑖
𝑥𝑖+1 − 𝑥𝑖

, 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1, 0 ≤ 𝑖 < 𝑛

These can be joined together into a continuous function

𝐿(𝑥) = 𝐿𝑖(𝑥) for 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

with the values 𝐿(𝑥𝑖) = 𝑦𝑖 at all nodes, so that the definition is consistent at the points where the domains join, also
guaranteeing continuity.

4.4.1 Spline Interpolation

Reference: Section 6.4 of [Kincaid and Chenney, 1990].
If a piecewise linear approximation is approximated that passes through a given set of 𝑛 + 1 points or knots

(𝑡0, 𝑦0), … , (𝑡𝑛, 𝑦𝑛)

and is linear in each of the 𝑛 interval between them, the “smoothest” curve that one can get is the continuous one given
by using linear interpolation between each consecutive pair of points. Less smooth functions are possible, for example
the piecewise constant approximation where 𝐿(𝑥) = 𝑦𝑖 for 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1.
The general strategy of spline interpolation is to approximate with a piecewise polynomial function, with some fixed
degree 𝑘 for the polynomials, and is as smooth as possible at the joins between different polynomials. Smoothness is
measured by the number of continuous derivatives that the function has, which is only in question at the knots of course.
The traditional and most important case is that of cubic splines interpolants, which have the form

𝑆(𝑥) = 𝑆𝑖(𝑥), 𝑡𝑖 ≤ 𝑥 ≤ 𝑡𝑖+1, 0 ≤ 𝑖 < 𝑛

where each 𝑆𝑖(𝑥) is a cubic and the interpolation conditions are

𝑆𝑖(𝑡𝑖) = 𝑦𝑖, 𝑆𝑖(𝑡𝑖+1) = 𝑦𝑖+1, 0 ≤ 𝑖 < 𝑛

4.4. Piecewise Polynomial Approximating Functions: Splines and Hermite Cubics 155



Introduction to Numerical Methods and Analysis with Julia (draft)

These conditions automatically give continuity, but leave many degrees of freedom to impose more smoothness. Each
cubic is described by four coefficients and so there are 4𝑛 in all, and the interpolation conditions give only 2𝑛 conditions.
There are 𝑛 − 1 knots where different cubics join, so requiring 𝑆 to have continuous first and second derivatives imposes
2(𝑛 − 1) further conditions for a total of 4𝑛 − 2. This is the best smoothness possible without 𝑆(𝑥) becoming a single
cubic, and leaves two degrees of freedom. These will be dealt with later, but one approach is imposing zero second
derivatives at each end of the interval.
Thus we have the equations

𝑆′
𝑖−1(𝑡𝑖) = 𝑆′(𝑡𝑖)

and

𝑆′′
𝑖−1(𝑡𝑖) = 𝑆′′(𝑡𝑖),

1 ≤ 𝑖 ≤ 𝑛 − 1.
The brute force method would be to write something like

𝑆𝑖(𝑥) = 𝑎𝑖𝑥3 + 𝑏𝑖𝑥2 + 𝑐𝑖𝑥 + 𝑑𝑖

which would leave to a set of 4𝑛 simultaneous linear equations for these 4𝑛 unknowns once the two missing conditions
have been chosen.
This could then be solved numerically, but the size and cost of the problem can be considerably reduced, to a tridiagonal
system of 𝑛 − 1 equations.
Start by considering the second derivative of 𝑆(𝑥), which must be continuous and piecewise linear. Its values at the knots
can be called 𝑥𝑖 = 𝑆′′

𝑖 (𝑡𝑖) and the lengths of the interval called ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖 so that

𝑆′′
𝑖 (𝑥) = 𝑧𝑖

ℎ𝑖
(𝑡𝑖+1 − 𝑥) + 𝑧𝑖+1

ℎ𝑖
(𝑥 − 𝑡𝑖)

Integrating twice,

𝑆𝑖(𝑥) = 𝑧𝑖
6ℎ𝑖

(𝑡𝑖+1 − 𝑥)3 + 𝑧𝑖+1
6ℎ𝑖

(𝑥 − 𝑡𝑖)3 + 𝐶𝑖(𝑡𝑖+1 − 𝑥) + 𝐷𝑖(𝑥 − 𝑡𝑖)

The interpolation conditions then determine 𝐶𝑖 and 𝐷𝑖:

𝑆𝑖(𝑥) = 𝑧𝑖
6ℎ𝑖

(𝑡𝑖+1 − 𝑥)3 + 𝑧𝑖+1
6ℎ𝑖

(𝑥 − 𝑡𝑖)3 + ( 𝑦𝑖
ℎ𝑖

− 𝑧𝑖ℎ𝑖
6 ) (𝑡𝑖+1 − 𝑥) + (𝑦𝑖+1

ℎ𝑖
− 𝑧𝑖+1ℎ𝑖

6 ) (𝑥 − 𝑡𝑖) (4.10)

In effect, three quarters of the equations have been solved explicitly, leaving only the 𝑧𝑖 to be determined using the
remaining condition of the continuity of 𝑆′(𝑥).
Differentiating the above expression and evaluating at the appropriate points gives the expressions

𝑆′
𝑖(𝑡𝑖) = −ℎ𝑖

3 𝑧𝑖 − ℎ𝑖
6 𝑧𝑖+1 − 𝑦𝑖

ℎ𝑖
+ 𝑦𝑖+1

ℎ𝑖
(4.11)

𝑆′
𝑖−1(𝑡𝑖) = −ℎ𝑖−1

6 𝑧𝑖−1 + ℎ𝑖−1
3 𝑧𝑖 − 𝑦𝑖−1

ℎ𝑖−1
+ 𝑦𝑖

ℎ𝑖−1
(4.12)

Equating these at the internal knots (and simplifying a bit) gives

ℎ𝑖−1𝑧𝑖−1 + 2(ℎ𝑖 + ℎ𝑖−1)𝑧𝑖 + ℎ𝑖𝑧𝑖+1 = 6
ℎ𝑖

(𝑦𝑖+1 − 𝑦𝑖) − 6
ℎ𝑖−1

(𝑦𝑖 − 𝑦𝑖−1) (4.13)

These are 𝑛−1 linear equations in the 𝑛+1 unknowns 𝑧𝑖, so various different cubic spline interpolants can be constructed
by adding two extra conditions in the form of two more linear equations. The traditional way is the one mentioned above:
require the second derivative to vanish at the two endpoints. That is

𝑆′′(𝑡0) = 𝑆′′(𝑡𝑛) = 0

156 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

which gives a natural spline.
In terms of the 𝑧𝑖 this gives the trivial equations 𝑧0 = 𝑧𝑛 = 0. Thus these two unknowns can be eliminated from the
equations in (4.13) giving the following tridiagonal system:

⎡
⎢⎢
⎣

2(ℎ0 + ℎ1) ℎ1
ℎ1 2(ℎ1 + ℎ2) ⋱

⋱ ⋱ ℎ𝑛−2
ℎ𝑛−2 2(ℎ𝑛−2 + ℎ𝑛−1)

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑧1
𝑧2
⋮

𝑧𝑛−1

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

6((𝑦2 − 𝑦1)/ℎ1 − (𝑦1 − 𝑦0)/ℎ0)
6((𝑦3 − 𝑦2)/ℎ2 − (𝑦2 − 𝑦1)/ℎ1)

⋮
6((𝑦𝑛 − 𝑦𝑛−1)/ℎ𝑛−1 − (𝑦𝑛−1 − 𝑦𝑛−2)/ℎ𝑛−2))

⎤
⎥⎥
⎦

Solving tridiagonal systems is far more efficient if it can be done without pivoting by the method seen earlier, and this is
a good method if the matrix is diagonally dominant.
That is true here: recalling that the 𝑡𝑖 are in increasing order, each ℎ𝑖 is positive, so each diagonal element is at least twice
the sum of the absolute values of all other elements in the same row. This result incidentally also shows that the equations
have a unique solution, which means that the natural cubic spline exists and is determined uniquely by the data, requiring
about 𝑂(𝑛) operations.
Evaluation of 𝑆(𝑥) is then done by finding the 𝑖 such that 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1 and then evaluating the appropriate case in
(4.10).

4.4.2 Clamped Splines and Error Bounds

Reference: Section 3.6 of [Kincaid and Chenney, 1990].
Though the algorithm for natural cubic spline interpolation is widely available in software [TO DO: add Numpy/Julia
references] it is worth knowing the details. In particular, it is then easy to consider minor changes, like different conditions
at the end points.
Recall that the natural or free spline has the boundary conditions

𝑆′′(𝑡0) = 𝑆′′(𝑡𝑛) = 0 (4.14)

When the spline is to be used to approximate a function 𝑓(𝑥) one useful alternative choice of boundary conditions is to
specify the derivative of the spline function to match that of 𝑓 at the endpoints:

𝑆′(𝑡0) = 𝑓 ′(𝑡0), 𝑆′(𝑡𝑛) = 𝑓 ′(𝑡𝑛) (4.15)

This is called a clamped spline.
When the function 𝑓 or its derivatives are not known, they can be approximated from the data itself. Thus a generalisation
of the last condition is

𝑆′(𝑡0) = 𝑑0, 𝑆′(𝑡𝑛) = 𝑑𝑛 (4.16)

for some approximations of the derivatives.
The subject of approximating a function’s derivative using a finite collection of values of the function will be taken up
soon in more detail, but the simplest approach is to use the difference quotient from the definition of the derivative. This
gives

𝑑0 ∶= 𝑦1 − 𝑦0
ℎ0

= 𝑓(𝑡1) − 𝑓(𝑡0)
𝑡1 − 𝑡0

𝑑𝑛 ∶= 𝑦𝑛 − 𝑦𝑛−1
ℎ𝑛−1

= 𝑓(𝑡𝑛) − 𝑓(𝑡𝑛−1)
𝑡𝑛 − 𝑡𝑛−1

4.4. Piecewise Polynomial Approximating Functions: Splines and Hermite Cubics 157



Introduction to Numerical Methods and Analysis with Julia (draft)

as one choice for the approximate derivatives.
The cubic splines given by using some such approximate derivatives will be calledmodified clamped spline.
These new conditions require a revision of the previous algorithm, but one benefit is that there is a better result guaranteeing
the accuracy of the approximation.
To derive the new equations and algorithm for [modified] clamped splines return to the equations (4.11) and (4.12) used
to derive the equation (4.13) that defines the tridiagonal system of 𝑛−1 equations for the second derivatives 𝑧1, … , 𝑧𝑛−1.
Instead of eliminating the two unknowns 𝑧0 and 𝑧𝑛, we can add two more linear equations by using those equations (4.11)
and (4.12) respectively at 𝑡0 and 𝑡𝑛 [i.e. for 𝑖 = 0 and 𝑖 = 𝑛] and equating to the values to whatever 𝑑0 and 𝑑𝑛 we are
using:

𝑆′(𝑡0) = 𝑆′
0(𝑡0)

= −ℎ0
3 𝑧0 − ℎ0

6 𝑧1 − 𝑦0
ℎ0

+ 𝑦1
ℎ0

= 𝑑0
𝑆′(𝑡𝑛) = 𝑆′

𝑛−1(𝑡𝑛)

= ℎ𝑛−1
6 𝑧𝑛−1 + ℎ𝑛−1

3 𝑧𝑛 − 𝑦𝑛−1
ℎ𝑛−1

+ 𝑦𝑛
ℎ𝑛−1

= 𝑑𝑛

In conjunction with equation (4.13), this gives the new tridiagonal system

⎡
⎢
⎢
⎢
⎣

2ℎ0 ℎ0
ℎ0 2(ℎ0 + ℎ1) ℎ1

⋱ ⋱ ⋱
ℎ𝑛−2 2(ℎ𝑛−2 + ℎ𝑛−1) ℎ𝑛−1

ℎ𝑛−1 2ℎ𝑛−1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑧0
𝑧1
⋮

𝑧𝑛−1
𝑧𝑛

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

6 ((𝑦1 − 𝑦0)/ℎ0 − 𝑑0)
6((𝑦2 − 𝑦1)/ℎ1 − (𝑦1 − 𝑦0)/ℎ1)

⋮
6((𝑦𝑛 − 𝑦𝑛−1)/ℎ𝑛−1 − (𝑦𝑛−1 − 𝑦𝑛−2)/ℎ𝑛−2)

6 (𝑑𝑛 − (𝑦𝑛 − 𝑦𝑛−1)/ℎ𝑛−1)

⎤
⎥
⎥
⎥
⎦

As in the case of the tridiagonal system for natural splines, the rows of the matrix also satisfy the condition of diagonal
dominance, so again this system has a unique solution that can be computed accurately with only 𝑂(𝑛) operations and no
pivoting.

4.4.3 Error Bounds for Approximation with Clamped Splines

If the exact derivatives mentioned in (4.15) are available, the errors are bounded as follows

Theorem 4.5
Suppose that 𝑓(𝑥) is four times continuously differentiable on the interval [𝑎, 𝑏], with max𝑎≤𝑥≤𝑏 |𝑓 (4)(𝑥)| ≤ 𝑀 . Then
the clamped cubic spline approximation 𝑆(𝑥) using the points 𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑏 and 𝑦𝑖 = 𝑓(𝑡𝑖) satisfies

|𝑓(𝑥) − 𝑆(𝑥)| ≤ 𝑀 5
384 ( max

0≤𝑖≤𝑛−1
ℎ𝑖)

4

for every point 𝑥 ∈ [𝑎, 𝑏].

158 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

There is also an error bound of the same “fourth order” form for the natural cubic spline- that is, one of the form of some
constant depending on 𝑓 times the fourth power of max0≤𝑖≤𝑛−1 ℎ𝑖. However it is far more complicated to describe: see
page 138 of Burden and Faires for more comments on this.
When we have studied methods for approximating derivatives, it will be possible to establish error bounds for modified
clamped splines with various approximations for the derivatives at the endpoints, so that they depend only on the values
of 𝑓 at the knots. With care, these more practical approximations can also be made fourth order accurate.

4.4.4 Hermite Cubic Approximation

Reference: Section 6.2 of [Kincaid and Chenney, 1990].
Hermite interpolation in general consists in finding a polynomial 𝐻(𝑥) to approximate a function 𝑓(𝑥) by giving a set
of points 𝑡0, … , 𝑡𝑛 and requiring that the value of the polynomial and its first few derivatives match that of the original
function.
The simplest case that is not simply polynomial interpolation or Taylor polynomial approximation is where there are two
points, and first derivatives are required to match. This gives four conditions

𝐻(𝑡0) = 𝑓(𝑡0) = 𝑦0, 𝐻′(𝑡0) = 𝑓 ′(𝑡0) = 𝑦′
0

𝐻(𝑡1) = 𝑓(𝑡1) = 𝑦1, 𝐻′(𝑡1) = 𝑓 ′(𝑡1) = 𝑦′
0

and counting constants suggests that there should be a unique cubic ℎ with these properties. From now on, I will use
“cubic” to include the degenerate cases that are actually quadratics and so on.
To determine this cubic it is convenient to put it in the form

𝐻(𝑥) = 𝑎 + 𝑏(𝑥 − 𝑡0) + (𝑥 − 𝑡0)2[𝑐 + 𝑑(𝑥 − 𝑡𝑖+1)]

and let ℎ = 𝑡1 − 𝑡0: then applying the four conditions in turn gives

𝑎 = 𝑦0, 𝑏 = 𝑦′
0

𝑐 = 𝑦1 − 𝑦0
ℎ2 − 𝑦′

0
ℎ , 𝑑 = 𝑦′

1 − 𝑦′
0

3ℎ2 − 2(𝑦1 − 𝑦0)
3ℎ3

With more points, one could look for higher order polynomials, but it is useful in some cases to construct a piecewise
cubic approximation, with the cubic between each consecutive pair of nodes determined only by the value of the function
and its derivative at those nodes. Thus the piecewise Hermite cubic approximation to 𝑓 on the interval [𝑎, 𝑏] for the points
𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 is given by a set of 𝑛 cubics

𝐻(𝑥) = 𝐻𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑡𝑖) + (𝑥 − 𝑡𝑖)2[𝑐𝑖 + 𝑑𝑖(𝑥 − 𝑡𝑖+1)], 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1

with

𝑎𝑖 = 𝑦𝑖, 𝑏𝑖 = 𝑦′
𝑖

𝑐𝑖 = 𝑦𝑖+1 − 𝑦𝑖
ℎ2

𝑖
− 𝑦′

𝑖
ℎ𝑖

𝑑𝑖 = 𝑦′
𝑖+1 − 𝑦′

𝑖
3ℎ2

𝑖
− 2(𝑦𝑖+1 − 𝑦𝑖)

3ℎ3
𝑖

where 𝑦𝑖 ∶= 𝑓(𝑡𝑖), 𝑦′
𝑖 ∶= 𝑓 ′(𝑡𝑖) and ℎ𝑖 ∶= 𝑡𝑖+1 − 𝑡𝑖. Most often, the points are equally spaced so that

ℎ𝑖 − ℎ ∶= (𝑏 − 𝑎)/𝑛.

There is an error formula for this (which is also an error formula for a clamped spline in the case 𝑛 = 1)

Theorem 4.6

4.4. Piecewise Polynomial Approximating Functions: Splines and Hermite Cubics 159

../doc/references.html#Burden-Faires


Introduction to Numerical Methods and Analysis with Julia (draft)

For 𝑥 ∈ [𝑡𝑡, 𝑡𝑖+1]

𝑓(𝑥) − 𝐻(𝑥) = 𝑓 (4)(𝜉)
4! [(𝑥 − 𝑡𝑖)(𝑥 − 𝑡𝑖+1)]2

where 𝜉 ∈ [𝑡𝑡, 𝑡𝑖+1] Thus if |𝑓 (4)(𝑥)| ≤ 𝑀𝑖 for 𝑥 ∈ [𝑡𝑡, 𝑡𝑖+1],

|𝑓(𝑥) − 𝐻(𝑥)| ≤ 𝑀𝑖
384ℎ4

𝑖

Proof. See page 311 of [Kincaid and Chenney, 1990].

Thus the accuracy is about as good as for clamped splines: the trade off is that the Hermite approximation is less smooth
(only one continuous derivative at the nodes), but the error is “localised”. That is, if the fourth derivative of 𝑓 is large or
non-existent in one interval, the accuracy of the Hermite approximation only suffers in that interval, not over the whole
domain.
However this comparison is a bit unfair, as the Hermite approximation uses the extra information about the derivatives
of 𝑓 . This is also often impractical: either the derivatives are not known, or there is no known function 𝑓 but only a
collection of values 𝑦𝑖.
To overcome this problem, the derivatives needed in the above formulas can be approximated from the 𝑦𝑖 as was done for
modified clamped splines. To do this properly, it is worth taking a thorough look at methods for approximating derivatives
and bounding the accuracy of such approximations.

4.5 Least-Squares Fitting to Data

References:
• Chapter 4 Least Squares of [Sauer, 2019], sections 1 and 2.
• Section 8.1 Discrete Least Squares Approximation of [Burden et al., 2016].

We have seen that when trying to fit a curve to a large collection of data points, fitting a single polynomial to all of them
can be a bad approach. This is even more so if the data itself is inaccurate, due for example to measurement error.
Thus an important approach is to find a function of some simple form that is close to the given points but not necesarily
fitting them exactly: given 𝑁 points

(𝑥𝑖, 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑁

we seek a function 𝑓(𝑥) so that the errors at each point,

𝑒𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖),

are “small” overall, in some sense.
Two important choices for the function 𝑓(𝑥) are
(a) polynomials of low degree, and
(b) periodic sinusidal functions;
we will start with the simplest case of fitting a straight line.

160 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

4.5.1 Measuring “goodness of fit”: several options

The first decision to be made is how to measure the overall error in the fit, since the error is now a vector of values
𝑒 = {𝑒𝑖}, not a single number. Two approaches are widely used:

• Min-Max: minimize the maximum of the absolute errors at each point, ‖𝑒‖𝑚𝑎𝑥 or ‖𝑒‖∞, = max
1≤𝑖≤𝑛

|𝑒𝑖|

• Least Squares: Minimize the sum of the squares of the errors,
𝑛

∑
1

𝑒2
𝑖

4.5.2 What doesn’t work

Another seemingly natural approach is:

• Minimize the sum of the absolute errors, ‖𝑒‖1 =
𝑛

∑
1

|𝑒𝑖|

but this often fails completely. In the following example, all three lines minimize this measure of error, along with
infinitely many others: any line that passes below half of the points and above the other half.

using PyPlot
using LinearAlgebra
using Random

include("NumericalMethods.jl")
using .NumericalMethods: solvelinearsystem, polyval

Remark 4.6
This original version of polyfit seen at Functions for computing the coefficients and evaluating the polynomials in
the section Polynomial Collocation (Interpolation/Extrapolation) and Approximation is not used here; instead a variant is
defined below that is closer to the eponymous functions in Matlab and in Python package Numpy. Julia allows the reuse
a function’s name so long as the different functions are distinguished by different input parameters, a Julia feature known
as multiple dispatch.
However, when one version comes from a module, we must use import rather than using. (All other cases of using
.NumericalMethods in this book could also be import .NumericalMethods.)

import .NumericalMethods: polyfit

xdata = [1., 2., 3., 4.]
ydata = [0., 3., 2., 5.]
figure(figsize=[12,6])

plot(xdata, ydata, "b*", label="Data")
nplotpoints = 100
xplot = range(0., 5.0, nplotpoints)
ylow = xplot .- 0.5
yhigh = xplot .+ 0.5
yflat = 2.5*ones(nplotpoints)
plot(xplot, ylow, label="low")
plot(xplot, yhigh, label="high")

(continues on next page)

4.5. Least-Squares Fitting to Data 161



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

plot(xplot, yflat, label="flat")
legend(loc="best");

The Min-Max method is important and useful, but computationally difficult. One hint is the presence of absolute values
in the formula, which get in the way of using calculus to get equations for the minimum.
Thus the easiest and most common approach is Least Squares, or equivalently, minimizing the root-mean-square error,
which is just the Euclidean length ‖𝑒‖2 of the error vector 𝑒. That “geometrical” interpretation of the goal can be useful.
So we start with that.

4.5.3 Linear least squares

The simplest approach is to seek the straight line 𝑦 = 𝑓(𝑥) = 𝑐0 + 𝑐1𝑥 that minimizes the total square sum error,

𝐸(𝑐0, 𝑐1) = ∑
𝑖

𝑒2
𝑖 = ∑

𝑖
(𝑐0 + 𝑐1𝑥𝑖 − 𝑦𝑖)2.

Note well that the unknowns here are just the two values 𝑐0 and 𝑐1, and 𝐸 is s fairly simple polynomial function of them.
The minimum error must occur at a critical point of this function, where both partial derivatives are zero:

𝜕𝐸
𝜕𝑐0

= 2 ∑
𝑖

(𝑐0 + 𝑐1𝑥𝑖 − 𝑦𝑖) = 0,

𝜕𝐸
𝜕𝑐1

= 2 ∑
𝑖

(𝑐0 + 𝑐1𝑥𝑖 − 𝑦𝑖)𝑥𝑖 = 0.

These are just simultaneous linear equations, which is the secret of why the least squares approach is so much easier than
any alternative. The equations are:

[ ∑𝑖 1 ∑𝑖 𝑥𝑖
∑𝑖 𝑥𝑖 ∑𝑖 𝑥2

𝑖
] [ 𝑐0

𝑐1
] = [ ∑𝑖 𝑦𝑖

∑𝑖 𝑥𝑖𝑦𝑖
]

where of course ∑𝑖 1 is just 𝑁 .

162 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

It will help later to introduce the notation

𝑚𝑗 = ∑
𝑖

𝑥𝑗
𝑖 , 𝑝𝑗 = ∑

𝑖
𝑥𝑗

𝑖𝑦𝑖

so that the equations are

𝑀𝑐 = 𝑝

with

𝑀 = [ 𝑚0 𝑚1
𝑚1 𝑚2

] , 𝑝 = [ 𝑝0
𝑝1

] , 𝑐 = [ 𝑐0
𝑐1

] .

Remark 4.7 (Alternative geometrical derivation)
In the next section Least-squares Fitting to Data: Appendix on The Geometrical Approach, another way to derive this result
is given, using geometry and linear algebra instead of calculus.

function linefit(x, y)
m0 = length(x)
m1 = sum(x)
m2 = sum(x.^2)
M = [ m0 m1 ; m1 m2 ]
p = [ sum(y); sum(x.*y) ]
return solvelinearsystem(M, p)

end;

N = 10
xmin = -1.0
xmax = 1.0
x = range(xmin, xmax, N)
# Emulate a straight line with measurement errors:
# random(N) gives N values uniformly distributed in the range [0,1], and so with mean␣

↪0.5.
# Thus subtracting 1/2 simulates more symmetric "errors", of mean zero.
yline = 3 .+ 2x
y = yline + (rand(N) .- 0.5)

figure(figsize=[12,6])
plot(x, yline, "g", label="The original line")
plot(x, y, "*", label="Data")
c = linefit(x, y)
print("The coefficients are $c")
xplot = range(xmin, xmax, 100)
plot(xplot, polyval.(xplot, coeffs=c), "r", label="Linear least squares fit")
legend(loc="best");

The coefficients are [3.028889515396512, 2.395702991142943]

4.5. Least-Squares Fitting to Data 163



Introduction to Numerical Methods and Analysis with Julia (draft)

4.5.4 Least squares fiting to higher degree polynomials

The method above extends to finding a polynomial

𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + ⋯ + 𝑐𝑛𝑥𝑛

that gives the best least squares fit to data

(𝑥1, 𝑦1), … (𝑥𝑁 , 𝑦𝑁)

in that the coefficients 𝑐𝑘 given the minimum of

𝐸(𝑐0, … 𝑐𝑛) = ∑
𝑖

(𝑝(𝑥𝑖) − 𝑦𝑖)2 = ∑
𝑖

(𝑦𝑖 − ∑
𝑘

𝑐𝑘𝑥𝑘
𝑖 )

2

Note that when 𝑁 = 𝑛 + 1, the solution is the interpolating polynomial, with error zero.
The necessary conditions for a minimum are that all 𝑛 + 1 partial derivatives of 𝐸 are zero:

𝜕𝐸
𝜕𝑐𝑗

= 2 ∑
𝑖

(𝑦𝑖 − ∑
𝑘

𝑐𝑘𝑥𝑘
𝑖 ) 𝑥𝑗

𝑖 = 0, 0 ≤ 𝑗 ≤ 𝑛.

This gives

∑
𝑖

∑
𝑘

(𝑐𝑘𝑥𝑗+𝑘
𝑖 ) = ∑

𝑘
(∑

𝑖
𝑥𝑗+𝑘

𝑖 ) 𝑐𝑘 = ∑
𝑖

𝑦𝑖𝑥𝑗
𝑖 , 0 ≤ 𝑗 ≤ 𝑛,

or with the notation 𝑚𝑘 = ∑𝑖 𝑥𝑘
𝑖 , 𝑝𝑘 = ∑𝑖 𝑥𝑘

𝑖 𝑦𝑖 introduced above,

∑
𝑘

𝑚𝑗+𝑘𝑐𝑘 = 𝑝𝑗, 0 ≤ 𝑗 ≤ 𝑛.

164 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

That is, the equations are again 𝑀𝑐 = 𝑝, but now with

𝑀 =
⎡
⎢⎢
⎣

𝑚0 𝑚1 … 𝑚𝑛
𝑚1 𝑚2 … 𝑚𝑛+1
⋮ ⋮ ⋱ ⋮

𝑚𝑛 𝑚𝑛+1 … 𝑚2𝑛

⎤
⎥⎥
⎦

, 𝑝 =
⎡
⎢⎢
⎣

𝑝0
𝑝1
⋮

𝑝𝑛

⎤
⎥⎥
⎦

, 𝑐 =
⎡
⎢⎢
⎣

𝑐0
𝑐1
⋮

𝑐𝑛

⎤
⎥⎥
⎦

.

This is done by a variation of polyfit with a third argument n specfying the degree of the polynomial sought:
polyfit(x, y, n).

Remark 4.8 (Multiple dispatch in Julia)
Asmentioned above, Julia allows the following version of polyfit to coexist with the version at Functions for computing
the coefficients and evaluating the polynomials, which is imported above; they are distinguished by the input arguments
being (x, y) in one case, (x, y, n) in the other.

function polyfit(x, y, n)
# Version 2: least squares fitting.
# Compute the coeffients c_i of the polynomial of degree n that give the best␣

↪least squares fit to data (x[i], y[i]).

N = length(x)
m = zeros(2n+1)
for k in 0:2n

m[k+1] = sum(x.^k) # Here and below, shift the indices up by one, since␣
↪Julia counts from 1, not 0.

end
M = zeros(n+1,n+1)
for i in 0:n

for j in 0:n
M[i+1, j+1] = m[i+j+1]

end
end
p = zeros(n+1)
for k in 0:n

p[k+1] = sum(x.^k .* y)
end
c = solvelinearsystem(M, p)
return c

end;

This time, let us look at extrapolation too: values beyond the interval containing the data, and try all degrees up to three:

N = 10
n = 3
xdata = range(0.0, pi/2, N)
ydata = sin.(xdata)
for n in 0:3

figure(figsize=[12,4])
plot(xdata, ydata, "b*", label="sin(x) data")
xplot = range(-0.5, pi/2 + 0.5, 100)
plot(xplot, sin.(xplot), "b", label="sin(x) curve")
c = polyfit(xdata, ydata, n)
println("For degree $n the coefficients are ", c)
plot(xplot, polyval.(xplot, coeffs=c), "r", label="Degree $n least squares fit")
legend(loc="best")

(continues on next page)

4.5. Least-Squares Fitting to Data 165



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

# Errors:
figure(figsize=[12,3])
plot(xplot, sin.(xplot) - polyval.(xplot, coeffs=c))
title("errors fitting to degree $n at N = 10 points")
grid(true)

end

For degree 0 the coefficients are [0.621502615138067]
For degree 1 the coefficients are [0.10638045715159698, 0.6558739019176877]
For degree 2 the coefficients are [-0.016265239454253864, 1.182904961239479, -0.

↪335518393016084]
For degree 3 the coefficients are [-0.0010872800198948873, 1.023817333884883, -0.

↪06859177724109337, -0.11328717424901459]

166 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

4.5. Least-Squares Fitting to Data 167



Introduction to Numerical Methods and Analysis with Julia (draft)

What if we fit at more points?

N = 50
xdata = range(0.0, pi/2, N)
ydata = sin.(xdata)

figure(figsize=[12,4])
plot(xdata, ydata, "b.", label="sin(x) data")
plot(xplot, sin.(xplot), "b", label="sin(x) curve")
c = polyfit(xdata, ydata, n)
print("The coefficients are ", c)
plot(xplot, polyval.(xplot, coeffs=c), "r", label="Cubic least squares fit")
legend(loc="best")
grid(true)
# Errors:
figure(figsize=[12,3])
plot(xplot, sin.(xplot) - polyval.(xplot, coeffs=c))
title("errors fitting at N = 50 points")
grid(true)

The coefficients are [-0.002007892581016861, 1.0264756845620808, -0.
↪06970463260725364, -0.11371819516982211]

168 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

Not much changes!
This hints at another use of least squares fitting: fitting a simpler curve (like a cubic) to a function (like sin(𝑥)), rather
than to discrete data; this is essentialy given by the limit as the number of fitting points goes to infinity.

4.5.5 Nonlinear fitting: power-law relationships

When data (𝑥𝑖, 𝑦𝑖) is inherently positive, it is often natural to seek an approximate power law relationship

𝑦𝑖 ≈ 𝑐𝑥𝑝
𝑖

That is, one seeks the power 𝑝 and scale factor 𝑐 that minimizes error in some sense.
When the magnitudes and the data 𝑦𝑖 vary greatly, it is often appropriate to look at the relative errors

𝑒𝑖 = ∣𝑐𝑥𝑝
𝑖 − 𝑦𝑖
𝑦𝑖

∣

and this can be shown to be very close to looking at the absolute errors of the logarithms

| ln(𝑐𝑥𝑝
𝑖 ) − ln(𝑦𝑖)| = | ln(𝑐) + 𝑝 ln(𝑥𝑖) − ln(𝑦𝑖)|

Introducing the new variables 𝑋𝑖 = ln(𝑥𝑖), 𝑌𝑖 = ln(𝑌𝑖) and 𝐶 = ln(𝑐), this becomes the familiar problem of finding a
linear approxation of the data 𝑌𝑖 by 𝐶 + 𝑝𝑋𝑖.

4.5.6 A simulation

cexact = 2.0
pexact = 1.5
xmin = 0.01
xmax= 100.0
N = 100
x = (10.0).^range(log(xmin), log(xmax), N)
xplot = (10.0).^range(log(xmin), log(xmax), 100) # For graphs later
yexact = cexact * x.^pexact
y = yexact .* (1.0 .+ (rand(N) .- 0.5)/2.0);

figure(figsize=[12,6])
plot(x, yexact, ".", label="exact")
plot(x, y, "*", label="noisy")
legend()
grid(true)

4.5. Least-Squares Fitting to Data 169



Introduction to Numerical Methods and Analysis with Julia (draft)

A log-log plot makes the situation far clearer:

figure(figsize=[12,6])
loglog(x, yexact, ".", label="exact")
loglog(x, y, "*", label="noisy")
legend()
grid(true)

X = log.(x)
Y = log.(y)
pC = polyfit(X, Y, 1)
c = exp(pC[1])
p = pC[2]

(continues on next page)

170 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

print("p=$p, c=$c")

p=1.50125904206987, c=1.9785543393777234

figure(figsize=[12,6])
plot(x, yexact, ".", label="exact")
plot(x, y, "*", label="noisy")
plot(xplot, c * xplot.^p)
legend()
grid(true)

figure(figsize=[12,6])
loglog(x, yexact, ".", label="exact")
loglog(x, y, "*", label="noisy")
loglog(xplot, c * xplot.^p)
legend()
grid(true)

4.5. Least-Squares Fitting to Data 171



Introduction to Numerical Methods and Analysis with Julia (draft)

4.6 Least-squares Fitting to Data: Appendix on The Geometrical Ap-
proach

References:
• Chapter 4 Least Squares of [Sauer, 2019], sections 1 and 2.
• Section 8.1 Discrete Least Squares Approximation of [Burden et al., 2016].

4.6.1 Introduction

We have seen that one common and important approach to approximating data

(𝑥𝑖, 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑁

by a polynomial 𝑦 = 𝑝(𝑥) = 𝑐0 + ⋯ 𝑐𝑛𝑥𝑛 of degree at most 𝑛 is to minimize the “average” of the errors

𝑒𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖),

in the sense of the root-mean-square error 𝐸𝑅𝑀𝑆 =
√√√
⎷

𝑁
∑
𝑖=1

𝑒2
𝑖 . Equivalently, we will avoid the square root and just

minimize the sum of the squares of the errors:

𝐸(𝑐0, 𝑐1, … , 𝑐𝑛) =
𝑁

∑
𝑖=1

𝑒2
𝑖

172 Chapter 4. Polynomial Collocation and Approximation



Introduction to Numerical Methods and Analysis with Julia (draft)

4.6.2 Linear least squares: minimizing RMS error using calculus

One way to derive the needed formulas is by seeking the critical point og th abev function via teh 𝑛 + 1 equations

𝜕𝐸
𝜕𝑐𝑖

= 0, 0 ≤ 𝑖 ≤ 𝑛

Fortunately these gives a systems of linear equations, and it has a unique solution, thus giving the desired global minimum.
However, there is another “geometrical” approach, that is also relevant as an introduction to strategies also used for
other minimization problems, for example with application to the numerical solutions of boundary value problems for
differential equations.

4.6.3 Linear least squares: minimizing RMS error by minimizing “Euclidean” dis-
tance with geometry

For approximation by a polynomial 𝑦 = 𝑝(𝑥) = 𝑐0 + ⋯ 𝑐𝑛𝑥𝑛, we can think of the data 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑁 as giving a point
in 𝑁 -dimensional space (𝑅)𝑁 , and the approximations as giving another point with coordinates ̃𝑦𝑖 ∶= 𝑝(𝑥𝑖).
Then the least squares problem is to minimize the Euclidean distance ‖𝑦 − ̃𝑦‖2.
One way to think of this is that we attempt unsuccessfully to solve the collocation equations 𝑝(𝑥𝑖) = 𝑦𝑖 as an over-
determined sytem of 𝑁 equations in 𝑛 + 1 unknowns 𝐴𝑐 = 𝑦, where

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎣

1 𝑥1 𝑥2
1 … 𝑥𝑛

1
1 𝑥2 𝑥2

2 … 𝑥𝑛
2

⋮ ⋮ ⋮ ⋮
1 𝑥𝑖 𝑥2

𝑖 … 𝑥𝑛
𝑖

⋮ ⋮ ⋮ ⋮
1 𝑥𝑁 𝑥2

𝑁 … 𝑥𝑛
𝑁

⎤
⎥
⎥
⎥
⎥
⎦

so that 𝐴𝑐 evaluates the polynomial at all the 𝑥𝑖 values.
Now we introduce a key geometrical idea: the possible values of ̃𝑦 = 𝐴𝑐 lie in an (𝑛 + 1)-dimensional sub-space or
“hyperplane” within ℝ𝑁 , and the point in this hyper-plane closest to 𝑦 ∈ ℝ𝑁 is the perpendular projection of the latter
point onto this hyper-plane: that is, the error vector 𝑒 = 𝑦 − ̃𝑦 is perpendicular to every vector in the subspace of vectors
𝐴𝑐′. Thus, 𝑒 ⟂ 𝐴𝑐′ for every 𝑐′ ∈ ℝ𝑛+1.
Writing this in terms of inner products,

(𝑦 − ̃𝑦, 𝐴𝑐′) = 0 for every 𝑐′ ∈ ℝ𝑛+1.

Recall that (𝑥, 𝐴𝑦) = (𝐴𝑇 𝑥, 𝑦) where 𝐴𝑇 is the transpose of 𝐴: the mirror image with 𝑎𝑇
𝑖,𝑗 = 𝑎𝑗,𝑖.

Using this gives

(𝐴𝑇 (𝑦 − ̃𝑦), 𝑐′) = 0 for every 𝑐′ ∈ (𝑅)𝑛+1.

and so the vector at left must be zero: 𝐴𝑇 (𝑦 − ̃𝑦) = 0.
Inserting ̃𝑦 = 𝐴𝑐 gives 𝐴𝑇 𝑦 = 𝐴𝑇 𝐴𝑐, so

𝑀𝑐 = 𝐴𝑇 𝑦

where 𝑀 ∶= 𝐴𝑇 𝐴
Since here 𝐴 is 𝑁 × (𝑛 + 1), 𝐴𝑇 is (𝑛 + 1) × 𝑁 , and the product 𝑀 is an (𝑛 + 1) × (𝑛 + 1) square matrix.

4.6. Least-squares Fitting to Data: Appendix on The Geometrical Approach 173



Introduction to Numerical Methods and Analysis with Julia (draft)

Further calculation shows that in fact

𝑀 =
⎡
⎢⎢
⎣

𝑚0 𝑚1 … 𝑚𝑛
𝑚1 𝑚2 … 𝑚𝑛+1
⋮ ⋮ ⋱ ⋮

𝑚𝑛 𝑚𝑛+1 … 𝑚2𝑛

⎤
⎥⎥
⎦

, 𝑚𝑘 =
𝑁

∑
𝑖=1

𝑥𝑘
𝑖

and the right-hand side is

𝐴𝑇 𝑦 = 𝑝 = [𝑝0, 𝑝1, … , 𝑝𝑛]𝑇 , 𝑝𝑘 =
𝑁

∑
𝑖=1

𝑥𝑘
𝑖 𝑦𝑖

so these equations are the same ones 𝑀𝑐 = 𝑝 given by the previous calculus derivation.

174 Chapter 4. Polynomial Collocation and Approximation



CHAPTER

FIVE

DERIVATIVES AND DEFINITE INTEGRALS

5.1 Approximating Derivatives by the Method of Undetermined Co-
efficients

References:
• Section 5.1 Numerical Differentiation of [Sauer, 2019].
• Section 4.1 Numerical Differentiation of [Burden et al., 2016].
• Section 4.2 Estimating Derivatives and Richardson Extrapolation of [Chenney and Kincaid, 2012].

We have seen several formulas for approximating a derivative 𝐷𝑓(𝑥) or higher derivative 𝐷𝑘𝑓(𝑥) in terms of several
values of the function 𝑓 , such as

𝐷𝑓(𝑥) ≈ 𝐷ℎ𝑓(𝑥) ∶= 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ (5.1)

and

𝐷2𝑓(𝑥) ≈ 𝛿2𝑓(𝑥) ∶= 𝑓(𝑥 − ℎ) − 2𝑓(𝑥) + 𝑓(𝑥 + ℎ)
ℎ2 . (5.2)

In the first case we get an error formula

𝐷ℎ𝑓(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ = 𝐷𝑓(𝑥) + 𝐷2𝑓(𝜉)

2 ℎ, 𝜉 between 𝑥 and 𝑥 + ℎ

by inserting the Taylor formula 𝑓(𝑥 + ℎ) = 𝑓(𝑥) + 𝐷𝑓(𝑥) + 1
2 𝐷2𝑓(𝜉), and thus an “order of accuracy formula”

𝐷ℎ𝑓(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ = 𝐷𝑓(𝑥) + 𝑂(ℎ)

so that the error is

𝐷ℎ𝑓(𝑥) − 𝐷𝑓(𝑥) = 1
2𝐷2𝑓(𝜉) = 𝑂(ℎ).

These are linear combinations of values of 𝑓 at various points, with the denominator scaling with the k-th power of the
mode spacing scale ℎ, which makes sense given the linearity of derivatives and the way that the k-th derivative scales
when one rescales 𝑓(𝑥) to 𝑓(𝑐𝑘).
Thus we will make the Ansatz that the k-th derivative 𝐷𝑘𝑓(𝑥) can be approximated using values at the 𝑟 − 𝑙 + 1 equally
spaced points

𝑥 + 𝑙ℎ, 𝑥 + (𝑙 + 1)ℎ, … 𝑥 + 𝑟ℎ
where the integers 𝑙 and 𝑟 can be negative, positive or zero. The assumed form then is

𝐷𝑘𝑓(𝑥) ≈ 𝐷𝑘
ℎ𝑓(𝑥) = 𝐶𝑙𝑓(𝑥 + 𝑙ℎ) + 𝐶𝑙+1𝑓(𝑥 + (𝑙 + 1)ℎ) + ⋯ + 𝐶𝑟𝑓(𝑥 + 𝑟ℎ)

ℎ𝑘 + 𝑂(ℎ𝑝)

175



Introduction to Numerical Methods and Analysis with Julia (draft)

(The reason for the power 𝑘 in the denominator will be seen soon.)
So we seek to determine the values of the initially undetermined coefficients 𝐶𝑖, by the criterion of giving an error 𝑂(ℎ𝑝)
with the highest possible order 𝑝. With 𝑟 − 𝑙 + 1 coefficients to choose, we generally get 𝑝 = 𝑟 − 𝑙 + 1 − 𝑘, but with
symmetry 𝑙 = −𝑟 and 𝑘 even we get one better, 𝑝 = 𝑟 − 𝑙 + 2 − 𝑘, because the order 𝑝 must then be even. Thus we need
the number of points 𝑟 − 𝑙 + 1 to be more than 𝑘: for example, at least two for a first derivative as already seen.

Example 5.1 (The basic forward difference approximation)

𝐷𝑓(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ + 𝑂(ℎ)

has 𝑘 = 1, 𝑙 = 0, 𝑟 = 1, 𝑝 = 1.

Example 5.2 (A three-point one-sided difference approximation of the first derivative)
This is the case 𝑘 = 1 and can be sought with 𝑙 = 0, 𝑟 = 2, as

𝐷𝑓(𝑥) = 𝐶0𝑓(𝑥) + 𝐶1𝑓(𝑥 + ℎ) + 𝐶2𝑓(𝑥 + 2ℎ)
ℎ + 𝑂(ℎ𝑝)

and themost accurate choice is𝐶0 = −3/2,𝐶1 = 2,𝐶2 = −1/2, again of second order, which is exactly 𝑝 = 𝑟−𝑙+1−𝑘,
with no “symmetry bonus”:

𝐷𝑓(𝑥) ≈ −3𝑓(𝑥) + 4𝑓(𝑥 + ℎ) − 𝑓(𝑥 + 2ℎ)
2ℎ + 𝑂(ℎ2).

One can use Taylor’s Theorem to check an approximation like this, and also get information about its accuracy. To do
this, insert a Taylor series formula with center 𝑥, like

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + 𝐷𝑓(𝑥)ℎ + 𝐷2𝑓(𝑥)
2 ℎ2 + 𝐷3𝑓(𝑥)

6 ℎ3 + ⋯

If you are not sure how accurate the result is, you might need to initially be vague about how may terms are needed, so I
will do it that way and then go back and be more specific once we know more.
A series for 𝑓(𝑥 + 2ℎ) is also needed:

𝑓(𝑥 + 2ℎ) = 𝑓(𝑥) + 𝐷𝑓(𝑥)(2ℎ) + 𝐷2𝑓(𝑥)
2 (2ℎ)2 + 𝐷3𝑓(𝑥)

6 (2ℎ)3 + ⋯

= 𝑓(𝑥) + 2𝐷𝑓(𝑥)ℎ + 𝐷2𝑓(𝑥)
2 4ℎ2 + 𝐷3𝑓(𝑥)

6 8ℎ3 + ⋯

= 𝑓(𝑥) + 2𝐷𝑓(𝑥)ℎ + 2𝐷2𝑓(𝑥)ℎ2 + 4𝐷3𝑓(𝑥)
3 ℎ3 + ⋯

Insert these into the above three-point formula, and see how close it is to the exact derivative:
−3𝑓(𝑥) + 4𝑓(𝑥 + ℎ) − 𝑓(𝑥 + 2ℎ)

2ℎ

= −3𝑓(𝑥) + 4[𝑓(𝑥) + 𝐷𝑓(𝑥)ℎ + 𝐷2𝑓(𝑥)
2 ℎ2 + 𝐷3𝑓(𝑥)

6 ℎ3 + ⋯] − [𝑓(𝑥) + 2𝐷𝑓(𝑥)ℎ + 2𝐷2𝑓(𝑥)ℎ2 + 4𝐷3𝑓(𝑥)
3 ℎ3 + ⋯]

2ℎ
Now gather terms with the same power of ℎ (which is also gathering terms with the same order of derivative):

−3𝑓(𝑥) + 4𝑓(𝑥 + ℎ) − 𝑓(𝑥 + 2ℎ)
2ℎ = 𝑓(𝑥)−3 + 4 − 1

2ℎ + 𝐷𝑓(𝑥)4 − 2
2 + 𝐷2𝑓(𝑥)4/4 − 2/2

ℎ + 𝐷3𝑓(𝑥)4/12 − 4/6
ℎ

2
+ ⋯

= 𝐷𝑓(𝑥) − 𝐷3𝑓(𝑥)
3 ℎ2 + ⋯

176 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

and it is clear that the omitted terms have higher power of ℎ: ℎ3 and up. That is, they are 𝑂(ℎ3), or more conveniently
𝑜(ℎ2).
Thus we have confirmed that the error in this approximation is

𝐷𝑓(𝑥) − −3𝑓(𝑥) + 4𝑓(𝑥 + ℎ) − 𝑓(𝑥 + 2ℎ)
2ℎ = 𝐷3𝑓(𝑥)

3 ℎ2 + 𝑜(ℎ2) = 𝑂(ℎ2).

Example 5.3 (A three-point centered difference approximation of 𝐷2𝑓(𝑥))
This has 𝑘 = 2, 𝑙 = −1, 𝑟 = 1 and so

𝐷2𝑓(𝑥) ≈ 𝐶−1𝑓(𝑥 − ℎ) + 𝐶0𝑓(𝑥) + 𝐶1𝑓(𝑥 + ℎ)
ℎ2

and it can be found (as discussed below) that the coefficients 𝐶−1 = 𝐶1 = 1, 𝐶0 = −2 give the highest order error:
𝑝 = 2; one better than 𝑝 = 𝑟 − 𝑙 + 1 − 𝑘 = 1 due to symmetry:

𝐷2𝑓(𝑥) = 𝑓(𝑥 − ℎ) − 2𝑓(𝑥) + 𝑓(𝑥 + ℎ)
ℎ2 + 𝑂(ℎ2).

5.1.1 Method 1: use Taylor polynomials in ℎ of degree p+k-1

(so with error terms 𝑂(ℎ𝑝+𝑘).)
Each of the terms 𝑓(𝑥 + 𝑖ℎ) in the above formula for the approximation 𝐷𝑘

ℎ𝑓(𝑥) of the 𝑘-th derivative 𝐷𝑘𝑓(𝑥) can be
expanded with the Taylor Formula up to order 𝑝 + 𝑘,

𝑓(𝑥 + 𝑖ℎ) = 𝑓(𝑥) + (𝑖ℎ)𝐷𝑓(𝑥) + (𝑖ℎ)2/2𝐷2𝑓(𝑥) + ⋯ + (𝑖ℎ)𝑗/𝑗!𝐷𝑗𝑓(𝑥) + ⋯ + (𝑖ℎ)𝑝+𝑘/(𝑝 + 𝑘)!𝐷𝑝+𝑘𝑓(𝑥) + 𝑜(ℎ𝑝+𝑘)

Then these can be rearranged, putting the terms with the same derivative 𝐷𝑗𝑓(𝑥) together — all of which have the same
factor ℎ𝑗 in the numeriator, and so the same factor ℎ𝑗−𝑝 overall:

𝐷𝑘
ℎ𝑓(𝑥) = (𝐶𝑙 + ⋯ + 𝐶𝑟)𝑓(𝑥)ℎ−𝑘

+ (𝑙𝐶𝑙 + ⋯ + 𝑟𝐶𝑟)𝐷𝑓(𝑥)ℎ1−𝑘

+ (𝑙2𝐶𝑙 + ⋯ + 𝑟2𝐶𝑟)𝐷2𝑓(𝑥)ℎ2−𝑘

⋮
+ (𝑙𝑗𝐶𝑙 + ⋯ + 𝑟𝑗𝐶𝑟)𝐷𝑗𝑓(𝑥)ℎ𝑗−𝑘

⋮
+ (𝑙𝑝+𝑘𝐶𝑙 + ⋯ + 𝑝 + 𝑘𝑗𝐶𝑟)𝐷𝑝+𝑘𝑓(𝑥)ℎ𝑝

+ 𝑜(ℎ𝑝)

The final “small” term 𝑜(ℎ𝑝) comes from the terms 𝑜(ℎ𝑝+𝑘) in each Taylor’s formula term, each divided by ℎ𝑘.
We want this whole thing to be approximately 𝐷𝑘𝑓(𝑥), and the strategy is to match the coefficients of the derivatives:

• Matching the coefficients of 𝐷𝑘
ℎ𝑓(𝑥),

(𝑙𝑘𝐶𝑙 + ⋯ + 𝑟𝑘𝐶𝑟)𝐷𝑘𝑓(𝑥)ℎ𝑘−𝑘 = (𝑙𝑘𝐶𝑙 + ⋯ + 𝑟𝑘𝐶𝑟)𝐷𝑘𝑓(𝑥) = 𝐷𝑘𝑓(𝑥)
so

𝑙𝑘𝐶𝑙 + ⋯ + 𝑟𝑘𝐶𝑟 = 1 =

5.1. Approximating Derivatives by the Method of Undetermined Coefficients 177



Introduction to Numerical Methods and Analysis with Julia (draft)

• On the other hand, there should be no term with factor 𝑓(𝑥)ℎ−𝑘, so

𝐶𝑙 + ⋯ + 𝐶𝑟 = 0
• More generally, for any 𝑗 other than 𝑘 the coefficients should vanish, so

𝑙𝑗𝐶𝑙 + ⋯ + 𝑟𝑗𝐶𝑟 = 0, 0 ≤ 𝑗 ≤ 𝑝 + 𝑘 except for 𝑗 = 𝑘
This last line gives 𝑝 + 𝑘 linear equations in the 𝑝 + 𝑘 + 1 coefficients 𝐶1, … , 𝐶𝑝+𝑘, and then the previous equation gives
us a total of 𝑝 + 𝑘 + 1 equations — as needed for the existence of a unique solution.

𝐶𝑙 + ⋯ + 𝐶𝑟 = 0 (5.3)
𝑙𝑗𝐶𝑙 + ⋯ + 𝑟𝑗𝐶𝑟 = 0, 𝑗 ≠ 𝑘 (5.4)
𝑙𝑘𝐶𝑙 + ⋯ + 𝑟𝑘𝐶𝑟 = 1 (5.5)

(5.6)

And indeed it can be verified that the resulting matrix for this system of equations is non-singular, and so there is a unique
solution for the coefficients 𝐶𝑙 … 𝐶𝑟.
See Exercise 1.

5.1.2 Degree of Precision and testing with monomials

This concept relates to a simpler way of determining the coefficients.
The degree of precision of an approximation formula (of a derivative or integral) is the highest degree 𝑑 such that the
formula is exact for all polynomials of degree up to 𝑑. For example it can be checked that in the examples above, the
degrees of precision are 1, 2, and 3 respectively. All three conform to a general pattern:

Theorem 5.1
The degree of precision is 𝑑 = 𝑝 + 𝑘 − 1, so in the typical case with no “symmetry bonus” 𝑑 = 𝑟 − 𝑙
This is confirmed by the above derivation: for 𝑓 any polynomial of degree 𝑝 + 𝑘 − 1 or less, the Taylor polynomials of
degree at most 𝑝 + 𝑘 − 1 used there have no error.
Thus for example, the minimal symmetric aproximation of a fourth derivative, which must have even order 𝑝 = 2, will
have degree of precision 5.

5.1.3 Method 2: use monomials of degree up to p+k-1

From the above degree of precision result, one can determine the coefficients by requiring degree of precision 𝑝 + 𝑘 − 1,
and for this it is enough to require exactness for each of the simple monomial functions 1, 𝑥, 𝑥2, and so on up to 𝑥𝑝+𝑘−1.
Also, this only needs to be tested at 𝑥 = 0, since “translating” the variables does not effect the result.
This is probably the simplest method in practice.

Example 5.4
Let us revisit Example 5.2. The goal is to get exactness in

𝐶0𝑓(𝑥) + 𝐶1𝑓(𝑥 + ℎ) + 𝐶2𝑓(𝑥 + 2ℎ)
ℎ = 𝐷𝑓(𝑥)

178 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

for the monomials 𝑓(𝑥) = 1, 𝑓(𝑥) = 𝑥, and so on, to the highest power possible, and this only needs to be checked at
𝑥 = 0.
First, 𝑓(𝑥) = 1, so 𝐷𝑓(0) = 0:

𝐶0 × 1 + 𝐶1 × 1 + 𝐶2 × 1
ℎ = 0,

so

𝐶0 + 𝐶1 + 𝐶2 = 0

Next, 𝑓(𝑥) = 𝑥, so 𝐷𝑓(0) = 1:

𝐶0𝑓(0) + 𝐶1𝑓(ℎ) + 𝐶2𝑓(2ℎ)
ℎ = 𝐶00 + 𝐶1ℎ + 𝐶22ℎ

ℎ = 𝐶1 + 2𝐶2 = 1

so

𝐶1 + 2𝐶2 = 1

We need at least three equations for the three unknown coefficients, so continue with 𝑓(𝑥) = 𝑥2, 𝐷𝑓(0) = 0:

𝐶0𝑓(0) + 𝐶1𝑓(ℎ) + 𝐶2𝑓(2ℎ)
ℎ = 𝐶00 + 𝐶1ℎ2 + 𝐶2(2ℎ)2

ℎ = (𝐶1 + 4𝐶2)ℎ = 0

so

𝐶1 + 4𝐶2 = 0

We can solve these by elimination; for example:
• The last equation gives 𝐶1 = −4𝐶2

• The previous one then gives −4𝐶2 + 2𝐶2 = 1, so 𝐶2 = −1/2 and thus 𝐶1 = −4𝐶2 = 2.
• The first equation then gives 𝐶0 = −𝐶1 − 𝐶2 = −3/2 all as claimed above.

So far the degree of precision has been shown to be at least 2. In some cases it is better, so let us check by looking at
𝑓(𝑥) = 𝑥3:
𝐷𝑓(𝑥) = 0, whereas

−3𝑓(𝑥) + 4𝑓(𝑥 + ℎ) − 𝑓(𝑥 + 2ℎ)
2ℎ = −30 + 4ℎ3 − (2ℎ)3

2ℎ = −2ℎ3

2ℎ = −4ℎ2, ≠ 0

So, no luck this time (that typically requires some symmetry), but this calculation does indicate in a relatively simple way
that the error is 𝑂(ℎ2).

Remark 5.1
If you want to verifymore rigorously the order of accuracy of a formula devised by this method, one can use the “checking”
procedure with Taylor polynomials and their error terms as done in Example 5.2 above.

5.1. Approximating Derivatives by the Method of Undetermined Coefficients 179



Introduction to Numerical Methods and Analysis with Julia (draft)

5.1.4 Exercises

Exercise 1

A) Derive the formula in Example 5.1.
Do this by setting up the three equations as above for the coefficients 𝐶0, 𝐶1 and 𝐶2, and solving them. Do this “by
hand”, to get exact fractions as the answers; use the two Taylor series formulas, but now take advantage of what we saw
above: that the error starts at the terms in 𝐷3𝑓(𝑥). So use the forms

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + 𝐷𝑓(𝑥)ℎ + 𝐷2𝑓(𝑥)
2 ℎ2 + 𝐷3𝑓(𝑥)

6 ℎ3 + 𝑂(ℎ4)

and

𝑓(𝑥 + 2ℎ) = 𝑓(𝑥) + 2𝐷𝑓(𝑥)ℎ + 2𝐷2𝑓(𝑥)ℎ2 + 4𝐷3𝑓(𝑥)
3 ℎ3 + 𝑂(ℎ4)

B) Verify the result in Example 5.3.
Again, do this by hand, and exploit the symmetry. Note that it works a bit better than expected, due to the symmetry.

Exercise 2: like Exercise 1, but using Method 2

A) Verify the result in Example 5.1, this time by Method 2.
That is, impose the condition of giving the exact value for the derivative at 𝑥 = 0 for the monomial 𝑓(𝑥) = 1, then the
same for 𝑓(𝑥) = 𝑥, and so on until there are enough equations to determine a unique solution for the coefficients.
B) Verify the result in Example 5.3, by Method 2.

5.2 Richardson Extrapolation

References:
• Section 5.1.3 Extrapolation in [Sauer, 2019].
• Section 4.2 Richardson Extrapolation im [Burden et al., 2016].
• Section 4.2 Estimating Derivatives and Richardson Extrapolation in [Chenney and Kincaid, 2012].

5.2.1 Motivation

With derivative approximations like

Δℎ𝑓(𝑥) ∶= 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ = 𝐷𝑓(𝑥) + 𝐷2𝑓(𝑥)

2 ℎ + 𝑂(ℎ2) = 𝐷𝑓(𝑥) + 𝑂(ℎ)

and

𝛿2
ℎ𝑓(𝑥) ∶= 𝑓(𝑥 − ℎ) − 2𝑓(𝑥) + 𝑓(𝑥 + ℎ)

ℎ2 = 𝐷2𝑓(𝑥) + 𝐷4𝑓(𝑥)
12 ℎ2 + 𝑂(ℎ4) = 𝐷2𝑓(𝑥) + 𝑂(ℎ2)

180 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

there are limits on the ability to improve accuracy by simply using a smaller value of ℎ: one is that rounding error become
problematic.
Another is that when we are approximating the derivative at a collection of points in an interval [𝑎, 𝑏], 𝑥𝑖 = 𝑎 + 𝑖ℎ,
0 ≤ 𝑖 ≤ 𝑛, ℎ = 𝑏 − 𝑎

𝑛 , reducing ℎ requires increasing the number of points 𝑛 + 1, and so increases the “cost” (time and
other resources needed) of the calculation.
Thus we would like to produce new approximation formulas of higher order 𝑝; that is, with error 𝑂(ℎ𝑝) for 𝑝 greater than
the values 𝑝 = 1 for Δℎ𝑓(𝑥) or 𝑝 = 2 for 𝛿2

ℎ𝑓(𝑥).

5.2.2 Procedure

The general framework for this is an exact quantity 𝑄0 for which we have an approximation formula 𝑄(ℎ) with

𝑄(ℎ) = 𝑄0 + 𝑐𝑝ℎ𝑝 + 𝑂(ℎ𝑞), = 𝑄0 + 𝑂(ℎ𝑝), 𝑞 > 𝑝

and we wish to achieve adequate accuracy while keeping ℎ as large as possible.
The kernel of the idea is to initially ignore the smaller part of the error, 𝑂(ℎ𝑞) and just consider

𝑄(ℎ) ≈ 𝑄0 + 𝑐𝑝ℎ𝑝,

and evaluate for two values of ℎ; most often either ℎ and 2ℎ (or ℎ and ℎ/2, which ismore or less equivalent.)
That gives

𝑄(2ℎ) ≈ 𝑄0 + 𝑐𝑝(2ℎ)𝑝 = 𝑄0 + 𝑐𝑝2𝑝ℎ𝑝,

and with only 𝑄0 and 𝑐𝑝 unknown, this is two (approximate) linear equations in two unknowns, so we can solve for the
desired quantity 𝑄0 by basic Gaussian elimination. This gives

𝑄0 ≈ 2𝑝𝑄(ℎ) − 𝑄(2ℎ)
2𝑝 − 1 =∶ 𝑄𝑞(ℎ).

But is this new approximation any better than the original? Using the more complete error formula above for 𝑄(ℎ) and
its version with ℎ replaced by 2ℎ,

𝑄(2ℎ) = 𝑄0 + 𝑐𝑝(2ℎ)𝑝 + 𝑂((2ℎ)𝑞), = 𝑄0 + 2𝑝𝑐𝑝ℎ𝑝 + 𝑂(ℎ𝑞),

one gets

𝑄𝑞(ℎ) = 2𝑝𝜙(ℎ) − 𝜙(2ℎ)
2𝑝 − 1 = 𝑄0 + 𝑂(ℎ𝑞),

so indeed an improvement, since 𝑞 > 𝑝.

Rewriting to get an error estimate

We can get a useful practical error estimate by rewriting the above result as

𝑄0 ≈ 𝑄(ℎ) + 𝑄(ℎ) − 𝑄(2ℎ)
2𝑝 − 1 (5.7)

so that the quantity

𝐸ℎ ∶= 𝑄(ℎ) − 𝑄(2ℎ)
2𝑝 − 1 ≈ 𝑄0 − 𝑄(ℎ) (5.8)

is approximately the error in 𝑄(ℎ). Thus,

5.2. Richardson Extrapolation 181



Introduction to Numerical Methods and Analysis with Julia (draft)

1. Richardson extrapolation can be viewed as “correcting” 𝑄ℎ by subtracting of this estimated error:

𝑄0 ≈ 𝑄𝑞(ℎ) = 𝑄ℎ + 𝐸ℎ

1. This magnitude |𝐸ℎ| of this error estimate can be used as a (typically pessimistic!) estimate of the error in the cor-
reted result 𝑄𝑞. Sometimes makes sens to use an even more cautious error estimate, by discarding the denominator
2𝑝 − 1: using |𝑄(ℎ) − 𝑄(2ℎ)| as an estimate of the error in the extrapolated value 𝑄𝑞.

Either way, these follow the pervasive pattern of using the change between the two most recent approximations as an error
estimate.
Note the analogy to Newton’s method for solving 𝑓(𝑥) = 0, which can be broken into the two steps

• estimate the error in approximate root 𝑥𝑛 as 𝐸𝑛 ∶= −𝑓(𝑥𝑛)/𝑓 ′(𝑥𝑛)
• update the approximation to 𝑥𝑛+1 = 𝑥𝑛 + 𝐸𝑛.

Finally, note that this is always extrapolation, in the sense of “going beyond”: the new approximation is on the opposite
side of the better of the original approximations from the less accurate of them.

Example 5.5
For the basic forward difference approximation above, this process give a three-point method of second order accuracy
(𝑞 = 2):

2Δℎ𝑓(𝑥) − Δ2ℎ𝑓(𝑥)
2 − 1 = 2𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ − 𝑓(𝑥 + 2ℎ) − 𝑓(𝑥)
2ℎ

= −3𝑓(𝑥) + 4𝑓(𝑥 + ℎ) − 𝑓(𝑥 + 2ℎ)
2ℎ

= 𝐷𝑓(𝑥) + 𝑂(ℎ2).

Exercise 1(a)

Apply Richardson extrapolation to the standard three-point, second order accurate approximation𝑄(ℎ) ∶= 𝛿2
ℎ𝑓(𝑥) of the

second derivative 𝑄0 ∶= 𝐷2𝑓(𝑥) as given above, and verify that it gives a fourth-order accurate five-point approximation
formula.

Exercise 1(b)

As a supplementary exercise, one could verify the order of accuracy directly with Taylor polynomials, or verify that the
new formula has degree of precision 𝑑 = 5, and hence is of order 𝑝 = 4 due to the formula 𝑑 = 𝑝 + 𝑘 − 1 for
approximations of 𝑘-th derivatives, given in the notes for Day 11.
One could also derive the same formula “from scratch” using the Method of Undetermined Coefficients.

Exercise 2

Apply Richardson extrapolation to the above one-sided three-point, second order accurate approximation of the derivative
𝐷𝑓(𝑥), and verify that it gives a third-order accurate four-point approximation formula.
But note something strange about this new formula: it skips 𝑓(𝑥 + 3ℎ).
Here, instead of extrapolating, one is probably better off applying the Method of Undetermined Coefficients directly with
data 𝑓(𝑥), 𝑓(𝑥 + ℎ), 𝑓(𝑥 + 2ℎ), 𝑓(𝑥 + 3ℎ) and 𝑓(𝑥 + 4ℎ): what order of accuracy does that give?

182 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

5.2.3 A variant, more useful for integration and ODE boundary value problems: pa-
rameter 𝑛

A slight variant of the above is approximation with an integer parameter 𝑛, such as approximations of integrals by the
(composite) trapezoid rule with 𝑛 intervals, 𝑇𝑛, or the approximate solution of an ordinary differential equation at the
above-described collection of 𝑛 + 1 equally spaced values in domain [𝑎, 𝑏]. Then a more natural ntito of teh approxatio
formula is 𝑄𝑛 instead of 𝑄(ℎ).
The errors of the form 𝑐𝑝ℎ𝑝 + 𝑂(ℎ𝑞) become

𝑄𝑛 = 𝑄0 + 𝑂 ( 1
𝑛𝑝 ) = 𝑄0 + 𝑐𝑝

𝑛𝑝 + 𝑂 ( 1
𝑛𝑞 ) .

The main difference is that to work with integer values of 𝑛, it must be the quantity that is doubled, whereas doubling of
ℎ would correspond to halving of 𝑛.
The extrapolation formula becomes

𝑄0 = 2𝑝𝑄2𝑛 − 𝑄𝑛
2𝑝 − 1 + 𝑂 ( 1

𝑛𝑞 ) . (5.9)

Remark 5.2
For the slightly more general case of increasing from 𝑛 to 𝑘𝑛, one gets

𝑄0 = 𝑘𝑝𝑄𝑘𝑛 − 𝑄𝑛
𝑘𝑝 − 1 + 𝑂 ( 1

𝑛𝑞 ) .

A common verbal description for both forms

This can be summarized with the same verbal form as the original formula:
• 2𝑝 times the more accurate approximation,

• minus the less accurate approximation,

• all divided by (2𝑝 − 1)
Also
The error in the more accurate approximation is approximated by the difference between the two approximations, divided
by (2𝑝 − 1)

Rewriting to get an error estimate, again

As with the “ℎ” form above, this extrapolation can be broken into two steps

𝐸2𝑛 ∶= 𝑄2𝑛 − 𝑄𝑛
2𝑝 − 1 ,

𝑄0 = 𝑄2𝑛 + 𝐸2𝑛 + 𝑂 ( 1
𝑛𝑞 ) .

so 𝐸2𝑛 estimates the error in 𝑄2𝑛, and the improved approxmation can be expressed as

𝑄2𝑛 + 𝐸2𝑛.

5.2. Richardson Extrapolation 183



Introduction to Numerical Methods and Analysis with Julia (draft)

5.2.4 Repeated Richardson extrapolation

The new improved approximation formulas have the same sort of error formula, but for order 𝑞 instead of order 𝑝, so we
could extrapolate again to get an even higher order method, and this can be done numerous times if there is a suitable
power series in ℎ or 1/𝑛 for the errors.
That is not so useful for derivative approximations, where one can get the same or better results with the method of
underermined coefficients, but can be very useful for integration methods, and for the related task of solving boundary
value problems for ordinary differential equations.
For example, it can be applied to the composite trapezoid rule, giving the composite Simpson’s rule at the first step, and
then a succession of approximations of ever higher order – this is known as the Romberg method.
Repeated Richardson extrapolation can also be applied to the approximate solution of dofferential equations; we might
explore that later.

5.3 Definite Integrals, Part 1: The Building Blocks

References:
• Sections 5.2.1 and 5.2.4 of Chapter 5 Numerical Differentiation and Integration in [Sauer, 2019].
• Sections 4.3 Elmenets of Numerical Integration of [Burden et al., 2016].

5.3.1 Introduction

The objective of this and several subsequent sections is to develop methods for approxmating a definite integral

𝐼 = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥

This is arguably even more important than approximating derivatives, for several reasons; in particular, because there
are many functions for which antiderivative formulas cannot be found, so that the result of the Fundamental Theorem of
Calculus, that

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎), for 𝐹 any antiderivative of 𝑓

does not help us.
One core idea is to approximate the function 𝑓 by a polynomial (or several), and use its integral as an approximation.
The two simplest possibilities here are approximating by a constant and by a straight line; here we explore the latter; the
former will be visited soon.

using PyPlot

184 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

5.3.2 Approximating with a single linear function: the Trapezoid Rule

The idea is to approximate 𝑓 ∶ [𝑎, 𝑏] → ℝ by collocation at the end points of this interval:

𝑓(𝑥) ≈ 𝐿(𝑥) ∶= 𝑓(𝑎)(𝑏 − 𝑥) + 𝑓(𝑏)(𝑥 − 𝑎)
𝑏 − 𝑎 , = 𝑓𝑎𝑣𝑒(𝑏 − 𝑎)

Then the approximation — which will be called 𝑇1, for reasons that will becom clear soon — is

𝐼 ≈ 𝑇1 = ∫
𝑏

𝑎
𝐿(𝑥)𝑑𝑥 = 𝑓(𝑎) + 𝑓(𝑏)

2 (𝑏 − 𝑎)

This can be interpreted as replacing 𝑓(𝑥) by 𝑓𝑎𝑣𝑒 the average of the value at the end points, and inegrting that simple
function.
For the example 𝑓(𝑥) = 𝑒𝑥 on [−1, 3]

a = 1.0
b = 3.0
f(x) = exp(x);

f_average = (f(a) + f(b))/2
x = range(a, b, 100)
figure(figsize=[12, 6])
plot(x, f.(x))
plot([a, a, b, b, a], [0, f(a), f(b), 0, 0], label="Trapezoid Rule")
plot([a, a, b, b, a], [0, f_average, f_average, 0, 0], "-.", label="Trapezoid Rule␣

↪area")
legend()
grid(true)

The approximation 𝑇1 is the area of the orange trapezoid (hence the name!) which is also the area of the green rectangle.

5.3. Definite Integrals, Part 1: The Building Blocks 185



Introduction to Numerical Methods and Analysis with Julia (draft)

5.3.3 Approximating with a constant: the Midpoint Rule

The idea here is to approximate 𝑓 ∶ [𝑎, 𝑏] → ℝ by its value at the midpoint of the interval, like the building blocks in a
Riemann sum with the middel being the intuitive best choice of where to put the rectangle.

𝑓(𝑥) ≈ 𝑓𝑚𝑖𝑑 ∶= 𝑓 (𝑎 + 𝑏
2 )

Then the approximation — which will be called 𝑀1 — is

𝐼 ≈ 𝑀1 = ∫
𝑏

𝑎
𝑓𝑚𝑖𝑑 𝑑𝑥 = 𝑓 (𝑎 + 𝑏

2 ) (𝑏 − 𝑎)

For the same example 𝑓(𝑥) = 𝑒𝑥 on [−1, 3]

f_midpoint = f((a+b)/2)
figure(figsize=[12, 6])
plot(x, f.(x))
plot([a, a, b, b, a], [0, f_midpoint, f_midpoint, 0, 0], "r", label="Midpoint Rule")
grid(true)

The approximation 𝑀1 is the area of the red rectangle.
The two methods can be compared my combining these graphs:

f_midpoint = f((a+b)/2)
figure(figsize=[12, 6])
plot(x, f.(x))
plot([a, a, b, b, a], [0, f(a), f(b), 0, 0], label="Trapezoid Rule")
plot([a, a, b, b, a], [0, f_average, f_average, 0, 0], "-.", label="Trapezoid Rule␣

↪area")
plot([a, a, b, b, a], [0, f_midpoint, f_midpoint, 0, 0], "r", label="Midpoint Rule")
legend()
grid(true)

186 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

5.3.4 Error Formulas

These graphs indicate that the trapezoid rule will over-estimate the error for this and any function that is convex up on
the interval [𝑎, 𝑏]. With closer examination it can perhaps be seen that the Midpoint Rule will instead underestimate in
this situation, because its “overshoot” at left is less than its “undershoot” at right.
We can derive error formulas that confirm this, and which are the basis for both practical error estimates and for deriving
more accurate approximation methods.
The first such method will be to use multiple small intervals instead of a single bigger one (using piecewise polynomial
approximation) and for that, it is convenient to define ℎ = 𝑏 −𝑎 which will become the parameter that we reduce in order
to improve accuracy.

Theorem 5.2 (Error in the Trapezoid Rule, 𝑇1)
For a function 𝑓 that is twice differentiable on interval [𝑎, 𝑏], the error in the Trapezoid Rule is

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 − 𝑇1 = −(𝑏 − 𝑎)3

12 𝑓″(𝜉) for some 𝜉 ∈ [𝑎, 𝑏]

It will be convenient to define ℎ ∶= 𝑏 − 𝑎 so that this becomes

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 − 𝑇1 = −ℎ3

12𝑓″(𝜉) for some 𝜉 ∈ [𝑎, 𝑏].

Theorem 5.3 (Error in the Midpoint Rule, 𝑀1)
For a function 𝑓 that is twice differentiable on interval [𝑎, 𝑏] and again with ℎ = 𝑏 − 𝑎, the error in the Midpoint Rule is

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 − 𝑀1 = ℎ3

24𝑓″(𝜉) for some 𝜉 ∈ [𝑎, 𝑏]

5.3. Definite Integrals, Part 1: The Building Blocks 187



Introduction to Numerical Methods and Analysis with Julia (draft)

These will be verified below, using the error formulas for Taylor polynomials and collocation polynomials.
For now, note that:

• The results confirm that for a function that is convex up, the Trapezoid Rule overestimates and the Midpoint Rule
underestimates.

• The ratio of the errors is approximately −2. This will be used to get a better result by using a weighted average:
Simpson’s Rule.

• The errors are 𝑂(ℎ3). This opens the door to Richardson Extrapolation, as will be seen soon in the method of
Romberg Integration.

Proofs of these error results

One side benefit of the following verifications is that they also offer illustrations of how the two fundamental error formulas
help us: Taylor’s Formula and its cousin the error formula for polynomial collocation.
To help prove the above formulas, we introduce a result that also helps in various places later:

Theorem 5.4 (The Integral Mean Value Theorem)
In an integral

∫
𝑏

𝑎
𝑓(𝑥)𝑤(𝑥) 𝑑𝑥

with 𝑓 continuous and the “weight function” 𝑤(𝑥) positive valued (actually, it is enough that 𝑤(𝑥) ≥ 0 and it is not zero
everyhere), there is a point 𝜉 ∈ [𝑎, 𝑏] that gives a “weighted average value” for 𝑓(𝑥) in the sense that

∫
𝑏

𝑎
𝑓(𝑥)𝑤(𝑥) 𝑑𝑥 = ∫

𝑏

𝑎
𝑓(𝜉)𝑤(𝑥) 𝑑𝑥, = 𝑓(𝜉) ∫

𝑏

𝑎
𝑤(𝑥) 𝑑𝑥

Proof. As 𝑓 is continuous on the closed, bounded interval [𝑎, 𝑏], the Extreme Value Theorem from calculus says that
𝑓 has a minimum 𝐿 and a maximum 𝐻 on this interval: 𝐿 ≤ 𝑓(𝑥) ≤ 𝐻 . Since 𝑤(𝑥) ≥ 0, this gives

𝐿𝑤(𝑥) ≤ 𝑓(𝑥)𝑤(𝑥) ≤ 𝐻𝑤(𝑥)

and by integrating,

𝐿 ∫
𝑏

𝑎
𝑤(𝑥) 𝑑𝑥 ≤ ∫

𝑏

𝑎
𝑓(𝑥)𝑤(𝑥) 𝑑𝑥 ≤ 𝐻 ∫

𝑏

𝑎
𝑤(𝑥) 𝑑𝑥

Dividing by ∫𝑏
𝑎 𝑤(𝑥) 𝑑𝑥 (which is positive),

𝐿 ≤
∫𝑏
𝑎 𝑓(𝑥)𝑤(𝑥) 𝑑𝑥

∫𝑏
𝑎 𝑤(𝑥) 𝑑𝑥

≤ 𝐻

and the Mean Value Theorem says that 𝑓 attains this value for some 𝜉 ∈ [𝐿, 𝐻]:

𝑓(𝜉) =
∫𝑏
𝑎 𝑓(𝑥)𝑤(𝑥) 𝑑𝑥

∫𝑏
𝑎 𝑤(𝑥) 𝑑𝑥

(5.10)

188 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

Clearing the denominator gives the claimed result.

Proof. (of Theorem 5.2, the trapezoid rule error formula)
The function integrated to get the Trapezoid Rule is the linear collocating polynomial 𝐿(𝑥), and from the section Error
Formulas for Polynomial Collocation, we have

𝑓(𝑥) − 𝐿(𝑥) = 𝑓″(𝜉𝑥)
2 (𝑥 − 𝑎)(𝑥 − 𝑏)

Integrating each side gives

∫
𝑏

𝑎
(𝑓(𝑥) − 𝐿(𝑥)) = 𝐼 − 𝑇1 = ∫

𝑏

𝑎

𝑓″(𝜉𝑥)
2 (𝑥 − 𝑎)(𝑥 − 𝑏) 𝑑𝑥

To get around the complication that 𝜉𝑥 depends on 𝑥 in an unknown way, use the Ingtgral Measn Vlaue Theorem with
weight function 𝑤(𝑥) = (𝑥 − 𝑎)(𝑏 − 𝑥), ≥ 0 for 𝑎 ≤ 𝑥 ≤ 𝑏. Then with −𝑓″ as the function 𝑓 in (5.10):

𝐼 − 𝑇1 = − ∫
𝑏

𝑎

𝑓″(𝜉𝑥)
2 (𝑥 − 𝑎)(𝑏 − 𝑥) 𝑑𝑥 = −𝑓″(𝜉)

2 ∫
𝑏

𝑎
(𝑥 − 𝑎)(𝑏 − 𝑥) 𝑑𝑥

A bit of calculus gives ∫
𝑏

𝑎
(𝑥 − 𝑎)(𝑏 − 𝑥) 𝑑𝑥 = (𝑏 − 𝑎)3

6 , so

𝐼 − 𝑇1 = −𝑓″(𝜉)
2

(𝑏 − 𝑎)3

6 = −𝑓″(𝜉)
12 (𝑏 − 𝑎)3 = −𝑓″(𝜉)

12 ℎ3,

as advertised.

Proof. (of Theorem 5.3, the midpoint rule error formula)
For this, we can use Taylor’s Theorem for the linear approximation

𝑓(𝑥) = 𝑓(𝑐) + 𝑓 ′(𝑐)(𝑥 − 𝑐) + 𝑓″(𝜉𝑥)
2 (𝑥 − 𝑐)2

with 𝑐 = (𝑎 + 𝑏)/2, the midpoint. That is,

𝑓(𝑥) − 𝑓(𝑐) = 𝑓 ′(𝑐)(𝑥 − 𝑐) + 𝑓″(𝜉𝑥)
2 (𝑥 − 𝑐)2

and integrating each side gives

∫
𝑏

𝑎
𝑓(𝑥) − 𝑓(𝑐) 𝑑𝑥 = 𝐼 − 𝑀1 = ∫

𝑏

𝑎
[𝑓 ′(𝑐)(𝑥 − 𝑐) + 𝑓″(𝜉𝑥)

2 (𝑥 − 𝑐)2] 𝑑𝑥

Here symmetry helps, by eliminating the first (potentialy biggest) term in the error: we use the fact that 𝑎 = 𝑐 − ℎ/2 and
𝑏 = 𝑐 + ℎ/2

∫
𝑏

𝑎
𝑓 ′(𝑐)(𝑥 − 𝑐) 𝑑𝑥 = 𝑓 ′(𝑐) ∫

𝑐+ℎ/2

𝑐−ℎ/2
𝑥 − 𝑐 𝑑𝑥 = [(𝑥 − 𝑐)2/2]𝑐+ℎ/2

𝑐−ℎ/2 = (ℎ/2)2 − (ℎ/2)2 = 0

Thus the error simplifies to

𝐼 − 𝑀1 = ∫
𝑏

𝑎

𝑓″(𝜉𝑥)
2 (𝑥 − 𝑐)2 𝑑𝑥

5.3. Definite Integrals, Part 1: The Building Blocks 189



Introduction to Numerical Methods and Analysis with Julia (draft)

and much as above, the Integral Mean Value Theorem can be used, this time with weight function 𝑤(𝑥) = (𝑥−𝑐)2, ≥ 0:

𝐼 − 𝑀1 = 𝑓″(𝜉)
2 ∫

𝑏

𝑎
(𝑥 − 𝑐)2 𝑑𝑥

Another caluclus exercise: ∫
𝑏

𝑎
(𝑥 − 𝑐)2𝑑𝑥 = ∫

ℎ/2

−ℎ/2
𝑥2𝑑𝑥 = [𝑥3/3]ℎ/2

−ℎ/2 = ℎ3/12, so indeed,

𝐼 − 𝑀1 = 𝑓″(𝜉)
24 ℎ3

5.3.5 Appendix: Approximating a Definite Integral With the Left-hand Endpoint
Rule

An even simpler approximation of ∫𝑏
𝑎 𝑓(𝑥) 𝑑𝑥 is the Left-hand Endpoint Rule, probably seen in a calculus course. For a

single interval, this uses the approximation
𝑓(𝑥) ≈ 𝑓(𝑎)

leading to

𝐼 ∶= ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 ≈ 𝐿1 ∶= ∫

𝑏

𝑎
𝑓(𝑎) 𝑑𝑥 = 𝑓(𝑎)(𝑏 − 𝑎)

The correpsonding composite rule with 𝑛 sub-intervals of equal width ℎ = (𝑏 − 𝑎)/𝑛 is

𝐿𝑛 =
𝑛−1
∑
𝑖=0

𝑓(𝑥𝑖)ℎ, =
𝑛−1
∑
𝑖=0

𝑓(𝑎 + 𝑖ℎ)ℎ

with 𝑥𝑖 = 𝑎 + 𝑖ℎ as before.

Theorem 5.5 (Error in the Left-hand Endpoint Rule, 𝐿1)
For a function 𝑓 that is differentiable on interval [𝑎, 𝑏], the error in the Left-hand Endpoint Rule is

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 − 𝐿1 = (𝑏 − 𝑎)2

2 𝑓 ′(𝜉), = ℎ2

2 𝑓 ′(𝜉) for some 𝜉 ∈ [𝑎, 𝑏]𝑛

Proof. This time use Taylor’s Theorem just for the constant approximation with center 𝑎:
𝑓(𝑥) = 𝑓(𝑐) + 𝑓 ′(𝜉𝑥)(𝑥 − 𝑎)

That is,
𝑓(𝑥) − 𝑓(𝑎) = 𝑓 ′(𝜉𝑥)(𝑥 − 𝑎)

so integrating each side gives

∫
𝑏

𝑎
𝑓(𝑥) − 𝑓(𝑎) 𝑑𝑥 = 𝐼 − 𝐿1 = ∫

𝑏

𝑎
𝑓 ′(𝜉𝑥)(𝑥 − 𝑎)𝑑𝑥

Using the Integral Mean Value Theorem again, now with weight 𝑤(𝑥) = 𝑥 − 𝑎 gives

∫
𝑏

𝑎
𝑓 ′(𝜉𝑥)(𝑥 − 𝑎)𝑑𝑥 = 𝑓 ′(𝜉) ∫

𝑏

𝑎
(𝑥 − 𝑎)𝑑𝑥 = 𝑓 ′(𝜉) (𝑏 − 𝑎)2

2 = ℎ2

2 𝑓 ′(𝜉) for some 𝜉 ∈ [𝑎, 𝑏]

and inserting this into the previous formula gives the result.

190 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

5.4 Definite Integrals, Part 2: The Composite Trapezoid andMidpoint
Rules

References:
• Section 5.2.3 and 5.2.4 of Chapter 5 Numerical Differentiation and Integration in [Sauer, 2019].
• Section 4.4 Composite Numerical Integration of [Burden et al., 2016].

5.4.1 Introduction

The “elementary” integral approximations of the definite integral

𝐼 = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥

seen in the previous section the Trapzoid Rule

𝑇1 = ∫
𝑏

𝑎
𝐿(𝑥) 𝑑𝑥 = 𝑓(𝑎) + 𝑓(𝑏)

2 (𝑏 − 𝑎)

and the Midpoint Rule

𝑀1 = 𝑓 (𝑎 + 𝑏
2 ) (𝑏 − 𝑎)

are of course of very low accuracy in themselves. They are however central building blocks for various more accurate
methods and also for some good methods for numerical solution of differential equations.
The basic strategy for improving accuracy is to derive the domain of integration [𝑎, 𝑏] into numerous smaller intervals,
and use these rules on each such sub-interval: the composite rules.
In turn, the most straightforward way to do this is to use 𝑛 sub-intervals of equal width ℎ = (𝑏 − 𝑎)/𝑛, so that the
sub-interval endpoints are 𝑥0 = 𝑎 + 𝑖ℎ, 0 ≤ 𝑖 ≤ 𝑛: that is
sub-intervals [𝑥𝑖−1, 𝑥𝑖], 1 ≤ 𝑖 ≤ 𝑛 separated by the nodes.

𝑎, 𝑎 + ℎ, 𝑎 + 2ℎ, … , 𝑏 − ℎ, 𝑏

The Composite Midpoint Rule

Using the Midpoint Rule on each interval and summing gives a formula that could be familiar:

𝑀𝑛 ∶= 𝑓 (𝑥0 + 𝑥1
2 ) ℎ + 𝑓 (𝑥1 + 𝑥2

2 ) ℎ + ⋯ + 𝑓 (𝑥𝑛−1 + 𝑥𝑛
2 ) ℎ

= 𝑓 (𝑎 + (𝑎 + ℎ)
2 ) ℎ + 𝑓 ((𝑎 + ℎ) + (𝑎 + 2ℎ)

2 ) ℎ + ⋯ + 𝑓 ((𝑏 − ℎ) + 𝑏
2 ) ℎ

= [𝑓(𝑎 + ℎ/2) + 𝑓(𝑎 + 3ℎ/2) + ⋯ + 𝑓(𝑏 − ℎ/2)] ℎ

This is a Riemann Sum as used in the definition of the defnite integral; possibly the best and natural one in most situations,
by using the midpoints of each interval. The theory of definite integrals also guarantees that 𝑀𝑛 → 𝐼 as 𝑛 → ∞ so long
as the function 𝑓 is continuous — the next question for us will be “how fast?*

5.4. Definite Integrals, Part 2: The Composite Trapezoid and Midpoint Rules 191



Introduction to Numerical Methods and Analysis with Julia (draft)

The Composite Trapezoid Rule

Using the Tapezoid Rule on each interval instead gives

𝑇𝑛 ∶= 𝑓(𝑥0) + 𝑓(𝑥1)
2 ℎ + 𝑓(𝑥1) + 𝑓(𝑥2)

2 ℎ + ⋯ + 𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)
2 ℎ

∶= 𝑓(𝑎 + 𝑓(𝑎 + ℎ)
2 ℎ + 𝑓(𝑎 + ℎ + 𝑓(𝑎 + 2ℎ)

2 ℎ + ⋯ + 𝑓(𝑏 − ℎ) + 𝑓(𝑏)
2 ℎ

= [𝑓(𝑎)
2 + 𝑓(𝑎 + ℎ) + 𝑓(𝑎 + 2ℎ) + ⋯ + 𝑓(𝑏 − ℎ) + 𝑓(𝑏)

2 ] ℎ

This is also a Riemann sum, with intervals if length ℎ/2 at each end, using value at teh ends of thos intervals, and the rest
of width ℎ, with the Midpoint Rule used. So again, we know that 𝑇𝑛 → 𝐼 as 𝑛 → ∞ and next want to know “how fast?*

Accuracy and Error Formulas

In brief, the errors for ech of rhese rules is the sum of the errors for each of the pieces; I will just state them for now.
Firstly,

𝐼 − 𝑀𝑛 =
𝑛

∑
𝑖=1

ℎ3

24𝑓″(𝜉𝑖), for some 𝜉𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖]

This can be rewitten as

𝐼 − 𝑀𝑛 = ℎ3

24
𝑛

∑
𝑖=1

𝑓″(𝜉𝑖)

and as we will see, this sum can have each 𝑓″(𝜉𝑖) replace by an “average value” 𝑓″(𝜉𝑖), 𝜉 ∈ [𝑎, 𝑏]:

𝐼 − 𝑀𝑛 = ℎ3

24
𝑛

∑
𝑖=1

𝑓″(𝜉) = ℎ3

24𝑛𝑓″(𝜉) = ℎ2

24(𝑏 − 𝑎)𝑓″(𝜉)

and the most important conclusion for now is that

𝐼 − 𝑀𝑛 = 𝑂(ℎ2)

Similarly,

𝐼 − 𝑇𝑛 = −ℎ2

12(𝑏 − 𝑎)𝑓″(𝜉) = 𝑂(ℎ2)

again with 𝜉 ∈ [𝑎, 𝑏], but note well: these two 𝜉 values are probably not the same!

5.4.2 Cancelling Some Error Terms: The Composite Simpson’s Rule

Ignoring the 𝜉 values being different, this suggests again that we can cancel some of the errors wi ha weighted average:

𝑆2𝑛 ∶= 2𝑀𝑛 + 𝑇𝑛
3

Indeed we will see that the main, 𝑂(ℎ2), errors cancel out, and also due to symmetry, the error is even in ℎ, so that

𝐼 − 𝑆2𝑛 = 𝑂(ℎ4)

The name is because this is the Composite Simpson’s Rule, and the interleaving of the different 𝑥 values used by 𝑀𝑛 and
𝑇𝑛 means that is uses 2𝑛 + 1 nodes, and so 2𝑛 sub-intervals.

192 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

The Missing Step: A Generalized Mean Value Theorem

A key step in getting more useful error formulas for approximations of integrals is the following result:

Theorem 5.6 (Generalized Mean Value Theorem)
For any continuous function 𝑓 on an interval [𝑎, 𝑏] and any collection of points 𝑥𝑖 ∈ [𝑎, 𝑏], 1 ≤ 𝑖 ≤ 𝑛, there is a point
𝜉 ∈ [𝑎, 𝑏] for which

𝑓(𝑐) = ∑𝑛
𝑖=1 𝑓(𝑥𝑖)

𝑛 , so
𝑛

∑
𝑖=1

𝑓(𝑥𝑖) = 𝑛𝑓(𝑐)

That is, the value of the function at 𝑐 is the average of its values at those other points.

Proof. The proof is rather similar to that of The Integral Mean Value Theorem in the previous section; essentially replacing
the integral there by a sum:
As 𝑓 is continuous on the closed, bounded interval [𝑎, 𝑏], the Extreme Value Theorem from calculus says that 𝑓 has a
minimum 𝐿 and a maximum 𝐻 on this interval. Each of the values 𝑓(𝑥𝑖) is in interval [𝐿, 𝐻] so their average is also:

𝑓(𝑥𝑖) ∈ [𝐿, 𝐻] and thus
∑𝑛

𝑖=1 𝑓(𝑥𝑖)
𝑛 ∈ [𝐿, 𝐻]

TheMean Value Theorem then says that 𝑓 attains this mean value for some 𝜉 ∈ [𝐿, 𝐻].

Completing the derivation of the error formulas for these composite rules

I will spell this out for the Composite Trapezoid Rule; it works very similarly for the “midpoint” case.
First, break the exact integral up as

𝐼 = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 =

𝑛
∑
𝑖=1

𝐼 (𝑖), where 𝐼 (𝑖) = ∫
𝑥𝑖

𝑥𝑖−1

𝑓(𝑥) 𝑑𝑥

Similarly,

𝑇𝑛 =
𝑛

∑
𝑖=1

𝑇 (𝑖)

where each 𝑇 (𝑖) is the Trapezoid Rule approximation of 𝐼 (𝑖):

𝑇 (𝑖) = 𝑓(𝑥𝑖−1) + 𝑓(𝑥𝑖)
2 ℎ

The error in 𝑇𝑛 is the sum of the errors in each piece:

𝐼 − 𝑇𝑛 =
𝑛

∑
𝑖=1

𝐼 (𝑖) −
𝑛

∑
𝑖=1

𝑇 (𝑖)

=
𝑛

∑
𝑖=1

(𝐼 (𝑖) − 𝑇 (𝑖))

=
𝑛

∑
𝑖=1

−ℎ3

12𝑓″(𝜉𝑖), 𝑥𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖]

= −ℎ3

12
𝑛

∑
𝑖=1

𝑓″(𝜉𝑖)

5.4. Definite Integrals, Part 2: The Composite Trapezoid and Midpoint Rules 193



Introduction to Numerical Methods and Analysis with Julia (draft)

Now we can use the above mean value result (with 𝑓″ in place of 𝑓) to replace the last sum above by 𝑛𝑓″(𝜉), some
𝜉 ∈ [𝑎, 𝑏], so that as claimed,

𝐼 − 𝑇𝑛 = −ℎ3

12𝑛𝑓″(𝜉), = −ℎ2

12(𝑏 − 𝑎)𝑓″(𝜉) = 𝑂(ℎ2),

using ℎ𝑛 = 𝑏 − 𝑎.

Another error formula, useful for Richardson Extrapolation

Starting from

𝐼 − 𝑇𝑛 = −ℎ3

12
𝑛

∑
𝑖=1

𝑓″(𝜉𝑖), = −ℎ2

12
𝑛

∑
𝑖=1

(𝑓″(𝜉𝑖)ℎ)

note that the sum in the second version is a Riemann sum for approximating the integral

𝐼″ ∶= ∫
𝑏

𝑎
𝑓″(𝑥) 𝑑𝑥, = [𝑓 ′(𝑥)]𝑏𝑎 = 𝑓 ′(𝑏) − 𝑓 ′(𝑎),

so it seems that

𝐼 − 𝑇𝑛 ≈ −𝑓 ′(𝑏) − 𝑓 ′(𝑎)
12 ℎ2, = 𝑂(ℎ2)

A virtue of this form is that now we have a good chance of evaluating the coefficient of ℎ2, so this given a “practical error
formula” when 𝑓 ′(𝑥) is known.
Another useful fact (not proven in these notes) is that the error for the basic Trapezoid rule can be computed with the
help of Taylor’s Theorem in a series:

𝑇1 = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = 𝐵2𝐷2𝑓(𝜉2)ℎ3 + 𝐵4𝐷4(𝜉4)ℎ5 + ⋯

(where 𝐵2 = 1/12 as seen above).
Putting the higher power terms into the above argument one can get

𝑇𝑛 = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 + 𝐵2[𝐷𝑓(𝑏) − 𝐷𝑓(𝑎)]ℎ2 + 𝐵4[𝐷3𝑓(𝑏) − 𝐷3𝑓(𝑎)]ℎ4 + ⋯ + 𝐵2𝑘[𝐷2𝑘−1𝑓(𝑏) − 𝐷2𝑘−1𝑓(𝑎)]ℎ2𝑘 + ⋯

= 𝑂(ℎ2) + 𝑂(ℎ4) + ⋯ + 𝑂(ℎ2𝑘)

so that

𝑇𝑛 = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 + 𝐷𝑓(𝑏) − 𝐷𝑓(𝑎)

12 ℎ2 + 𝑂(ℎ4)

The last form is the setup for Richardson extrapolation — and the previous one with a succession of “big-O” terms is the
setup for repeated Richardson extrapolation, to get a succession of approximations with errors 𝑂(ℎ2), then 𝑂(ℎ4), then
𝑂(ℎ6), and so on: Definite Integrals, Part 4: Romberg Integration
There are similar formulas for the Composite Midpoint Rule, like

𝐼 − 𝑀𝑛 = ℎ2

24(𝑏 − 𝑎)𝑓″(𝜉) = 𝐷𝑓(𝑏) − 𝐷𝑓(𝑎)
24 ℎ2 + 𝑂(ℎ4)

but we will see why the Composite Trapezoid Rule is far more useful for Richardson extrapolation.

194 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

5.4.3 Appendix: The Composite Left-hand Endpoint Rule, and its Error

The Composite Left-hand Endpoint Rule with 𝑛 sub-intervals of equal width ℎ = (𝑏 − 𝑎)/𝑛 is

𝐿𝑛 =
𝑛−1
∑
𝑖=0

𝑓(𝑥𝑖)ℎ, =
𝑛−1
∑
𝑖=0

𝑓(𝑎 + 𝑖ℎ)ℎ

To study its errors, start as with the Compound Trapezoid Rule: break the integral up as

𝐼 = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 =

𝑛
∑
𝑖=1

𝐼 (𝑖), where 𝐼 (𝑖) = ∫
𝑥𝑖

𝑥𝑖−1

𝑓(𝑥) 𝑑𝑥

and the approximation as

𝐿𝑛 =
𝑛

∑
𝑖=1

𝐿(𝑖)

where each 𝐿(𝑖) is the Left-hand Endpoint Rule approximation of 𝐼 (𝑖):

𝐿(𝑖) = 𝑓(𝑥𝑖−1)ℎ

Then the error in 𝐿𝑛 is again the sum of the errors in each piece:

𝐼 − 𝐿𝑛 =
𝑛

∑
𝑖=1

𝐼 (𝑖) −
𝑛

∑
𝑖=1

𝐿(𝑖)

=
𝑛

∑
𝑖=1

(𝐼 (𝑖) − 𝐿(𝑖))

=
𝑛

∑
𝑖=1

ℎ2

2 𝑓 ′(𝜉𝑖), 𝑥𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖]

= ℎ2

2
𝑛

∑
𝑖=1

𝑓 ′(𝜉𝑖)

The Generalized Mean Value Theorem— now with 𝑓 ′ in place of 𝑓 —allows us to replace the last sum above by 𝑛𝑓 ′(𝜉),
some 𝜉 ∈ [𝑎, 𝑏], so that as claimed,

𝐼 − 𝐿𝑛 = ℎ2

2 𝑛𝑓 ′(𝜉), = ℎ
2 (𝑏 − 𝑎)𝑓 ′(𝜉) = 𝑂(ℎ)

Remark 5.3
As with the Composite Trapezoid Rule, one can also get

𝐿𝑛 = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 + 𝑓(𝑏) − 𝑓(𝑎)

2 ℎ + 𝑂(ℎ2)

5.4. Definite Integrals, Part 2: The Composite Trapezoid and Midpoint Rules 195



Introduction to Numerical Methods and Analysis with Julia (draft)

5.5 Definite Integrals, Part 3: The (Composite) Simpson’s Rule and
Richardson Extrapolation

References:
• Sections 5.2.2 and 5.2.3 of Chapter 5 Numerical Differentiation and Integration in [Sauer, 2019].
• Sections 4.3 and 4.4 of Chapter 5 Numerical Differentiation and Integration in [Burden et al., 2016].

5.5.1 Introduction

The Composite Simpson’s Rule can be be derived in several ways. The traditional approach is to devise Simpson’s
Rule by approximating the integrand function with a colocating quadratic (using three equally spaced nodes) and then
“compounding”, as seen with the Trapezoid and Midpoint Rules.
We have already seen another approach: using a 2:1 weighted average of the Trapezoid and Midpoint Rules with th goal
of cancelling their 𝑂(ℎ2) error terms.
This section will show a third approach, based on Richardson extrapolation: this will set us up for Romberg Integration.

5.5.2 The Basic Simpson’s Rule by Richardson Extrapolation

From the section on The Composite Trapezoid and Midpoint Rules, we have

𝑇𝑛 = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 + 𝐷𝑓(𝑏) − 𝐷𝑓(𝑎)

12 ℎ2 + 𝑂(ℎ4), = 𝐼 + 𝑐2ℎ2 + 𝑂(ℎ4)

where 𝐼 is the integral to be approximated (the “Q” in the section on Richardson Extrapolation, and 𝑐2 = (𝐷𝑓(𝑏) −
𝐷𝑓(𝑎))/12.
Thus the “n form” of Richardson Extrapolation with 𝑝 = 2 gives a new approximation that I will call 𝑆2𝑛:

𝑆2𝑛 = 4𝑇2𝑛 − 𝑇𝑛
4 − 1

To start, look at the simplest case of this:

𝑆2 = 4𝑇2 − 𝑇1
3

Definfing ℎ = (𝑏 − 𝑎)/2, the ingredients are

𝑇1 = 𝑓(𝑎) + 𝑓(𝑏)
2 (𝑏 − 𝑎) = 𝑓(𝑎) + 𝑓(𝑏)

2 2ℎ = (𝑓(𝑎) + 𝑓(𝑏))ℎ

and

𝑇2 = [𝑓(𝑎)
2 + 𝑓(𝑎 + ℎ) + 𝑓(𝑏)

2 ] ℎ

so

𝑆2 = [2𝑓(𝑎) + 4𝑓(𝑎 + ℎ) + 2𝑓(𝑏)] − [𝑓(𝑎) + 𝑓(𝑏)]
3 ℎ, = 𝑓(𝑎) + 4𝑓(𝑎 + ℎ) + 𝑓(𝑏)

3 ℎ

which is the basic Simpson’s Rule. The subscript “2” is because this uses two intervals, with ℎ = (𝑏 − 𝑎)/2

196 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

5.5.3 Accuracy and Order of Precision of Simpson’s Rule

Rather than derive this the traditional way — by fitting a quadratic to the function values at 𝑥 = 𝑎, 𝑎 + ℎ and 𝑏 — this
can be confirmed “a postiori” by showing that the degree of precision is at least 2, so that it is exact for all quadratics.
And actually we get a bonus, thanks to some symmetry.
For 𝑓(𝑥) = 1, the exact integral is 𝐼 = 𝑏 − 𝑎, = 2ℎ, and also

𝑆2 = 1 + 4 × 1 + 1
3 ℎ, = 2ℎ

For 𝑓(𝑥) = 𝑥, the exact integral is 𝐼 = ∫𝑏
𝑎 𝑥 𝑑𝑥 = [𝑥2/2]𝑏𝑎 = (𝑏2 − 𝑎2)/2 = (𝑏 − 𝑎)(𝑏 + 𝑎)/2 = (𝑎 + 𝑏)ℎ

and

𝑆2 = 𝑎 + 4(𝑎 + 𝑏)/2 + 𝑏
3 ℎ = 𝑎 + 2(𝑎 + 𝑏) + 𝑏

3 ℎ = (𝑎 + 𝑏)ℎ

However, it is sufficient to traslate the domain to the symmetric interval [−ℎ, ℎ], so redo the 𝑓(𝑥) = 𝑥 case this easier
way:

The exact integral is ∫ℎ
−ℎ 𝑥 𝑑𝑥 = 0 (because the function is odd)

𝑆2 = −ℎ + 4 × 0 + ℎ
3 ℎ = 0

For 𝑓(𝑥) = 𝑥2, again do it just on the symmetric interval [−ℎ, ℎ]: the exact integral is ∫ℎ
−ℎ 𝑥2 𝑑𝑥 = [𝑥3/3]ℎ−ℎ = 2ℎ3/3

and

𝑆2 = (−ℎ)2 + 4 × 02 + ℎ2

3 ℎ = 2ℎ3/3

So the degree of precision is at least 2, as expected.
What about cubics? Check with 𝑓(𝑥) = 𝑥3, again on interval [−ℎ, ℎ].
Almost no calculation is needed: symmetry does it all for us:

• on one hand, the exact integral is zero due to the function being odd on a symmetric interval: ∫ℎ
−ℎ 𝑥3 𝑑𝑥 =

[𝑥4/4]ℎ−ℎ = 0
• on the other hand,

𝑆2 = (−ℎ)3 + 4 × 03 + ℎ3

3 ℎ = 0
The degree of precision is at least 3.
Our luck ends here, but looking at 𝑓(𝑥) = 𝑥4 is informative:
For 𝑓(𝑥) = 𝑥4,

• the exact integral is ∫ℎ
−ℎ 𝑥4 𝑑𝑥 = [𝑥5/5]ℎ−ℎ = 2ℎ5/5

• on the other hand

𝑆2 = (−ℎ)4 + 4 × 04 + ℎ4

3 ℎ = 2ℎ5/3

So there is a discrepancy of (4/15)ℎ5, = 𝑂(ℎ5).
This Simpson’s Rule has degree of precision 3: it is exact for all cubics, but not for all quartics.
The last result also indicate the order of error:

𝑆2 − 𝐼 = 𝑂(ℎ5)

5.5. Definite Integrals, Part 3: The (Composite) Simpson’s Rule and Richardson Extrapolation 197



Introduction to Numerical Methods and Analysis with Julia (draft)

Just as for the composite Trapezoid and Midpoint Rules, when we combine multiple simple Simpson’s Rule approx-
imations with 2𝑛 intervals each of width ℎ = (𝑏 − 𝑎)/(2𝑛), the error is roughly multiplied by 𝑛, so ℎ5 goes to
𝑛ℎ5, = (𝑏 − 𝑎)ℎ4, leading to

𝑆2𝑛 − 𝐼 = 𝑂(ℎ4)

5.5.4 Appendix: Deriving Simpson’s Rule by the Method of Undetermined Coeffi-
cients

We wish the determine the most accurate approximation of the form

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 ≈ [𝐶1𝑓(𝑎) + 𝐶2𝑓(𝑐) + 𝐶3𝑓(𝑏)] ℎ

where 𝑐 is the midpoint, 𝑐 = (𝑎 + 𝑏)/2
This wilk be done by the first, “hardest” method: inserting Taylor polynomial and error terms, but to make it a bit less
hard, we can consider just the symmetric case 𝑎 = −ℎ, 𝑏 = ℎ, ℎ = (𝑏 − 𝑎)/2 by making the change of variables
𝑥 → 𝑥 − 𝑐.
As we now know that this will be exact for cubics, use third order Tayloe polynomials:

𝑓(±ℎ) = 𝑓(0) ± 𝑓 ′(0)ℎ + 𝑓″(0)
2 ℎ2 ± 𝑓‴(0)

6 ℎ3 + 𝑓⁗(𝜉±)
24 ℎ4

(Note that the special values 𝜉± are in general different for the “+ℎ” and “−ℎ” cases.
As usual, gather terms with the same power of ℎ:

𝑆2 = ℎ𝑓(0)(𝐶1 + 𝐶2 + 𝐶3)
+ ℎ2𝑓 (1)(0)(−𝐶1 + 𝐶3)
+ ℎ3𝑓 (2)(0)(𝐶1/2 + 𝐶3/2)
+ ℎ4𝑓 (3)(0)(−𝐶1/6 + 𝐶3/6)
+ ℎ5(𝐶1𝑓 (4)(𝜉−) + 𝐶3𝑓 (4)(𝜉+))/24

The exact integral can also be computed with Taylor’s formula:

𝐼 = ∫
ℎ

−ℎ
𝑓(𝑥) 𝑑𝑥 = ∫

ℎ

−ℎ
[𝑓(0) + 𝐷𝑓(0)𝑥 + 𝐷2𝑓(0)

2 𝑥2 + 𝐷3𝑓(0)
6 𝑥3 + 𝐷4𝑓(24)

2 𝑥4 + 𝐷5𝑓(𝜉𝑥)
120 𝑥5] 𝑑𝑥

= 2ℎ𝑓(0) + 𝐷2𝑓(0)
3 ℎ3 + 𝐷3𝑓(0)

12 ℎ5 + 𝑂(ℎ6)

(Symmetry causes all the odd power integrals to valish.)
so the error is

𝑆2 − 𝐼 = ℎ𝑓(0)(𝐶1 + 𝐶2 + 𝐶3 − 2)
+ ℎ2𝐷𝑓(0)(−𝐶1 + 𝐶3)
+ ℎ3𝐷2𝑓(0)(𝐶1/2 + 𝐶3/2 − 1/3)
+ 𝑂(ℎ5)

The best possibility is setting the coeficients of ℎ, ℎ2 and ℎ3 to zero:

𝐶1 + 𝐶2 + 𝐶3 = 2
−𝐶1 + 𝐶3 = 0

𝐶1/2 + 𝐶3/2 = 1/3

198 Chapter 5. Derivatives and Definite Integrals



Introduction to Numerical Methods and Analysis with Julia (draft)

Symmetry helps, as the “ℎ2" equation −𝐶1 + 𝐶3 = 0 gives 𝐶3 = 𝐶1, leaving

𝐶1 = 1/3, 2𝐶1 + 𝐶2 = 2

and thus

𝐶1 = 𝐶3 = 1/3, 𝐶2 = 4/3

as claimed above.

5.6 Definite Integrals, Part 4: Romberg Integration

References:
• Section 5.3 Romberg Integration of [Sauer, 2019].
• Section 4.5 Romberg Integration of [Burden et al., 2016].

5.6.1 Introduction

Romberg Integration is based on repeated Richardson extrapolalation from the composite trapezoidal rule, starting with
one interval and repeatedly doubling. Our notation starts with

𝑅𝑖,0 = 𝑇2𝑖 , 𝑖 = 0, 1, 2, …

where

𝑇𝑛 = (𝑓(𝑎)
2 +

𝑛−1
∑
𝑘=1

𝑓(𝑎 + 𝑘ℎ) + 𝑓(𝑏)
2 ) ℎ, ℎ = 𝑏 − 𝑎

𝑛

and the second index will indicate the number of extapolation steps done (none so far!)
Actually we only need this 𝑇𝑛 formula for the single trapezoidal rule, to get

𝑅0,0 = 𝑇1 = 𝑓(𝑎) + 𝑓(𝑏)
2 (𝑏 − 𝑎),

because the most efficient way to get the other values is recursively, with

𝑇2𝑛 = 𝑇𝑛 + 𝑀𝑛
2

where 𝑀𝑛 is the composite midpoint rule,

𝑀𝑛 = ℎ
𝑛

∑
𝑘=1

𝑓(𝑎 + (𝑘 − 1/2)ℎ), ℎ = 𝑏 − 𝑎
𝑛

Extrapolation is then done with the formula

𝑅𝑖,𝑗 = 4𝑗𝑅𝑖,𝑗−1 − 𝑅𝑖−1,𝑗−1
4𝑗 − 1 , 𝑗 = 1, 2, … , 𝑖

which can also be expressed as

𝑅𝑖,𝑗 = 𝑅𝑖,𝑗−1 + 𝐸𝑖,𝑗−1, where 𝐸𝑖,𝑗−1 = 𝑅𝑖,𝑗−1 − 𝑅𝑖−1,𝑗−1
4𝑗 − 1 is an error estimate.

𝑅𝑖,1 = 𝑆2𝑛 = 4𝑇2𝑛 − 𝑇𝑛
4 − 1 , 𝑛 = 2𝑖−1

5.6. Definite Integrals, Part 4: Romberg Integration 199



Introduction to Numerical Methods and Analysis with Julia (draft)

5.6.2 An algorithm, in pseudocode

The above can now be arranged into a basic algorithm. It does a fixed number 𝑀 of levels of extrapolation so using 2𝑀

intervals; a refinement would be to use the above error estimate 𝐸𝑖,𝑗−1 as the basis for a stopping condition.

Algorithm 5.1 (Romberg Integration)
𝑛 ← 1
ℎ ← 𝑏 − 𝑎

𝑅0,0 = 𝑓(𝑎) + 𝑓(𝑏)
2 ℎ

for i from 1 to M:

𝑅𝑖,0 = (𝑅𝑖−1,0 + ℎ ∑𝑛
𝑘=1 𝑓(𝑎 + (𝑖 − 1/2)ℎ)) /2

for j from 1 to i:

𝑅𝑖,𝑗 = 4𝑗𝑅𝑖,𝑗−1 − 𝑅𝑖−1,𝑗−1
4𝑗 − 1

end for

𝑛 ← 2𝑛
ℎ ← ℎ/2

end for

200 Chapter 5. Derivatives and Definite Integrals



CHAPTER

SIX

MINIMIZATION

6.1 Finding theMinimumof a Function of One VariableWithout Using
Derivatives – under construction

References:
• Section 13.1 Unconstrained Optimization Without Derivatives of [Sauer, 2019], in particular sub-section 13.1.1
Golden Section Search.

• Section 11.1, One-Variable Case in Chapter 11 Optimization of [Chenney and Kincaid, 2012].

6.1.1 Introduction

The goal of this section is to find the minimum of a function 𝑓(𝑥) and more specifically to find its location: the argument
𝑝 such that 𝑓(𝑝) ≤ 𝑓(𝑥) for all 𝑥 in the domain of 𝑓 .
Several features are similar to what we have seen with zero-finding:

• Some restictions on the function 𝑓 are needed:
– with zero-finding, to guarantee existence of a solution, we needed at least an interval [𝑎, 𝑏] on which the
function is continuous and with a sign change between the endpoints;

– for minimization, the criterion for existence is simply an interval [𝑎, 𝑏] on which the function is continuous.
• With zero-finding, we needed to compare the values of the function at three points 𝑎 < 𝑐 < 𝑏 to determine a new,
smaller interval containing the root; with minimzation, we instead need to compare the values of the function at
four points 𝑎 < 𝑐 < 𝑑 < 𝑏 to determine a new, smaller interval containing the minimum.

• There are often good reasons to be able to do this without using derivatives.
As is often the case, a guarantee of a unique solution helps to devise a robust algorithm:

• to guarantee uniqueness of a zero in interval [𝑎, 𝑏], we needed an extra condition like the function beingmonotonic;
• to guarantee uniqueness of a minimum in interval [𝑎, 𝑏], the condition we use is being monomodal: The function
is decreasing near 𝑎, increasing near 𝑏, and changes between decreasing and increasing only once (which must
therefore happen at the minimum.)

So we assume from now on that the function is monomodal on the interval [𝑎, 𝑏].

201



Introduction to Numerical Methods and Analysis with Julia (draft)

6.1.2 Step 1: finding a smaller interval within [𝑎, 𝑏] that contains the minimum

As claimed above, three points are not enough: even if for 𝑎 < 𝑐 < 𝑏 we have 𝑓(𝑎) > 𝑓(𝑐) and 𝑓(𝑐) < 𝑓(𝑏), the
minimum could be either to the left or the right of 𝑐.
So instead, choose two internal points 𝑐 and 𝑑, 𝑎 < 𝑐 < 𝑑 < 𝑏.

• if 𝑓(𝑐) < 𝑓(𝑑), the function is increasing on at least part of the interval [𝑐, 𝑑], so the transition from decreasing to
increasing is to the left of 𝑑: the minimum is in [𝑎, 𝑑];

• if instead 𝑓(𝑐) > 𝑓(𝑑), the “mirror image” argument shows that the minimum is in [𝑐, 𝑏].
What about the borderline case when 𝑓(𝑐) = 𝑓(𝑑)? The monomodal function cannot be either increasing or decreasing
on all of [𝑐, 𝑑] so must first decrease and then increase: the minimum is in [𝑐, 𝑑], and so is in either of the above intervals.
So we almost have a first algorithm, except for the isue of choosing; given an interval [𝑎, 𝑏] on which function 𝑓 is
monomodal:

1. Choose two internal points 𝑐 and 𝑑, with 𝑎 < 𝑐 < 𝑑 < 𝑏
2. Evaluate 𝑓(𝑐) and 𝑓(𝑑).
3. If 𝑓(𝑐) < 𝑓(𝑑), replace the interval [𝑎, 𝑏] by [𝑎, 𝑑]; else replace it by [𝑐, 𝑏].
4. If the new interval is short enough to locate the minimum with sufficient accuracy (e.g. its length is less that twice

the error tolerance) stop; its midpoint is a sufficiently accurate approximate answer); othewise, repaeat from step
(1).

6.1.3 Step 2: choosing the internal points so that the method is guaranteed to con-
verge

There are a couple of details that need to be resolved:
(A) Deciding how to choose the internal points 𝑐 and 𝑑.
(B) Verifying that the interval does indeed shrink to arbitrarily small length after enough iterations, so that the algorithm
succeeds.
Once we have done that and got a working algorithm, there will be the issue of speed:
(C) Amongst the many ways that we could choose the internal points, finding one that (typically at least) is fastest, in the
sense of minimizing the number of functions evaluations needed.
For now, I will just describe one “naive” approach that works, but is not optimal for speed; Trisection:
Take 𝑐 and 𝑑 to divide the interval [𝑎, 𝑏] into three equal-width sub-intervals: 𝑐 = (2𝑎 + 𝑏)/3, 𝑑 = (𝑎 + 2𝑏)/3, so that
each of [𝑎, 𝑐], [𝑐, 𝑑] and [𝑑, 𝑏] are of length (𝑏 − 𝑎)/3.
Then the new interval is 2/3 as long as the previous one, and the errors shrink by a factor of (2/3)𝑘 after 𝑘 steps, eventually
getting as small as one wishes.

202 Chapter 6. Minimization



Introduction to Numerical Methods and Analysis with Julia (draft)

6.1.4 Step 3: choosing the internal points so that the method converges as fast as
possible

Coming soon: this leads to the Golden Section Search …

6.2 Finding the Minimum of a Function of Several Variables — Com-
ing Soon

References:
• Chapter 13Optimization of [Sauer, 2019], in particular sub-sections 13.2.2 Stepest Descent and 13.1.3Nelder-Mead.
• Chapter 11 Optimization of [Chenney and Kincaid, 2012].

6.2.1 Introduction

This future section will focus on two methods for computing the minimum (and its location) of a function 𝑓(𝑥, 𝑦, … ) of
several variables:

• Steepest Descent where the gradient is used iteratively to find the direction in which to search for a nw approxiate
lovaitoi wher 𝑓 has a lower value.

• The method of Nelder and Mead, which does not use derivatives.

6.2. Finding the Minimum of a Function of Several Variables — Coming Soon 203

https://en.wikipedia.org/wiki/Golden-section_search


Introduction to Numerical Methods and Analysis with Julia (draft)

204 Chapter 6. Minimization



CHAPTER

SEVEN

INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL
EQUATIONS

7.1 Basic Concepts and Euler’s Method

References:
• Sections 6.1.1 Euler’s Method in [Sauer, 2019].
• Section 5.2 Euler’s Method in [Burden et al., 2016].
• Sections 7.1 and 7.2 in [Chenney and Kincaid, 2012].

using PyPlot

7.1.1 The Basic ODE Initial Value Problem

We consider the problem of solving (approx4imately) the ordinary differential equation

𝑑𝑢
𝑑𝑡 = 𝑓(𝑡, 𝑢(𝑡)), 𝑎 ≤ 𝑡 ≤ 𝑏 (7.1)

with the initial condition

𝑢(𝑎) = 𝑢0 (7.2)

I will follow the common custom of referring to the independent variable as “time”.
For now, 𝑢(𝑡) is real-valued, but little will change when we later let it be vector-valued (and/or complex-valued).

Notation for the solution of an initial value problem

Sometimes, we need to be more careful and explicit in describing the function that solves the above initial value problem;
then the input parameters 𝑎 and 𝑢0 = 𝑢(𝑎) will be included of the function’s formula:

𝑢(𝑡) = 𝑢(𝑡; 𝑎, 𝑢0)

(It is standard mathematical convention to separate parameters like 𝑎 and 𝑢0 from variables like 𝑡 by putting the former
after a semicolon.

205



Introduction to Numerical Methods and Analysis with Julia (draft)

7.1.2 Examples

A lot of useful intuition comes from these four fairly simple examples.

Example (Integration)
If the derivative depends only on the independent variable 𝑡, so that

𝑑𝑢
𝑑𝑡 = 𝑓(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏 (7.3)

the solution is given by integration:

𝑢(𝑡) = 𝑢0 + ∫
𝑡

𝑎
𝑓(𝑠) 𝑑𝑠.

In particular, with 𝑢0 = 0 the value at 𝑏 is

𝑢(𝑡) = ∫
𝑏

𝑎
𝑓(𝑡) 𝑑𝑡,

and this gives us a back-door way to use numerical methods for solving ODEs to evaluate definite integrals.

Example (The simplest “real” ODE)
The simplest case with 𝑢 present in 𝑓 is 𝑓(𝑡, 𝑢) = 𝑓(𝑢) = 𝑢. But it does not hurt to add a constant, so:

𝑑𝑢
𝑑𝑡 = 𝑘𝑢, 𝑘 a constant. (7.4)

The solution is

𝑢(𝑡) = 𝑢0𝑒𝑘(𝑡−𝑎)

We will see that this simple example contains the essence of ideas relevant far more generally.

Example (A nonlinear equation, with solutions that blow-up in a finite time)
In the previous examples, 𝑓(𝑡, 𝑢) is linear in 𝑢 (consider 𝑡 as fixed); nonlinearities can lead to more difficult behavior. The
equation

𝑑𝑢
𝑑𝑡 = 𝑢2, 𝑢(𝑎) = 𝑢0 (7.5)

can be solved by separation of variables — or for now you can just verify the solution

𝑢(𝑡) = 1
𝑇 − 𝑡 , 𝑇 = 𝑎 + 1/𝑢0.

Note that if 𝑢0 > 0, the only exists for 𝑡 < 𝑇 . (The solution is also valid for 𝑇 > 0, but that part has no connection to
the initial data at 𝑡 = 𝑎.)

Example 7.3warns us that the IVPmight not bewell-posedwhen we set the interval [𝑎, 𝑏] in advance: all we can guarantee
in general is that a solution exists up to some time 𝑏, 𝑏 > 𝑎.

Example (A “stiff” equation with disparate time scales)

206 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

One common problem in practical situations is differential equations where some phenomena happen on a very fast time
scale, but only ever at very small amplitudes, so they have very little relevance to the overall solution. One example is
decriptions of some chemical reactions, where some reaction products (like free radicals) are producd in tiny quantities
and break down very rapidly, so they change on a very fast time scale but are scarcely relevant to the overall solution.
This disparity of time-sales is called stiffness, from the analogy of a mechanical system in which some components are
very stiff and so vibrate at very high frequencies, but typically only at very small amplitudes, or very quicky damped away,
so that they can often be safely described by assuming that those stiff parts are completely rigid — do not move at all.
One equation that illustrates this feature is

𝑑𝑢
𝑑𝑡 = − sin 𝑡 − 𝑘(𝑢 − cos 𝑡) (7.6)

where 𝑘 is large and positive. Its family of solutions is

𝑢(𝑡) = cos 𝑡 + 𝑐𝑒−𝑘(𝑡−𝑎)

with 𝑐 = 𝑢0 − cos(𝑎) for the initial value problem 𝑢(𝑎) = 𝑢0.
These all get close to cos 𝑡 quickly and then stay nearby, but with a rapid and rapidly decaying “transient” 𝑐𝑒−𝑘𝑡.
Many of the most basic and widely use numerical methods (including Euler’s Method thet we meet soon) need to use very
small time steps to handle that fast transient, even when it is very small because 𝑢0 ≈ 1.
On the other hand there are methods that “supress” these transients, allowing use of larger time steps while still getting an
accurate description of the main, slower, phenomena. The simplest of these is the Backward Euler Method that we will
see in a later section.

7.1.3 The Tangent Line Method, a.k.a. Euler’s Method

Once we know 𝑢(𝑡) (or a good approx4imation) at some time 𝑡, we also know the value of 𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) there; in
particular, we know that 𝑢(𝑎) = 𝑢0 and so 𝑢′(𝑎) = 𝑓(𝑎, 𝑢0).
This allows us to approx4imate 𝑢 for slightly larger values of the argument (which I will call “time”) using its tangent line:

𝑢(𝑎 + ℎ) ≈ 4𝑢(𝑎) + 𝑢′(𝑎)ℎ = 𝑢0 + 𝑓(𝑎, 𝑢0)ℎ for "small" ℎ

and more generally

𝑢(𝑡 + ℎ) ≈ 4𝑢(𝑡) + 𝑓(𝑡, 𝑢(𝑡))ℎ for "small" ℎ

This leads to the simplest approx4imation: choose a step size ℎ determining equally spaced times 𝑡𝑖 = 𝑎 + 𝑖ℎ and define
— recursively — a sequence of approx4imations 𝑈𝑖 ≈ 4𝑢(𝑡𝑖) with

𝑈0 = 𝑢0
𝑈𝑖+1 = 𝑈𝑖 + ℎ𝑓(𝑡𝑖, 𝑈𝑖))

If we choose a number of time steps 𝑛 and set ℎ = (𝑏−𝑎)/𝑛 for 0 ≤ 𝑖 ≤ 𝑛, the second equation is needed for 0 ≤ 𝑖 < 𝑛,
ending with 𝑈𝑛 ≈ 4𝑢(𝑡𝑛) = 𝑢(𝑏).
This “two-liner” does not need a pseudo-code description; instead, we can go directly to a rudimentary Julia function for
Euler’s Method:

7.1. Basic Concepts and Euler’s Method 207



Introduction to Numerical Methods and Analysis with Julia (draft)

function eulermethod(f, a, b, u_0, n)
# Solve du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0

h = (b-a)/n
t = range(a, b, n+1) # Note: "n" counts steps, so there are n+1 values for t.
u = zeros(n+1)
u[1] = u_0
for i in 1:n

u[i+1] = u[i] + f(t[i], u[i])*h
end
return (t, u)

end;

Exercise A

Show that for the integration case 𝑓(𝑡, 𝑢) = 𝑓(𝑡), Euler’s Method is the same as the Composite Left-hand Endpoint Rule,
as in the section Definite Integrals, Part 2: The Composite Trapezoid and Midpoint Rules

Solving for Example 7.1, an integration

# For integration of -sin(t): The exact solution is cos(t) + u_0
f1(t, u) = -sin(t);
u1(t, a, u_0) = cos(t) + (u_0 - cos(a));

# A helper function for rounding some output to four significant digits
approx4(x) = round(x, sigdigits=4);

a = 0.0
b = 3/4*pi
u_0 = 3.0
n = 20

(t, U) = eulermethod(f1, a, b, u_0, n)
u = u1.(t, a, u_0)

figure(figsize=[10,4])
title("The exact solution is u = cos(x) + $(u_0 - 1)")
plot(t, u, "g", label="Exact solution")
plot(t, U, ".:b", label="Euler's answer for h=$(approx4((b-a)/n))")
legend()
grid(true)

208 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Solving for Example 7.2, some exponential functions

# For solving du/dt = k u: The exact solution is u_0 exp(k t).
f2(t, u) = k*u;
# The parameter k may be defined later, so long as that is done before this functions␣

↪are used.
u2(t, a, u_0, k) = u_0 * exp(k*(t-a));

# You could experiment by changing these values here;
# for now I instead redefine them below.
k = 1.0
u_0 = 0.8
a = 0.0
b = 2.0
n = 40

(t, U) = eulermethod(f2, a, b, u_0, n)
u = u2.(t, a, u_0, k)

figure(figsize=[10,4])
title("The exact solution is u = $u_0 exp($k t)")
plot(t, u, "g", label="Exact solution")
plot(t, U, ".:b", label="Euler's answer for h=$(approx4((b-a)/n))")
legend()
grid(true)

7.1. Basic Concepts and Euler’s Method 209



Introduction to Numerical Methods and Analysis with Julia (draft)

# You could experiment by changing these values here.
k = -0.5
u_0 = 3.0
a = 0.0
b = 2.0

(t, U) = eulermethod(f2, a, b, u_0, n)
(t10, U10) = eulermethod(f2, a, b, u_0, 10)
(t20, U20) = eulermethod(f2, a, b, u_0, 20)
t = t20
u = u2.(t, a, u_0, k)

figure(figsize=[10,4])
title("The exact solution is y = $u_0 exp($k t)")
plot(t, u, "g", label="Exact solution")
plot(t10, U10, ".:r", label="Euler's answer for h=$(approx4((b-a)/10))")
plot(t20, U20, ".:b", label="Euler's answer for h=$(approx4((b-a)/20))")
legend()
grid(true)

210 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Solving for Example 7.3: solutions that blow up

f3(t, u) = u^2
# The solution is u(t) = 1/((a + 1/u_0) - t), = 1/(T-t) with T = a + 1/u_0
u3(t, a, u_0) = 1.0 / ((a + 1.0/u_0) - t);

a = 0.0
b = 0.9
u_0 = 1.0

(t100, U100) = eulermethod(f3, a, b, u_0, 100)
(t200, U200) = eulermethod(f3, a, b, u_0, 200)
t = t200
u = u3.(t, a, u_0)

T = a + 1/u_0

figure(figsize=[10,4])
title("The exact solution is u = 1/($T - t)")
plot(t, u, "g", label="Exact solution")
plot(t100, U100, ".:r", label="Euler's answer for h=$(approx4((b-a)/100))")
plot(t200, U200, ".:b", label="Euler's answer for h=$(approx4((b-a)/200))")
legend()
grid(true)

There is clearly a problem when 𝑡 reaches 1; let us explore that:

a = 0.0
b = 0.999
u_0 = 1.0
n = 200

(t, U) = eulermethod(f3, a, b, u_0, n)
# More t values are needed to get a good graph of the exact solution near the␣

↪vertical asymptote:
tplot = range(a, b, 1000)
u = u3.(tplot, a, u_0)

(continues on next page)

7.1. Basic Concepts and Euler’s Method 211



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

T = a + 1/u_0

figure(figsize=[10,4])
title("The exact solution is u = 1/($T - t)")
plot(tplot, u, "g", label="Exact solution")
plot(t, U, ":b", label="Euler's answer for h=$(approx4((b-a)/n))")
legend()
grid(true)

Clearly Euler’s method can never produce the vertical asymptote.
The best we can do is improve accuracy by using more, smaller time steps:

b= 0.999
n = 10_000; # Julia note: underscores can be used in numbers for readability, like␣

↪commas (or spaces in some countries)

(t, U) = eulermethod(f3, a, b, u_0, n)
tplot = range(a, b, 1000)
u = u3.(tplot, a, u_0)
T = a + 1/u_0

figure(figsize=[10,4])
title("The exact solution is u = 1/($T - t)")
plot(tplot, u, "g", label="Exact solution")
plot(t, U, ":b", label="Euler's answer for h=$(approx4((b-a)/n))")
legend()
grid(true)

212 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Solving for Solving for Example 7.4, a stiff ODE

f4(t, u) = -sin(t) - k*(u - cos(t));
# The parameter k may be defined later, so long as that is done before this function␣

↪is used.
# The general solution is u(t) = u(t; a, u_0) = cos t + (u_0 - cos(a)) e^(k (a-t))
u4(t, a, u_0, k) = cos(t) + (u_0 - cos(a)) * exp(k*(a-t));

With enough steps (small enough step size ℎ), all is well:

a = 0.0
b = 2pi # One period
u_0 = 2.0
k = 40.0
n = 400

(t, U) = eulermethod(f4, a, b, u_0, n)
u = u4.(t, a, u_0, k)

figure(figsize=[10,4])
title("The exact solution is u = cos t + $(u_0-1) exp(-$k t)")
plot(t, u, "g", label="Exact solution for k=$k")
plot(t, U, ":b", label="Euler's answer for h=$(approx4((b-a)/n))")
legend()
grid(true);

7.1. Basic Concepts and Euler’s Method 213



Introduction to Numerical Methods and Analysis with Julia (draft)

However, with large steps (still small enough to handle the cos 𝑡 part), there is a catastrophic failure, with growing oscil-
lations.
As we will see, these are a characteristic feature of instability.

n = 124

(t, U) = eulermethod(f4, a, b, u_0, n)
u = u4.(t, a, u_0, k)

figure(figsize=[10,4])
title("The exact solution is u = cos t + $(u_0-1) exp(-$k t)")
plot(t, u, "g", label="Exact solution for k=$k")
plot(t, U, ".:b", label="Euler's answer for h=$(approx4((b-a)/n))")
legend()
grid(true);

To show that the 𝑘 part is the problem, reduce 𝑘 while leaving the rest unchanged:

214 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

k = 10.0

(t, U) = eulermethod(f4, a, b, u_0, n)
u = u4.(t, a, u_0, k)

figure(figsize=[10,4])
title("The exact solution is u = cos t + $(u_0-1) exp(-$k t)")
plot(t, u, "g", label="Exact solution for k=$k")
plot(t, U, ".:b", label="Euler's answer for h=$(approx4((b-a)/n))")
legend()
grid(true);

Variable Time Step Sizes ℎ𝑖 (just a preview)

It is sometime useful to adjust the time step size; for example reducing it when the derivative is larger, (as happens in
Example 3 above). This gives a slight variant, now expressed in pseudo-code:
Input: 𝑓 , 𝑎, 𝑏, 𝑛 𝑡0 = 𝑎 𝑈0 = 𝑢0 for i from 1 to n Chooseℎ𝑖 somehow 𝑡𝑖 = 𝑡𝑖−1+ℎ𝑖 𝑈𝑖 = 𝑈𝑖−1+ℎ𝑖𝑓(𝑡𝑖−1, 𝑈𝑖−1)
end
In a later section, we will see how to estimate errors within an algorithm, and then how to use such error estimates to
guide the choice of step size.

Error Analysis for the Canonical Test Case, 𝑢′ = 𝑘𝑢.

A great amount of intuition about numerical methods for solving ODE IVPs comes from that “simplest nontrivial exam-
ple”, number 2 above. We can solve it with constant step size ℎ, and thus study its errors and accuracy. The recursion
relation is now

𝑈𝑖 = 𝑈𝑖−1 + ℎ𝑘𝑈𝑖−1 = 𝑈𝑖−1(1 + ℎ𝑘),
with solution

𝑈𝑖 = 𝑢0(1 + ℎ𝑘)𝑖

For comparison, the exact solution of this ODE IVP is

𝑢(𝑡𝑖) = 𝑢0𝑒𝑘(𝑡𝑖−𝑎) = 𝑢0𝑒𝑘𝑖ℎ = 𝑢0(𝑒𝑘ℎ)𝑖

7.1. Basic Concepts and Euler’s Method 215



Introduction to Numerical Methods and Analysis with Julia (draft)

So each is a geometric series: the difference is that the growth factor is 𝐺 = (1 + ℎ𝑘) for Euler’s method, vs 𝑔 = 𝑒𝑘ℎ =
1 + ℎ𝑘 + (ℎ𝑘)2/2 + ⋯ = 1 + ℎ𝑘 + 𝑂(ℎ2) for the ODE.
Ths deviation at each time step is 𝑂(ℎ2), suggesting that by the end 𝑡 = 𝑏, at step 𝑛, the error will be 𝑂(𝑛ℎ2) =
𝑂 (𝑏 − 𝑎

ℎ ℎ2) = 𝑂(ℎ).

This is in fact what happens, but to verify that, we must deal with the challenge that once an error enters at one step, it is
potentially amplified at each subsequent step, so the errors introduced at each step do not simply get summed like they
did with definite integrals.

Global Error and Local (Truncation) Error

Ultimately, the error we need to understand is the global error: at step 𝑖,

𝐸𝑖 = 𝑢(𝑡𝑖) − 𝑈𝑖

We will approach this by first considering the new error added at each step, the local truncation error (or discretization
error).
At the first step this is the same as above:

𝑒1 = 𝑢(𝑡1) − 𝑈1 = 𝑢(𝑎 + ℎ) − 𝑈1

However at later steps we compare the results 𝑈𝑖+1 to what the solution would be if it were exact at the start of that step:
that is, if 𝑈𝑖 were exact.
Using the notation 𝑢(𝑡; 𝑡𝑖, 𝑈𝑖) introduced above for the solution of the ODEwith initial condition 𝑢(𝑡𝑖) = 𝑈𝑖, the location
truncation error at step 𝑖 is the discrepancy at time 𝑡𝑖+1 between what Euler’s method and the exact solution give when
both start at that point (𝑡𝑖, 𝑈𝑖):

𝑒𝑖 = 𝑢(𝑡; 𝑡𝑖, 𝑈𝑖) − 𝑈𝑖+1

Error propagation in 𝑢′ = 𝑘𝑢, 𝑘 ≥ 0.

After one step, 𝐸1 = 𝑢(𝑡1) − 𝑈1 = 𝑒1.
At step 2,

𝐸2 = 𝑢(𝑡2) − 𝑈2 = (𝑢(𝑡2) − 𝑢(𝑡2, 𝑡1, 𝑈1) + (𝑢(𝑡2, 𝑡1, 𝑈1) − 𝑈2) = (𝑢(𝑡2) − 𝑢(𝑡2, 𝑡1, 𝑈1) + 𝑒2

The first term is the difference at 𝑡 = 𝑡2 of two solutions with values at 𝑡 = 𝑡1 being 𝑢(𝑡1) and 𝑈1 respectively. As the
ODE is linear and homogeneous, this is the solution of the same ODE with value at 𝑡 = 𝑡1 being 𝑢(𝑡1) − 𝑈1, which is
𝑒1: that solution is 𝑒1𝑒𝑦(𝑡−𝑡1 , so at 𝑡 = 𝑡2 it is 𝑒1𝑒𝑘ℎ. Thus the global error after two steps is

𝐸2 = 𝑒2 + (𝑒𝑘ℎ)𝑒1 ∶

the error from the previous step has been amplified by the growth factor 𝑔 = 𝑒𝑘ℎ:

𝐸2 = 𝑒2 + 𝑔𝑒1 ∶

This continues, so that

𝐸3 = 𝑒3 + 𝑔𝐸1 = 𝑒3 + 𝑔(𝑒2 + 𝑔𝑒1) = 𝑒3 + 𝑔𝑒2 + 𝑔2𝑒1

and so on, leading to
$𝐸𝑖 = 𝑒𝑖 + 𝑔𝑒𝑖−1 + 𝑔2𝑒𝑖−2 + ⋯ + 𝑔𝑖−1𝑒1$.

216 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Bounding the local truncation errors …

To get a bound on the global error from the formula above, we first need a bound on the local truncation errors 𝑒𝑖.
Taylor’s theorem gives 𝑒𝑘ℎ = 1 + 𝑘ℎ + 𝑒𝑘𝜉(𝑘ℎ)2/2, 0 < 𝜉 < 𝑘ℎ, so

𝑒𝑖 = 𝑈𝑖𝑒𝑘ℎ − 𝑈𝑖(1 + 𝑘ℎ) = 𝑈𝑖(𝑒𝑘𝜉ℎ2/2)

and thus

|𝑒𝑖| ≤ |𝑈𝑖|
𝑒𝑘ℎ

2 ℎ2

Also, since 1+𝑘ℎ < 𝑒𝑘ℎ, |𝑈𝑖| < |𝑢(𝑡𝑖)| = |𝑢0|𝑒𝑘(𝑡𝑖−𝑎), and we only need this to the beginning of the last step, 𝑖 ≤ 𝑛−1,
for which

|𝑈𝑖| < |𝑢0|𝑒𝑘(𝑏−ℎ−𝑎)

Thus

|𝑒𝑖| ≤ |𝑢0|𝑒𝑘(𝑏−ℎ−𝑎)𝑒𝑘ℎ

2 ℎ2 = |𝑢0𝑒𝑘(𝑏−𝑎)|
2 ℎ2

That is,

|𝑒𝑖| ≤ 𝐶ℎ2 where 𝐶 ∶= |𝑢0𝑒𝑘(𝑏−𝑎)|
2

… and using this to complete the bound on the global truncation error

Using this bound on the local errors 𝑒𝑖 in the above sum for the global error 𝐸𝑖,

|𝐸𝑖| ≤ 𝐶ℎ2(1 + 𝑔 + ⋯ 𝑔𝑖−1) = 𝐶 𝑔𝑖 − 1
𝑔 − 1 ℎ2

Since 𝑔𝑖 = 𝑒𝑘ℎ𝑖 = 𝑒𝑘(𝑡𝑖−𝑎) and the denominator 𝑔 − 1 = 𝑒𝑘ℎ − 1 > 𝑘ℎ, we get

|𝐸𝑖| ≤ 𝐶 𝑒𝑘(𝑡𝑖−𝑎) − 1
𝑘ℎ ℎ2 ≤ |𝑢0𝑒𝑘(𝑏−𝑎)|

2
𝑒𝑘(𝑡𝑖−𝑎) − 1

𝑘 ℎ, = 𝑂(ℎ)

Note that this global error formula is bulilt from three factors:

• The first is the constant |𝑢0𝑒𝑘(𝑏−𝑎)|
2 which is roughly half of the maximum value of the exact solution over the

interval [𝑎, 𝑏].

• The second 𝑒𝑘(𝑡𝑖−𝑎) − 1
𝑘 depends on 𝑡, and

• The third is ℎ, showing the overall order of accuracy: the overall absolute error is 𝑂(ℎ), so first order.

A more general error bound

A very similar result applies to the solution 𝑢(𝑡; 𝑎, 𝑢0) of the more general initial value problem

𝑑𝑢
𝑑𝑡 = 𝑓(𝑡, 𝑢), 𝑢(𝑎) = 𝑢0

7.1. Basic Concepts and Euler’s Method 217



Introduction to Numerical Methods and Analysis with Julia (draft)

so long as the function 𝑓 is “somewhat well-behaved” in that it satisfies a so-called Lipschitz Condition: that there is some
constant 𝐾 such that

∣𝜕𝐹
𝜕𝑢 (𝑡, 𝑢)∣ ≤ 𝐾

for the relevant time values 𝑎 ≤ 𝑡 ≤ 𝑏.
(Aside: As you might have seen in a course on differential equations, such a Lipschitz condition is necessary to even
guarantee that the initial value problem has a unique solution, so it is a quite reasonable requirement.)
Then this constant 𝐾 plays the part of the exponential growth factor 𝑘 above:
first one shows that the local trunction error is bounded by

|𝑒𝑖| ≤ 𝐶ℎ2 where now 𝐶 ∶= |𝑢0𝑒𝐾(𝑏−𝑎)|
2 ;

then calculating as above bounds the global truncation error with

|𝐸𝑖| ≤ |𝑢0𝑒𝐾(𝑏−𝑎)|
2

𝑒𝐾(𝑡𝑖−𝑎) − 1
𝑘 ℎ, = 𝑂(ℎ)

There is much room for improvement

As with definite integrals, this is not very impressive, so in the next section on Runge-Kutta Methodswe will explore several
widely used methods that improve to second order and then fourth order accuracy. Later, we will see how to get even
higher orders.
But first, we can illustrate how this exponential growth of errors looks in some examples, and coapr the the better behaved
errors in definite integrals.
This will be done by looking at the effect of a small change in the initial value, to simulate an error that arises there.

Error propagation for Example 7.1

a = 0.0
b = 2pi
u_0 = 1.0 # Original value
n = 100

(t, U) = eulermethod(f1, a, b, u_0, n);

But now “perturb” the initial value in all cases by this much:

delta_u_0 = 0.1
(t, U_perturbed) = eulermethod(f1, a, b, u_0+delta_u_0, n)
u = u1.(t, a, u_0);

figure(figsize=[10,4])
title(L"The solution before perturbing $u(0)$ was $u = \cos(x)$")
plot(t, u, "g", label="Original exact solution")
plot(t, U, ".:b", label="Euler's answer before perturbation")
plot(t, U_perturbed, "r:", label="Euler's answer after perturbation")
legend()
grid(true)

218 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

This just shifts all the 𝑢 values up by the perturbation of 𝑢0.

Error propagation for Example 7.2

k = 1.0
a = 0.0
b = 2.0
u_0 = 1.0 # Original value
delta_u_0 = 0.1
n = 100

(t, U) = eulermethod(f2, a, b, u_0, n)
(t, U_perturbed) = eulermethod(f2, a, b, u_0 + delta_u_0, n)
u = u2.(t, a, u_0, k)

figure(figsize=[10,4])
title(L"The solution before perturbing $u(0)$ was $u = {u_0} \, \exp({k} \, t)$")
plot(t, u, "g", label="Original exact solution")
plot(t, U, ".:b", label="Euler's answer before perturbation")
plot(t, U_perturbed, ".:r", label="Euler's answer after perturbation")
legend()
grid(true)

7.1. Basic Concepts and Euler’s Method 219



Introduction to Numerical Methods and Analysis with Julia (draft)

Graphing the error shows its exponential growth:

figure(figsize=[10,4])
title("Error")
plot(t, u - U_perturbed, ".:")
grid(true)

7.2 Runge-Kutta Methods

References:
• Sections 6.4 Runge-Kutta Methods and Applicaitons in [Sauer, 2019].
• Section 5.4 Runge-Kutta Methods in [Burden et al., 2016].
• Sections 7.1 and 7.2 in [Chenney and Kincaid, 2012].

220 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

using PyPlot

7.2.1 Introduction

The original Runge-Kutta method is the fourth order accurate one to be described below, which is still used a lot, though
with some modifications.
However, the name is now applied to a variety of methods based on a similar strategy, so first, here are a few simpler
methods, all of some value, at least for small, low precision calculations.

7.2.2 Euler’s Method as a Runge-Kutta method

The simplest of all methods of this general form is Euler’s method. To set up the notation to be used below, rephrase it
this way:
To get from (𝑡, 𝑢) to an approximation of (𝑡 + ℎ, 𝑢(𝑡 + ℎ)), use the approximation

𝐾1 = ℎ𝑓(𝑡, 𝑢)
𝑢(𝑡 + ℎ) ≈ 𝑢 + 𝐾1

7.2.3 Second order Runge-Kutta methods

We have seen that the global error of Euler’s method is 𝑂(ℎ): it is only first order accurate. This is often insufficient, so
it is more common even for small, low precision calculation to use one of several second order methods:

The Explicit Trapezoid Method (a.k.a. the Improved Euler method or Huen’s method)

One could try to adapt the trapezoid method for integrating 𝑓(𝑡) to solve 𝑑𝑢/𝑑𝑡 = 𝑓(𝑡)

𝑢(𝑡 + ℎ) = 𝑢(𝑡) + ∫
𝑡+ℎ

𝑡
𝑓(𝑠)𝑑𝑠 ≈ 𝑢(𝑡) + ℎ𝑓(𝑡) + 𝑓(𝑡 + ℎ)

2

to solving the ODE 𝑑𝑢/𝑑𝑡 = 𝑓(𝑡, 𝑢) but there is a problem that needs to be overcome:
we get

𝑢(𝑡 + ℎ) ≈ 𝑢(𝑡) + ℎ𝑓(𝑡, 𝑢(𝑡)) + ℎ𝑓(𝑡 + ℎ, 𝑢(𝑡 + ℎ))
2

and inserting the values 𝑈𝑖 ≈ 𝑢(𝑡𝑖) and so on gives

𝑈𝑖+1 = 𝑈𝑖 + ℎ𝑓(𝑡𝑖, 𝑈𝑖) + 𝑓(𝑡𝑖+1, 𝑈𝑖+1))
2

This is known as the Implicit Trapezoid Method, because the value 𝑈𝑖+1 that we seek appears at the right-hand side
too: we only have an implicit formula for it.
On one hand, one can in fact use this formula, by solving the equation at each time step for the unknown 𝑈𝑖+1; for
example, one can use methods seen in earlier sections such as fixed point iteration or the secant method.
We will return to this in a later section; however, for now we get around this more simply by inserting an approximation
at right — the only one we know so far, given by Euler’s Method. That is:

• replace 𝑢(𝑡 + ℎ) at right by the tangent line approximation 𝑢(𝑡 + ℎ) ≈ 𝑢(𝑡) + ℎ𝑓(𝑡, 𝑢(𝑡)), giving

7.2. Runge-Kutta Methods 221



Introduction to Numerical Methods and Analysis with Julia (draft)

𝑢(𝑡 + ℎ) ≈ 𝑢(𝑡) + ℎ𝑓(𝑡, 𝑢(𝑡)) + 𝑓(𝑡 + ℎ, 𝑢(𝑡) + ℎ𝑓(𝑡, 𝑢(𝑡)))
2

and for the formulas in terms of the 𝑈𝑖, replace 𝑈𝑖+1 at right by 𝑈𝑖+1 ≈ 𝑈𝑖 + ℎ𝑓(𝑡𝑖, 𝑈𝑖), giving

𝑈𝑖+1 = 𝑈𝑖 + ℎ𝑓(𝑡𝑖, 𝑈𝑖) + 𝑓(𝑡𝑖+1, 𝑈𝑖 + ℎ𝑓(𝑡𝑖, 𝑈𝑖))
2

This is the Explicit Trapezoid Method.
It is convenient to break this down into two stages, one for each evaluation of 𝑓(𝑡, 𝑢):

𝐾1 = ℎ𝑓(𝑡, 𝑢)
𝐾2 = ℎ𝑓(𝑡 + ℎ, 𝑢 + 𝐾1)

𝑢(𝑡 + ℎ) ≈ 𝑢 + 1
2(𝐾1 + 𝐾2)

For equal sized time steps, this leads to

Algorithm 7.1 (The Explicit Trapezoid Method)

𝑈0 = 𝑢0

𝑈𝑖+1 = 𝑈𝑖 + 1
2(𝐾1 + 𝐾2),

where
𝐾1 = ℎ𝑓(𝑡𝑖, 𝑈𝑖)
𝐾2 = ℎ𝑓(𝑡𝑖+1, 𝑈𝑖 + 𝐾1)

We will see that, despite the mere first order accuracy of the Euler approximation used in getting 𝐾2, this method is
second order accurate; the key is the fact that any error in the approximation used for 𝑓(𝑡 + ℎ, 𝑢(𝑡 + ℎ)) gets multiplied
by ℎ.
See Exercise 1

function explicittrapezoid(f, a, b, u_0, n; demomode=false)
# Use the Explict Trapezoid Method (a.k.a Improved Euler) to solve
# du/dt = f(t, u)
# for t in [a, b], with initial value u(a) = u_0

h = (b-a)/n
t = range(a, b, n+1) # Note: "n" counts steps, so there are n+1 values for t.
u = zeros(n+1)
u[1] = u_0
for i in 1:n

K_1 = f(t[i], u[i])*h
K_2 = f(t[i]+h, u[i]+K_1)*h
u[i+1] = u[i] + (K_1 + K_2)/2.0

end
return (t, u)

end;

As always, this function can now also be imported from module NumericalMethods with

include("NumericalMethods.jl")
using .NumericalMethods: explicitTrapezoid

222 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Examples

For all methods in this section, we will solve for versions of Example 7.2 and Example 7.4 in Basic Concepts and Euler’s
Method.

𝑑𝑢
𝑑𝑡 = 𝑓1(𝑡, 𝑢) = 𝑘𝑢 (7.7)

with general solution

𝑢(𝑡) = 𝑢1(𝑡; 𝑎, 𝑢0, 𝑘) = 𝑢0𝑒𝑘(𝑡−𝑎) (7.8)

and
𝑑𝑢
𝑑𝑡 = 𝑓2(𝑡, 𝑢) = 𝑘(cos(𝑡) − 𝑢) − sin(𝑡) (7.9)

with general solution

𝑢(𝑡) = 𝑢2(𝑡; 𝑎, 𝑢0, 𝑘) = cos 𝑡 + 𝑐𝑒−𝑘(𝑡−𝑎), 𝑐 = 𝑢0 − cos(𝑎) (7.10)

For comparison to Euler’s Method, the same examples are done with it below.

# A helper function for rounding some output to four significant digits
approx(x) = round(x, sigdigits=4);

Example 7.5
Let us first solve the simple ODE (7.7) from Example 7.2.

f1(t, u) = k*u
# The simplest "genuine" ODE, (not just integration):
# The solution is u(t) = u(t; a, u_0) = u_0 exp(t-a)
u1(t, u_0, k) = u_0 * exp(k*(t-a));

a = 1.0
b = 3.0
u_0 = 2.0
k = 1.5
n = 40

(t, U) = explicittrapezoid(f1, a, b, u_0, n; demomode=true)
u = u1.(t, u_0, k)
figure(figsize=[10,4])
title("Solving du/dt = $(k)u, u($a)=$u_0 by the Explicit Trapezoid Method")
plot(t, u, "g", label="Exact solution")
plot(t, U, ".:b", label="Solution with h=$(approx(b-a)/n)")
legend()
grid(true)

figure(figsize=[10,4])
title("Error")
plot(t, u - U, ".:")
grid(true)

7.2. Runge-Kutta Methods 223



Introduction to Numerical Methods and Analysis with Julia (draft)

Example 7.6
Solve the stiff ODE (7.9) from Example 7.4.

f2(t, u) = k*(cos(t) - u) - sin(t)
# A simple more "generic" test case, with f(t, u) depending on both variables.
# The general solution is u(t) = u(t; a, u_0) = cos t + (u_0 - cos(a)) e^(k (a-t))
u2(t, a, u_0, k) = cos(t) + (u_0 - cos(a)) * exp(k*(a-t));

a = 1.0
b = a + 4pi # Two periods
u_0 = 2.0
k = 2.0
n = 80

(t, U) = explicittrapezoid(f2, a, b, u_0, n)
u = u2.(t, a, u_0, k)

(continues on next page)

224 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

figure(figsize=[10,4])
title("Solving du/dt = $k(cos(t) - u) - sin(t), u($a)=$u_0 by the Explicit Trapezoid␣

↪Method")
plot(t, u, "g", label="Exact solution")
plot(t, U, ".:b", label="Solution with h=$(approx((b-a)/n))")
legend()
grid(true)

figure(figsize=[10,4])
title("Error")
plot(t, u - U, ".:")
grid(true)

7.2. Runge-Kutta Methods 225



Introduction to Numerical Methods and Analysis with Julia (draft)

The Explicit Midpoint Method (a.k.a. Modified Euler)

If we start with the Midpoint Rule for integration in place of the Trapezoid Rule, we similarly get an approximation

𝑢(𝑡 + ℎ) ≈ 𝑢(𝑡) + ℎ𝑓(𝑡 + ℎ/2, 𝑢(𝑡 + ℎ/2))

This has the slight extra complicatio that it involves three values of 𝑢 including 𝑢(𝑡 + ℎ/2) which we are not trying to
evaluate. We deal with that by making yet another approximation, using an average of 𝑢 values:

𝑢(𝑡 + ℎ/2) ≈ 𝑢(𝑡) + 𝑢(𝑡 + ℎ)
2

leading to

𝑢(𝑡 + ℎ) ≈ 𝑢(𝑡) + ℎ𝑓 (𝑡 + ℎ/2, 𝑢(𝑡) + 𝑢(𝑡 + ℎ)
2 )

and in terms of 𝑈𝑖 ≈ 𝑢(𝑡𝑖), the Implicit Midpoint Method

𝑈𝑖+1 = 𝑈𝑖 + ℎ𝑓 (𝑡 + ℎ/2, 𝑈𝑖 + 𝑈𝑖+1
2 )

We will see in a later section that this is a particularly useful method in some situations, such as long-time solutions of
ODEs that describe the motion of physical systems with conservation of momentum, angular momentum and kinetic
energy.
However, for now we again seek a more straightforward explicit method; using the same tangent line approximation
strategy as above gives

𝐾1 = ℎ𝑓(𝑡, 𝑢)
𝐾2 = ℎ𝑓(𝑡 + ℎ/2, 𝑢 + 𝐾1/2)

𝑢(𝑡 + ℎ) ≈ 𝑢 + 𝐾2

and thus for equal-sized time steps

Algorithm 7.2 (The Explicit Midpoint Method)

𝑈0 = 𝑢0
𝑈𝑖+1 = 𝑈𝑖 + 𝐾2

where
𝐾1 = ℎ𝑓(𝑡𝑖, 𝑈𝑖)
𝐾2 = ℎ𝑓(𝑡𝑖 + ℎ/2, 𝑈𝑖 + 𝐾1/2)

See Exercise 2
See Exercise 3

function explicitmidpoint(f, a, b, u_0, n; demomode=false)
# Use the Explicit Midpoint Method (a.k.a Modified Euler) to solve
# du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0

h = (b-a)/n
t = range(a, b, n+1) # Note: "n" counts steps, so there are n+1 values for t.

(continues on next page)

226 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

u = zeros(length(t))
u[1] = u_0
for i in 1:n

K_1 = f(t[i], u[i])*h
K_2 = f(t[i]+h/2, u[i]+K_1/2)*h
u[i+1] = u[i] + K_2

end
return (t, u)

end;

Again, available for import with

include("NumericalMethods.jl")
import .NumericalMethods: explicitmidpoint

Examples

a = 1.0
b = 3.0
u_0 = 2.0
k = 1.5
n = 50

(t, U) = explicitmidpoint(f1, a, b, u_0, n; demomode=true)
u = u1.(t, u_0, k)
figure(figsize=[10,4])
title("Solving du/dt = $(k)u, a=$a, u(a)=$u_0 by the Explicit Midpoint Method")
plot(t, u, "g", label="Exact solution")
plot(t, U, ".:b", label="Solution with h=$(approx((b-a)/n))")
legend()
grid(true)

figure(figsize=[10,4])
title("Error")
plot(t, u - U, ".:")
grid(true)

7.2. Runge-Kutta Methods 227



Introduction to Numerical Methods and Analysis with Julia (draft)

a = 1.0
b = a + 4pi # Two periods
u_0 = 2.0
k = 2.0
n = 80

(t, U) = explicitmidpoint(f2, a, b, u_0, n)
u = u2.(t, a, u_0, k)
figure(figsize=[10,4])
title("Solving du/dt = $k(cos(t) - u) - sin(t), u($a)=$u_0 by the Explicit Midpoint␣

↪Method")
plot(t, u, "g", label="Exact solution")
plot(t, U, ".:b", label="Solution with h=$(approx((b-a)/n))")
legend()
grid(true)

figure(figsize=[10,4])
title("Error")
plot(t, u - U, ".:")
grid(true)

228 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

7.2.4 The “Classical”, Fourth Order Accurate, Runge-Kutta Method

This is the original Runge-Kutta method:

Algorithm 7.3 (The Runge-Kutta Method)

𝐾1 = ℎ𝑓(𝑡, 𝑢)
𝐾2 = ℎ𝑓(𝑡 + ℎ/2, 𝑢 + 𝐾1/2)
𝐾3 = ℎ𝑓(𝑡 + ℎ/2, 𝑢 + 𝐾2/2)
𝐾4 = ℎ𝑓(𝑡 + ℎ, 𝑢 + 𝐾3)

𝑢(𝑡 + ℎ) ≈ 𝑢 + 1
6(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4)

The derivation of this is far more complicated than those above, and is omitted. For now, we will instead assess its
accuracy “a postiori”, through the next exercise and some examples.

7.2. Runge-Kutta Methods 229



Introduction to Numerical Methods and Analysis with Julia (draft)

See Exercise 4.

function rungekutta(f, a, b, u_0, n; demomode=false)
# Use the (classical) Runge-Kutta Method to solve
# du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0
h = (b-a)/n
t = range(a, b, n+1) # Note: "n" counts steps, so there are n+1 values for t.
u = zeros(length(t))
u[1] = u_0
for i in 1:n

K_1 = f(t[i], u[i])*h
K_2 = f(t[i]+h/2, u[i]+K_1/2)*h
K_3 = f(t[i]+h/2, u[i]+K_2/2)*h
K_4 = f(t[i]+h, u[i]+K_3)*h
u[i+1] = u[i] + (K_1 + 2*K_2 + 2*K_3 + K_4)/6

end
return (t, u)

end;

Yet again, available for import with

include("NumericalMethods.jl")
import .NumericalMethods: rungekutta

Examples

a = 1.0
b = 3.0
u_0 = 2.0
k = 1.5
n = 20

(t, U) = rungekutta(f1, a, b, u_0, n; demomode=true)
u = u1.(t, u_0, k)
h = round((b-a)/n, sigdigits=4)
figure(figsize=[10,4])
title("Solving du/dt = $(k)u, a=$a, u(a)=$u_0 by the Runge-Kutta Method")
plot(t, u, "g", label="Exact solution")
plot(t, U, ".:b", label="Solution with h=$(approx((b-a)/n))")
legend()
grid(true)

figure(figsize=[10,4])
title("Error")
plot(t, u - U, ".:")
grid(true)

230 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

a = 1.0
b = a + 4pi # Two periods
u_0 = 2.0
k = 2.0
n = 40

(t, U) = rungekutta(f2, a, b, u_0, n)
u = u2.(t, a, u_0, k)
figure(figsize=[10,4])
title("Solving du/dt = $k(cos(t) - u) - sin(t), u($a)=$u_0 by the Runge-Kutta Method")
plot(t, u, "g", label="Exact solution")
plot(t, U, ".:b", label="Solution with h=$(approx((b-a)/n))")
legend()
grid(true)

figure(figsize=[10,4])
title("Error")
plot(t, u - U, ".:")
grid(true)

7.2. Runge-Kutta Methods 231



Introduction to Numerical Methods and Analysis with Julia (draft)

7.2.5 For comparison: the above examples done with Euler’s Method

Since the (Explicit) Trapezoid and Midpoint methods do about twice as much work per step as Euler’s method and the
clasical Runge-Kutta method four time as much, a fair roughly equal cost comparions is done with

• 40 steps of Euler’s method
• 20 steps of the Trapezoid and Midpoint methods
• 10 steps of the Runge-Kutta method

include("NumericalMethods.jl")
using .NumericalMethods: eulermethod

a = 1.0
b = 3.0
u_0 = 2.0

(continues on next page)

232 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

k = 1.5
n = 80

(t, U) = eulermethod(f1, a, b, u_0, n=n)
u = u1.(t, u_0, k)

figure(figsize=[10,4])
title("Solving du/dt = $(k)u, u($a)=$u_0 by Euler's method")
plot(t, u, "g", label="Exact solution")
plot(t, U, ".:b", label="Solution with h=$(approx((b-a)/n))")
legend()
grid(true)

figure(figsize=[10,4])
title("Error")
plot(t, u - U, ".:")
grid(true)

7.2. Runge-Kutta Methods 233



Introduction to Numerical Methods and Analysis with Julia (draft)

a = 1.0
b = a + 4pi # Two periods
u_0 = 2.0
k = 2.0
n = 160

(t, U) = eulermethod(f2, a, b, u_0, n=n)
u = u2.(t, a, u_0, k)
h = round((b-a)/n, sigdigits=4)
figure(figsize=[10,4])
title("Solving du/dt = $k(cos(t) - u) - sin(t), u($a)=$u_0 by Euler's method")
plot(t, u, "g", label="Exact solution")
plot(t, U, ".:b", label="Solution with h=$(approx((b-a)/n))")
legend()
grid(true)

figure(figsize=[10,4])
title("Error")
plot(t, u - U, ".:")
grid(true)

234 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

7.2.6 Exercises

Exercise 1

A) Verify that for the simple case where 𝑓(𝑡, 𝑢) = 𝑓(𝑡), this gives the same result as the Composite Trapezoid Rule for
integration.
B) Do one step of this method for the canonical example 𝑑𝑢/𝑑𝑡 = 𝑘𝑢, 𝑢(𝑡0) = 𝑢0. It will have the form 𝑈1 = 𝐺𝑈0
where the growth factor 𝐺 approximates the factor 𝑔 = 𝑒𝑘ℎ for the exact solution 𝑢(𝑡1) = 𝑔𝑢(𝑡0) of the ODE.
C) Compare to 𝐺 = 1 + 𝑘ℎ seen for Euler’s Method.
D) Use the previous result to express 𝑈𝑖 in terms of 𝑈0 = 𝑢0, as done for Euler’s Method.

Exercise 2 (a lot like the previous)

A) Verify that for the simple case where 𝑓(𝑡, 𝑢) = 𝑓(𝑡), this give the same result as the Composite Midpoint rule for
integration (same cooment as above).
B) Do one step of this method for the canonical example 𝑑𝑢/𝑑𝑡 = 𝑘𝑢, 𝑢(𝑡0) = 𝑢0. It will have the form 𝑈1 = 𝐺𝑈0
where the growth factor 𝐺 approximates the factor 𝑔 = 𝑒𝑘ℎ for the exact solution 𝑢(𝑡1) = 𝑔𝑢(𝑡0) of the ODE.
C) Compare to the growth factors 𝐺 seen for previous methods, and to the growth factor 𝑔 for the exact solution.

Exercise 3

A) Apply Richardson extrapolation to one step of Euler’s method, using the values given by step sizes ℎ and ℎ/2.
B) This should give a second order accurate method, so compare it to the above two methods.

Exercise 4

A) Verify that for the simple case where 𝑓(𝑡, 𝑢) = 𝑓(𝑡), this gives the same result as the Composite Simpson’s Rule for
integration.
B) Do one step of this method for the canonical example 𝑑𝑢/𝑑𝑡 = 𝑘𝑢, 𝑢(𝑡0) = 𝑢0. It will have the form 𝑈1 = 𝐺𝑈0
where the growth factor 𝐺 approximates the factor 𝑔 = 𝑒𝑘ℎ for the exact solution 𝑢(𝑡1) = 𝑔𝑢(𝑡0) of the ODE.
C) Compare to the growth factors 𝐺 seen for previous methods, and to the growth factor 𝑔 for the exact solution.

7.2. Runge-Kutta Methods 235



Introduction to Numerical Methods and Analysis with Julia (draft)

7.3 A Global Error Bound for One Step Methods

References:
• Subection 6.2.1 Local and global truncation error in [Sauer, 2019].
• Section 5.2 Euler’s Method in [Burden et al., 2016].
• Section 8.5 of [Kincaid and Chenney, 1990]

All the methods seen so far for solving ODE IVP’s are one-step methods: they fit the general form

𝑈𝑖+1 = 𝐹(𝑡𝑖, 𝑈𝑖, ℎ)

For example, Euler’s Method has

𝐹(𝑡, 𝑈, ℎ) = 𝑈 + ℎ𝑓(𝑡, 𝑈),

the Explicit Midpoint Method (Modified Euler) has

𝐹(𝑡, 𝑈, ℎ) = 𝑈 + ℎ𝑓(𝑡 + ℎ/2, 𝑈 + ℎ𝑓(𝑡, 𝑈)/2)

and even the Runge-Kutta method has a similar form, but it is long and ugly.
For these, there is a general result that gives a bound on the globl truncation error (“GTE”) once one has a suitable bound
on the local truncation error (“LTE”). This is very useful, because bounds on the LTE are usually far easier to derive.

Theorem 7.1
When solving the ODE IVP

𝑑𝑢/𝑑𝑡 = 𝑓(𝑡, 𝑢), 𝑢(𝑎) = 𝑢0

on interval 𝑡 ∈ [𝑎, 𝑏] by a one step method, one has a bound on the local truncation error

|𝑒𝑖| = |𝑈𝑖+1 − 𝑢(𝑡𝑖 + ℎ; 𝑡𝑖, 𝑈𝑖) = |𝐹(𝑡𝑖, 𝑈𝑖, ℎ) − 𝑢(𝑡𝑖 + ℎ; 𝑡𝑖, 𝑈𝑖)| ≤ 𝐶ℎ𝑝+1 = 𝑂(ℎ𝑝+1)

and the ODE itself satisfies the Lipschitz Condition that for some constant 𝐾,

∣𝜕𝐹
𝜕𝑢 (𝑡, 𝑢)∣ ≤ 𝐾

then there is a bound on the global truncation error:

|𝐸𝑖| = |𝑈𝑖 − 𝑢(𝑡𝑖; 𝑎, 𝑢0)| ≤ 𝐶 𝑒𝐾(𝑡𝑖−𝑎) − 1
𝑘 ℎ𝑝, = 𝑂(ℎ𝑝)

So yet again, there is a loss of one factor of ℎ in going from local to global error, as first seen with the composite rules for
definite integrals.
We saw a glimpse of this for Euler’s method, in the section Basic Concepts and Euler’s Method, where the Taylor’s Theorem
error formula canbe used to get the LTE bound

|𝑒𝑖| ≤ 𝐶ℎ2 where 𝐶 = |𝑢0𝑒𝐾(𝑏−𝑎)|
2

and this leads to to GTE bound

|𝐸𝑖| ≤ |𝑢0𝑒𝐾(𝑏−𝑎)|
2

𝑒𝐾(𝑡𝑖−𝑎) − 1
𝑘 ℎ.

236 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

7.3.1 Order of accuracy for the basic Runge-Kutta type methods

• For Euler’s method, it was stated in section Basic Concepts and Euler’s Method, (and verified for the test case of
𝑑𝑢/𝑑𝑡 = 𝑘𝑢) that the global truncation error is of first order n step-size ℎ:

• The Explicit (and Implicit) Trapezoid and Midpoint rules, the local truncation error is 𝑂(ℎ3) and so their global
truncation error is 𝑂(ℎ2) — they are second order accurate, just as for the corresponding approximate integration
rules.

• The classical Runge-Kutta method, has local truncation error 𝑂(ℎ5) and so its global truncation error is 𝑂(ℎ4) —
just as for the composite Simpson’s Rule, to which it corresponds for the “integration” case 𝑑𝑦/𝑑𝑡 = 𝑓(𝑡).

7.4 Systems of ODEs and Higher Order ODEs

References:
• Section 6.3 Systems of OrdinaryDifferential Equations in [Sauer, 2019], to Sub-section 6.3.1Higher order equations.
• Section 5.9 Higher Order Equations and Systems of Differential Equations in [Burden et al., 2016].

The short version of this section is that the numerical methods and algorithms developed so for for the initial value problem
𝑑𝑢
𝑑𝑡 = 𝑓(𝑡, 𝑢(𝑡)), 𝑎 ≤ 𝑡 ≤ 𝑏

𝑢(𝑎) = 𝑢0

all also work for system of first order ODEs by simply letting 𝑢 and 𝑓 be vector-valued, and for that, the Python code
requires only one small change.
Also, higher order ODE’s (and systems of them) can be converted into systems of first order ODEs.

7.4.1 Converting a second order ODE to a first order system

To convert

𝑦″ = 𝑓(𝑡, 𝑦, 𝑦′)

with initial conditions

𝑦(𝑎) = 𝑦0, 𝑦′(𝑎) = 𝑣0

to a first order system, introduction the two functions
𝑢1(𝑡) = 𝑦(𝑡)

𝑢2(𝑡) = 𝑑𝑦
𝑑𝑡 , = 𝑢′

1(𝑡)

Then

𝑦″ = 𝑢′
1 = 𝑓(𝑡, 𝑢0, 𝑢1)

and combining with the definition of 𝑢1 gives the system
𝑢′

0 = 𝑢1
𝑢′

1 = 𝑓(𝑡, 𝑢0, 𝑢1)
with initial conditions

𝑢0(𝑎) = 𝑦0
𝑢1(𝑎) = 𝑣0

7.4. Systems of ODEs and Higher Order ODEs 237



Introduction to Numerical Methods and Analysis with Julia (draft)

Next this can be put into vector form. Defining the vector-valued functions

�̃�(𝑡) = ⟨𝑢1(𝑡), 𝑢2(𝑡)⟩
̃𝑓(𝑡, �̃�(𝑡)) = ⟨𝑢1(𝑡), 𝑓(𝑡, 𝑢2(𝑡), 𝑢2(𝑡))⟩

and initial data vector

�̃�0 = ⟨𝑢0,1, 𝑢0,2⟩ = ⟨𝑦0, 𝑣0⟩

puts the equation into the form

𝑑�̃�
𝑑𝑡 = ̃𝑓(𝑡, �̃�(𝑡)), 𝑎 ≤ 𝑡 ≤ 𝑏

�̃�(𝑎) = �̃�0

𝑑�̃�
𝑑𝑡 = ̃𝑓(𝑡, �̃�(𝑡)), 𝑎 ≤ 𝑡 ≤ 𝑏

�̃�(𝑎) = �̃�0

7.4.2 Test Cases

In this and subsequent sections, numerical methods for higher order equations and systems will be compared using several
test cases:

Test Case A: Motion of a (Damped) Mass-Spring System in One Dimension

A simple mathematical model of a damped mass-spring system is

𝑀 𝑑2𝑦
𝑑𝑡2 = −𝐾𝑦 − 𝐷𝑑𝑦

𝑑𝑡
with initial conditions

𝑦(𝑎) = 𝑦0
𝑑𝑦
𝑑𝑡 ∣

𝑡=𝑎
= 𝑣0

where 𝐾 is the spring constant and 𝐷 is the coefficient of friction, or drag.
The first order system form can be left in terms of 𝑦 and 𝑦′ as

𝑑
𝑑𝑡 [ 𝑦

𝑦′ ] = [ 0 1
−𝐾 −𝐷 ] [ 𝑦

𝑦′ ]

Exact solutions

For testing of numerical methods in this and subsequent sections, here are the exact solutions.
They depend on whether

• 𝐷 < 𝐷0 ∶= 2
√

𝐾𝑀 : underdamped,
• 𝐷 > 𝐷0 : overdamped, or
• 𝐷 = 𝐷0 : critically damped.

238 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

We will mostly explore the first two more “generic” cases.
For the underdamped case, the general solution is

𝑦(𝑡) = 𝑒−(𝐷/(2𝑀))(𝑡−𝑎)[𝐴 cos(𝜔(𝑡 − 𝑎)) + 𝐵 sin(𝜔(𝑡 − 𝑎))], 𝜔 =
√

4𝐾𝑀 − 𝐷2

2𝑀
For the above initial conditions, 𝐴 = 𝑦0 and 𝐵 = (𝑣0 + 𝑦0𝐷/(2𝑀)/𝜔.
An important special case of this is the undamped system 𝑀 𝑑2𝑦

𝑑𝑡2 = −𝐾𝑦 for which the solutions become

𝑦(𝑡) = 𝐴 cos(𝜔(𝑡 − 𝑎)) + 𝐵 sin(𝜔(𝑡 − 𝑎)), 𝜔 = √𝐾/𝑀
and it can be verified that the “energy”

𝐸(𝑡) = 𝑀
2 (𝑦′(𝑡))2 + 𝐾

2 (𝑦(𝑡))2 = 1
2(𝐾𝑢2

1 + 𝑀𝑢2
2)

is conserved: 𝑑𝐸/𝑑𝑡 = 0. Conserved quantities can provide a useful check of the acccuracy of numerical method, so we
will look at this below.
For the overdamped case, the general solution is

𝑦(𝑡) = 𝐴𝑒𝜆+(𝑡−𝑎) + 𝐵𝑒𝜆−(𝑡−𝑎), 𝜆± = −𝐷 ± Δ
2𝑀 , Δ =

√
𝐷2 − 4𝐾𝑀

For the above initial conditions, 𝐴 = 𝑀(𝑣0 − 𝜆−𝑦0)/Δ and 𝐵 = 𝑦0 − 𝐴.

Remark 7.1 (Stiffness)
Fixing 𝑀 and scaling 𝐾 = 𝐷 → ∞, Δ = 𝐷√1 − 4𝑀/𝐷 ≈ 𝐷 − 2𝑀 so

𝜆− ≈ − 𝐷
𝑀 + 1 → −∞, 𝜆+ ≈ −1.

Thus the time scales of the two exponential decays become hugely different, with the fast term 𝐵𝑒𝜆−(𝑡−𝑎) becoming
negligible compared to the slower decaying 𝐴𝑒𝜆+(𝑡−𝑎).
This is a simple example of stiffness, and influences the choice of a good numerical method for solving such equations.

The variable can be rescaled to the case 𝐾 = 𝑀 = 1, so that will be done from now on, but of course you can easily
experiment with other parameter values by editing copies of the Jupyter notebooks.

Test Case B: A “Fast-Slow” Equation

The equation

𝑦″ + (𝐾 + 1)𝑦′ + 𝐾𝑦 = 0, 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑣0

has first order system form
𝑑
𝑑𝑡 [ 𝑦

𝑦′ ] = [ 0 1
−𝐾 −(𝐾 + 1) ] [ 𝑦

𝑦′ ]

and the general solution

𝑦(𝑡) = 𝐴𝑒−𝑡 + 𝐵𝑒−𝐾𝑡

so for large 𝐾, it has two very disparate time scales, with only the slower scale of much significance after an initial
transient.
This is a convenient “toy” example for testing two refinements to algorithms:

7.4. Systems of ODEs and Higher Order ODEs 239



Introduction to Numerical Methods and Analysis with Julia (draft)

• Variable time step sizes, so that they can be short during the initial transient and longer later, when only the 𝑒−𝑡

behavior is significant.
• Implicit methods that can effectively suppress the fast but extremely small 𝑒−𝑘𝑡 terms while hanling the larger,
slower terms accurately.

The examples below will use 𝐾 = 100, but as usual, you are free to experiment with other values.

Test Case C: The Freely Rotating Pendulum

Both the above equations are constant coefficient linear, which is convenient for the sake of having exact solution to
compare with, but one famous nonlinear example is worth exporing too.
A pendulum with mass 𝑚 concentrated at a distnace 𝐿 from the axis of rotation and that can rotate freely in a vertical
plane about that axis and with possible friction proportional to 𝐷, can be modeled in terms of its angular position 𝜃 and
angular velocity 𝜔 = 𝜃′ by

𝑀𝐿𝜃″ = −𝑀𝑔 sin 𝜃 − 𝐷𝐿𝜃′, 𝜃(0) = 𝜃0, 𝜃′(0) = 𝜔0

or in system form

𝑑
𝑑𝑡 [ 𝜃

𝜔 ] = [ 𝜔
− 𝑔

𝐿 sin 𝜃 − 𝐷
𝑀 𝜔 ]

These notes will mostly look at the frictionelss case 𝐷 = 0, which has conserved energy

𝐸(𝜃, 𝜔) = 𝑀𝐿
2 𝜔2 − 𝑀𝑔 cos 𝜃

For this, the solution fall into three qualitatively different cases depending on whether the energy is less than, equal to,
or greater than the “critical energy” 𝑀𝑔, which is the energy of the unstable stationary solutions 𝜃(𝑡) = 𝜋( mod 2𝜋),
𝜔(𝑡) = 0: “balancing at the top”:

• For 𝐸 < 𝑀𝑔, a solution can never reach the top, so the pendulum rocks back and forth, reach maximum height at
𝜃 = ± arccos(−𝐸/(𝑀𝑔))

• For 𝐸 > 𝑀𝑔, solutions have angular speed |𝜔| ≥ √𝐸 − 𝑀𝑔 > 0 so it never drops to zero, and so the direction
of rotation can never reverse: solutions rotate in one direction for ever.

• For 𝐸 = 𝑀𝑔, one special type of solution is those up-side down stationary ones. Any other solution always has
|𝜔| = √𝐸 − 𝑀𝑔 cos 𝜃 > 0, and so never stops or reverses direction but instead approaches the above stationary
point asymptotically both as 𝑡 → ∞ and 𝑡 → ∞. To visualize concretely, the solution starting at the bottom with
𝜃(0) = 0, 𝜔(0) = √2𝑔/𝐿 has 𝜃(𝑡) → ±𝜋 and 𝜔(𝑡) → 0 as 𝑡 → ±∞.

Remark 7.2 (Separatrices)
This last kind of special solution is known as a separatrix due to separating the other two qualitatively different sorts
of solution. They are also known as heteroclinic orbits, for “asymptotically” starting and ending at different stationary
solutions in each time direction — or homoclinic if you consider the angle as a “mod 2𝜋” value describing a position, so
that 𝜃 = ±𝜋 are the same location and the solutions start and end at the same stationary point.

using PyPlot
include("NumericalMethods.jl")
using .NumericalMethods: approx4

The Euler’s method code from before does not quite work, but only slight modification is needed; that “scalar” version

240 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

function eulermethod(f, a, b, u_0, n)
h = (b-a)/n
t = range(a, b, n+1)
U = zeros(n+1)
U[1] = u_0
for i in 1:n

U[i+1] = U[i] + f(t[i], U[i])*h
end
return (t, U)

end;

becomes

function eulermethod_system(f, a, b, u_0, n)
# TO DO: one could use multiple dispatch to keep the name "eulermethod".
# The conversion for the system version is mainly "U[i] -> U[i,:]"

h = (b-a)/n
t = range(a, b, n+1)

# The following three lines and the one in the for loop below change for the␣
↪system version

n_unknowns = length(u_0)
U = zeros(n+1, n_unknowns)
U[1,:] = u_0 # Only for system version

for i in 1:n
U[i+1,:] = U[i,:] + f(t[i], U[i,:])*h # For the system version

end
return (t, U)

end;

Note. Here and below, these notes follow the convention of using lowercase letters for exact solutions; uppercase for
numerical approximations.

7.4.3 Solving the Mass-Spring System

f_mass_spring(t, u) = [ u[2], -(K/M)*u[1] - (D/M)*u[2] ];

E_mass_spring(y, Dy) = (K * y^2 + M * Dy^2)/2;

function y_mass_spring(t; t_0, u_0, K, M, D)
(y_0, v_0) = u_0
discriminant = D^2 - 4K*M
if discriminant < 0 # underdamped

omega = sqrt(4K*M - D^2)/(2M)
A = y_0
B = (v_0 + y_0*D/(2M))/omega
return exp(-D/(2M)*(t-t_0)) * ( A*cos(omega*(t-t_0)) + B*sin(omega*(t-t_0)))

elseif discriminant > 0 # overdamped
Delta = sqrt(discriminant)
lambda_plus = (-D + Delta)/(2M)
lambda_minus = (-D - Delta)/(2M)

(continues on next page)

7.4. Systems of ODEs and Higher Order ODEs 241



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

A = M*(v_0 - lambda_minus * y_0)/Delta
B = y_0 - A
return A*exp(lambda_plus*(t-t_0)) + B*exp(lambda_minus*(t-t_0))

else
lambda = -D/(2M)
A = y_0
B = v_0 - A * lambda
return (A + B*t)*exp(lambda*(t-t_0))

end
end;

function damping(K, M, D)
if D == 0

println("Undamped")
else

discriminant = D^2 - 4K*M
if discriminant < 0

println("Underdamped")
elseif discriminant > 0

println("Overdamped")
else

println("Critically damped")
end

end
end;

The above functions are available in module NumericalMethods; they will be used in later sections.

First solve without damping, so the solutions have sinusoidal solutions

Note: the orbits go clockwise for undamped (and underdamped) systems.

M = 1.0
K = 1.0
D = 0.0
y_0 = 1.0
Dy_0 = 0.0
u_0 = [y_0, Dy_0]
a = 0.0
periods = 4
b = 2pi * periods

stepsperperiod = 500
n = Int(stepsperperiod * periods)

(t, U) = eulermethod_system(f_mass_spring, a, b, u_0, n)
Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=u_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("y for K/M=$(K/M), D=$D by Euler's method with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")

(continues on next page)

242 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

plot(t, y, label="exact solution")
xlabel("t")
legend()
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

# Phase plane diagram; for D=0 the exact solutions are ellipses (circles if M = k)
figure(figsize=[6,6]) # Make axes equal length; orbits should be circular or

↪"circular spirals"
title("The orbit")
plot(Y, DY)
xlabel("y")
ylabel("dy/dt")
plot(Y[1], DY[1], "g*", label="start")
plot(Y[end], DY[end], "r*", label="end")
legend()
grid(true)

7.4. Systems of ODEs and Higher Order ODEs 243



Introduction to Numerical Methods and Analysis with Julia (draft)

244 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

figure(figsize=[10,4])
E_0 = E_mass_spring(y_0, Dy_0)
E = E_mass_spring.(Y, DY)
title("Energy variation")
plot(t, E .- E_0)
xlabel("t")
grid(true)

Next solve with damping

D = 0.5 # Underdamped: decaying oscillations
#D = 2 # Critically damped
#D = 2.1 # Overdamped: exponential decay

periods = 4
b = 2pi * periods

stepsperperiod = 500
n = Int(stepsperperiod * periods)

(t, U) = eulermethod_system(f_mass_spring, a, b, u_0, n)
Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=u_0, K=K, M=M, D=D) # Exact solution

damping(K, M, D)

figure(figsize=[10,4])
title("y for K/M=$(K/M), D=$D by Euler's method with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
xlabel("t")
legend()
grid(true)

(continues on next page)

7.4. Systems of ODEs and Higher Order ODEs 245



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

# Phase plane diagram; for D=0 the exact solutions are ellipses (circles if M = K)
figure(figsize=[6,6]) # Make axes equal length; orbits should be circular or

↪"circular spirals"
title("The orbit")
plot(Y, DY)
xlabel("y")
ylabel("dy/dt")
plot(Y[1], DY[1], "g*", label="start")
plot(Y[end], DY[end], "r*", label="end")
legend()
grid(true)

Underdamped

246 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

7.4. Systems of ODEs and Higher Order ODEs 247



Introduction to Numerical Methods and Analysis with Julia (draft)

7.4.4 The “Classical” Runge-Kutta Method, Extended to Systems of Equations

As above, the previous “scalar” function for this method needs just three lines of code modified.
Before:

function rungekutta(f, a, b, u_0, n)
# Use the (classical) Runge-Kutta Method to solve
# du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0

h = (b-a)/n
t = range(a, b, n+1)
u = zeros(length(t))
u[1] = u_0
for i in 1:n

K_1 = f(t[i], u[i])*h
K_2 = f(t[i]+h/2, u[i]+K_1/2)*h
K_3 = f(t[i]+h/2, u[i]+K_2/2)*h
K_4 = f(t[i]+h, u[i]+K_3)*h
u[i+1] = u[i] + (K_1 + 2*K_2 + 2*K_3 + K_4)/6

end
return (t, u)

end;

After:

function rungekutta_system(f, a, b, u_0, n)
# Use the (classical) Runge-Kutta Method to solve
# du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0
# The conversion for the system version is mainly "u[i] -> u[i,:]"

h = (b-a)/n
t = range(a, b, n+1)
n_unknowns = length(u_0)
u = zeros(n+1, n_unknowns)
u[1,:] = u_0
for i in 1:n

K_1 = f(t[i], u[i,:])*h
K_2 = f(t[i]+h/2, u[i,:]+K_1/2)*h
K_3 = f(t[i]+h/2, u[i,:]+K_2/2)*h
K_4 = f(t[i]+h, u[i,:]+K_3)*h
u[i+1,:] = u[i,:] + (K_1 + 2*K_2 + 2*K_3 + K_4)/6

end
return (t, u)

end;

M = 1.0
k = 1.0
D = 0.0
u_0 = [1.0, 0.0]
a = 0.0
periods = 4
b = 2pi * periods

stepsperperiod = 25
n = stepsperperiod * periods

(continues on next page)

248 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

(t, U) = rungekutta_system(f_mass_spring, a, b, u_0, n)
Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=u_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("y for k/M=$(k/M), D=$D by Runge-Kutta with $periods periods, $stepsperperiod␣

↪steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
xlabel("t")
legend()
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

# Phase plane diagram; for D=0 the exact solutions are ellipses (circles if M = k)
figure(figsize=[6,6]) # Make axes equal length; orbits should be circular or

↪"circular spirals"
title("The orbit")
plot(Y, DY)
xlabel("y")
ylabel("dy/dt")
plot(Y[1], DY[1], "g*", label="start")
plot(Y[end], DY[end], "r*", label="end")
legend()
grid(true)

7.4. Systems of ODEs and Higher Order ODEs 249



Introduction to Numerical Methods and Analysis with Julia (draft)

D = 0.5 # Underdamped: decaying oscillations
#D = 2 # Critically damped

(continues on next page)

250 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

#D = 2.1 # Overdamped: exponential decay

periods = 4
b = 2pi * periods

stepsperperiod = 25
n = Int(stepsperperiod * periods)

(t, U) = rungekutta_system(f_mass_spring, a, b, u_0, n)
Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=u_0, K=K, M=M, D=D) # Exact solution

damping(k, M, D)

figure(figsize=[10,4])
title("y for k/M=$(k/M), D=$D by Runge-Kutta with $periods periods, $stepsperperiod␣

↪steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
xlabel("t")
legend()
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

Underdamped

7.4. Systems of ODEs and Higher Order ODEs 251



Introduction to Numerical Methods and Analysis with Julia (draft)

7.4.5 Solving the Freely Rotating Pendulum Equations

For now, this is just briefly explored as a cautionary tail of what can happen when slight changes in the system lead to
qualitatively very different solution behavior. So we will look at a few examples for the conservative case 𝐷 = 0, close to
the separatrix solutions noted above.
Parameters can all be scaled away to 𝑀 = 𝐿 = 𝑔 = 1 so the critical energy is 𝑀𝑔 = 1.

f_pendulum(t, u) = [ u[2], -(g/L)*sin(u[1]) ];

M = g = L = 1.0;
E_0 = 1.0 # Separatrix
#E_0 = 0.999
#E_0 = 1.001

theta_0 = 0.0
omega_0 = sqrt(2(E_0 + M*g*cos(theta_0))/(M*L));
u_0 = [theta_0, omega_0]

a = 0.0

#periods = 8 # periods of the linear approximation, "sin(theta) = theta"
#b = 2pi * sqrt(L/g) * periods

b = 80.0
b = 20.;

#stepsperperiod = 1_000
#n = Int(stepsperperiod * periods)
#h = (b-a)/n

stepsperunittime = 10_000
h = 1/stepsperunittime
n = Int(round((b-a)/h))

(continues on next page)

252 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

(t, U) = eulermethod_system(f_pendulum, a, b, u_0, n)
theta = U[:,1]
omega = U[:,2]

figure(figsize=[10,4])
title("By Euler's method with E = $E_0, step size h = $(approx4(h))")
plot(t, theta/pi, label="theta")
xlabel("t")
ylabel(L"\theta/\pi")
grid(true)

# Phase plane diagram
figure(figsize=[10,4])
title("The orbit")
plot(theta/pi, omega)
xlabel(L"\theta/\pi")
ylabel(L"\omega = d\theta/dt")
plot(theta[1]/pi, omega[1], "g*", label="start")
plot(theta[end]/pi, omega[end], "r*", label="end")
legend()
grid(true)

# Error in the (conserved) energy E
figure(figsize=[10,4])
E = (M*L/2) * omega.^2 - M*g*cos.(theta)
E_error = E .- E_0
title("Error in E(t)")
plot(t, E_error, label="theta")
xlabel("t")
#ylabel(L"\theta/\pi")
grid(true)

7.4. Systems of ODEs and Higher Order ODEs 253



Introduction to Numerical Methods and Analysis with Julia (draft)

#stepsperperiod = 10_000
#n = Int(stepsperperiod * periods)
#h = (b-a)/n

stepsperunittime = 25
stepsperunittime = 10_000
h = 1/stepsperunittime
n = Int(round((b-a)/h))

(t, U) = rungekutta_system(f_pendulum, a, b, u_0, n)
theta = U[:,1]
omega = U[:,2]

figure(figsize=[10,4])
title("By the Runge-Kutta method with E = $E_0, step size h = $(approx4(h))")
plot(t, theta/pi, label="theta")
xlabel("t")
ylabel(L"\theta/\pi")
grid(true)

(continues on next page)

254 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

# Phase plane diagram
figure(figsize=[10,4])
title("The orbit")
plot(theta/pi, omega)
xlabel(L"\theta/\pi")
ylabel(L"\omega = d\theta/dt")
plot(theta[1]/pi, omega[1], "g*", label="start")
plot(theta[end]/pi, omega[end], "r*", label="end")
legend()
grid(true)

# Error in the (conserved) energy E
E = (M*L/2) * omega.^2 - M*g*cos.(theta)
E_error = E .- E_0
figure(figsize=[10,4])
title("Error in E(t)")
plot(t, E_error, label="theta")
xlabel("t")
#ylabel(L"\theta/\pi")
grid(true);

7.4. Systems of ODEs and Higher Order ODEs 255



Introduction to Numerical Methods and Analysis with Julia (draft)

7.4.6 Appendix: the Explicit Trapezoid and Midpoint Methods for systems

Yet again, the previous functions for these methods need just three lines of code modified.
The demos are just for the non-dissipative case, where the solution is known to be 𝑦 = cos 𝑡, 𝑑𝑡/𝑑𝑡 = − sin 𝑡.
For a fairer comparison of “accuracy vs computational effort” to the Runge-Kutta method, twice as many time steps are
used so that the same number of function evaluations are used for these three methods.

function explicittrapezoid_system(f, a, b, u_0, n)
# Use the Explict Trapezoid Method (a.k.a Improved Euler) to solve the system
# du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0
# The conversion for the system version is mainly "u[i] -> u[i,:]"

h = (b-a)/n
t = range(a, b, n+1)
n_unknowns = length(u_0)

(continues on next page)

256 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

u = zeros(n+1, n_unknowns)
u[1,:] = u_0
for i in 1:n

K_1 = f(t[i], u[i,:])*h
K_2 = f(t[i]+h, u[i,:]+K_1)*h
u[i+1,:] = u[i,:] + (K_1 + K_2)/2.0

end
return (t, u)

end;

D = 0.5 # Underdamped: decaying oscillations
#D = 2 # Critically damped
#D = 2.1 # Overdamped: exponential decay

periods = 4
b = 2pi * periods

stepsperperiod = 50
n = Int(stepsperperiod * periods)

damping(k, M, D)

(t, U) = explicittrapezoid_system(f_mass_spring, a, b, u_0, n)
Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=u_0, K=K, M=M, D=D) # Exact solution

damping(k, M, D)

figure(figsize=[10,4])
title("y for k/M=$(k/M), D=$D by explicit trapezoid with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
xlabel("t")
legend()
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

Underdamped
Underdamped

7.4. Systems of ODEs and Higher Order ODEs 257



Introduction to Numerical Methods and Analysis with Julia (draft)

At first glance this is doing well, keeping the orbits circular. However, note the discrepancy between the start and end
points: these should be the same, as they are (visually) with the Runge-Kutta method.

function explicitmidpoint_system(f, a, b, u_0, n)
# Use the Explict Midpoint Method (a.k.a Modified Euler) to solve the system
# du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0
# The conversion for the system version is mainly "u[i] -> u[i,:]"

h = (b-a)/n
t = range(a, b, n+1)
n_unknowns = length(u_0)
u = zeros(n+1, n_unknowns)
u[1,:] = u_0
for i in 1:n

K_1 = f(t[i], u[i,:])*h
K_2 = f(t[i]+h/2, u[i,:]+K_1/2)*h
u[i+1,:] = u[i,:] + K_2

end

(continues on next page)

258 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

return (t, u)
end;

D = 0.5 # Underdamped: decaying oscillations
#D = 2 # Critically damped
#D = 2.1 # Overdamped: exponential decay

periods = 4
b = 2pi * periods

stepsperperiod = 50
n = Int(stepsperperiod * periods)

damping(k, M, D)

(t, U) = explicitmidpoint_system(f_mass_spring, a, b, u_0, n)
Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=u_0, K=K, M=M, D=D) # Exact solution

damping(k, M, D)

figure(figsize=[10,4])
title("y for k/M=$(k/M), D=$D by explicit midpoint with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
xlabel("t")
legend()
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

Underdamped
Underdamped

7.4. Systems of ODEs and Higher Order ODEs 259



Introduction to Numerical Methods and Analysis with Julia (draft)

7.5 Error Control and Variable Step Sizes

References:
• Section 6.5 Variable Step-Size Methods in [Sauer, 2019].
• Section 5.5 Error Control and the Runge-Kutta-Fehlberg Method in [Burden et al., 2016].
• Section 7.3 in [Chenney and Kincaid, 2012].

260 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

7.5.1 The Basic ODE Initial Value Problem

We consider again the initial value problem

𝑑𝑢
𝑑𝑡 = 𝑓(𝑡, 𝑢) 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑢(𝑎) = 𝑢0

We now allow the possibility that 𝑢 and 𝑓 are vector-valued as in the section Systems of ODEs and Higher Order ODEs,
but omitting the tilde notation �̃�, ̃𝑓 .

7.5.2 Error Control by Varying the Time Step Size ℎ𝑖

Recall the variable step-size version of Euler’s method:

Algorithm 7.4
Input: 𝑓 , 𝑎, 𝑏, 𝑛
𝑡0 = 𝑎
𝑈0 = 𝑢0

ℎ = (𝑏 − 𝑎)/𝑛
for i in [0, 𝑛):

Choose step size ℎ𝑖 somehow!
𝑡𝑖+1 = 𝑡𝑖 + ℎ𝑖

𝑈𝑖+1 = 𝑈𝑖 + ℎ𝑖𝑓(𝑡𝑖, 𝑈𝑖)
end

We now consider how to choose each step size, by estimating the error in each step, and aiming to have error per unit
time below some limit like 𝜖/(𝑏 − 𝑎), so that the global error is no more than about 𝜖.
As usual, the theoretical error bounds like 𝑂(ℎ2

𝑖 ) for a single step of Euler’s method are not enough for quantitative tasks
like choosing ℎ𝑖, but they do motivate more practical estimates.

7.5.3 A crude error estimate for Euler’s Method: Richardson Extrapolation

Starting at a point (t, u(t)), we can estimate the error in Euler’s method approximato at a slightly later time 𝑡𝑖 +ℎ by using
two approximations of 𝑈(𝑡 + ℎ):

• The value given by a step of Euler’s method with step size ℎ: call this 𝑈ℎ

• The value given by taking two steps of Euler’s method each with step size ℎ/2: call this 𝑈ℎ/2
2 , because it involves

2 steps of size ℎ/2.
The first order accuracy of Euler’s method gives 𝑒ℎ = 𝑢(𝑡 + ℎ) − 𝑈ℎ ≈ 2(𝑢(𝑡 + ℎ) − 𝑈ℎ/2

2 ), so that

𝑒ℎ ≈ 𝑈ℎ/2
2 − 𝑈ℎ

2

7.5. Error Control and Variable Step Sizes 261



Introduction to Numerical Methods and Analysis with Julia (draft)

Step size choice

What do we do with this error information?
The first obvious ideas are:

• Accept this step if 𝑒ℎ is small enough, taking ℎ𝑖 = ℎ, 𝑡𝑖+1 = 𝑡𝑖 + ℎ𝑖, and 𝑈𝑖+1 = 𝑈ℎ, but
• reject it and try again with a smaller ℎ value otherwise; maybe halving ℎ; but there are more sophisticated options
too.

Exercise A

Write a formula for 𝑈ℎ and 𝑒ℎ if one starts from the point (𝑡𝑖, 𝑈𝑖), so that (𝑡𝑖 + ℎ, 𝑈ℎ) is the proposed value for the next
point (𝑡𝑖+1, 𝑈𝑖+1) in the approximate solution — but only if 𝑒ℎ is small enough!

Error tolerance

One simple criterion for accuracy is that the estimated error in this step be no more than some overall upper limit on the
error in each time step, 𝑇 . That is, accept the step size ℎ if

|𝑒ℎ| ≤ 𝑇

A crude approach to reducing the step size when needed

If this error tolerance is not met, we must choose a new step size ℎ′, and we can predict roughly its error behavior using
the known order natue of the error in Euler’s method: scaling dowen to ℎ′ = 𝑠ℎ, the error in a single step scales with ℎ2

(in general it scales with ℎ𝑝+1 for a method of order 𝑝), and so to reduce the error by the needed factor 𝑒ℎ
𝑇 one needs

approximately

𝑠2 = 𝑇
|𝑒ℎ|

and so using 𝑒ℎ ≈ ̃𝑒ℎ = |𝑈ℎ/2 − 𝑈ℎ| suggests using

𝑠 = ( 𝑇
|𝑈ℎ/2 − 𝑈ℎ|)

1/2

However this new step size might have error that is still slightly too large, leading to a second failure. Another is that one
might get into an infinite loop of step size reduction.
So refinements of this choice must be considered.

Increasing the step size when desirable

If we simply follow the above aproach, the step size, once reduced, will never be increased. This could lead to great
inefficiency, through using an unecessarily small step size just because at an earlier part of the time domain, accuracy
required very small steps.
Thus, after a successful time step, one might consider increasing ℎ for the next step. This could be done using exactly the
above formula, but again there are risks, so again refinement of this choice must be considered.
One problem is that if the step size gets too large, the error estimate can become unreliable; another is that one might
need some minimum “temporal resolution”, for nice graphs and such.
Both suggest imposing an upper limit on the step size ℎ.

262 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

7.5.4 Another strategy for getting error estimates: two (related) Runge-Kutta meth-
ods

The recurring strategy of estimating errors by the difference of two different approximations — one expected to be far
better than the other— can be used in a nice way here. I will first illustrate with the simplest version, using Euler’s Mathod
and the Explicit Trapezoid Method.
Recall that the increment in Euler’s Method from time 𝑡 to time 𝑡 + ℎ is

𝐾1 = ℎ𝑓(𝑡, 𝑈)

whereas for the Explict Trapezoid Method it is (𝐾1 + 𝐾2)/2, as given by

𝐾1 = ℎ𝑓(𝑡, 𝑈)
𝐾2 = ℎ𝑓(𝑡 + ℎ, 𝑈 + 𝐾1)

Thus we can use the difference, |𝐾1 − (𝐾1 + 𝐾2)/2| = |(𝐾1 − 𝐾2)/2| as an error estimate. In fact to be cautious, one
often drops the factor of 1/2, so using approximation ̃𝑒ℎ = |𝐾1 − 𝐾2|.
One has to be careful: this estimates the error in Euler’s Method, and one has to use it that way: using the less accurate
value 𝐾1 as the update.
A basic algorithm for the time step starting with 𝑡𝑖, 𝑈𝑖 is

Algorithm 7.5
𝐾1 ← ℎ𝑓(𝑡𝑖, 𝑈𝑖)
𝐾2 ← ℎ𝑓(𝑡𝑖 + ℎ, 𝑈𝑖 + 𝐾1)
𝑒ℎ ← |𝐾1 − 𝐾2|
𝑠 ← √𝑇 /𝑒ℎ

if 𝑒ℎ < 𝑇
𝑈𝑖+1 = 𝑈𝑖 + 𝐾1

𝑡𝑖+1 = 𝑡𝑖 + ℎ
Increase ℎ for the next time step:
ℎ ← 𝑠ℎ

else: (not good enough: reduce ℎ and try again)
ℎ ← 𝑠ℎ
Start again from 𝐾1 = …

end

However, in practice one needs:
• An upper limit ℎ𝑚𝑎𝑥 on the step size ℎ, partly because error estimates become unreliable if ℎ gets too large, and
also becuase subsequent use of the results (like graphs) might need sufficiently “fine” data.

• A lower limit ℎ𝑚𝑎𝑥 on ℎ, to avoid infinite loops and such.
• Since we are using only an approximation ̃𝑒ℎ of 𝑒ℎ, and out of general caution, it is typical to include a “safety factor”
of about 0.8 or 0.9, when computing the next time step: reducing the step size scale factor to 𝑆 = 0.9√𝑇 /𝑒ℎ.

7.5. Error Control and Variable Step Sizes 263



Introduction to Numerical Methods and Analysis with Julia (draft)

Incorporating these refinements:

Algorithm 7.6
𝐾1 = ℎ𝑓(𝑡𝑖, 𝑈𝑖)
𝐾2 = ℎ𝑓(𝑡𝑖 + ℎ, 𝑈𝑖 + 𝐾1)
𝑒ℎ = |𝐾1 − 𝐾2|
𝑠 = 0.9√𝑇 /𝑒ℎ

if 𝑒ℎ < 𝑇
𝑈𝑖+1 = 𝑈𝑖 + 𝐾1

𝑡𝑖+1 = 𝑡𝑖 + ℎ
Increase ℎ for the next time step:
ℎ ← min(0.9𝑠ℎ, ℎ𝑚𝑎𝑥)

else: (not good enough; reduce ℎ and try again)
ℎ ← max(0.9𝑠ℎ, ℎ𝑚𝑖𝑛)
Start again from 𝐾1 = …

end

Exercise B

Implement the above, and test on the two familiar examples

𝑑𝑢/𝑑𝑡 = 𝐾𝑢
and

𝑑𝑢/𝑑𝑡 = 𝐾(cos(𝑡) − 𝑢) − sin(𝑡)

(𝐾 = 1 is enough.)

Partial Solution to Exercise B

using PyPlot
using LinearAlgebra: norm

import Base: round
round(x,n) = round(x,sigdigits=n);

function eulermethod_errorcontrol(f, a, b, u_0; errortolerance=1e-3, h_min=1e-6, h_
↪max=0.1, steps_max=1000, demomode=false)

steps = 0
t_i = a
U_i = u_0
t = [t_i]
U = [U_i]

(continues on next page)

264 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

h = h_max # Start optimistically!
while t_i < b && steps < steps_max

K_1 = h*f(t_i, U_i)
K_2 = h*f(t_i + h/2, U_i + K_1/2)
errorestimate = abs(K_1 - K_2)
s = 0.9 * sqrt(errortolerance/errorestimate)
if errorestimate <= errortolerance # Success!

t_i += h
U_i += K_1
append!(t, t_i)
append!(U, U_i)
# Adjust step size up, but not too big
h = min(s*h, h_max)

else # Innacurate; reduce step size and try again
h = max(s*h, h_min)
if demomode

println("t_i=$t_i: Decreasing step size to $(round(h,4)) and trying␣
↪again.")

end
end
# A refinement not mentioned above; the next step should not overshoot t=b:
if t_i + h > b

h = b - t_i
end
steps += 1

end
return (t, U)
# Note: if the step count ran out, this does not reach t=b, but at least it is␣

↪correct as far as it goes
end;

f(t, u) = K*u;

a = 1.0
b = 3.0
u_0 = 2.0
K = 1.0
u(t) = u_0*exp(K*(t-a));

errortolerance = 1e-2
time_start = time()
(t, U) = eulermethod_errorcontrol(f, a, b, u_0; errortolerance=errortolerance,␣

↪demomode=true)
time_end = time()
time_elapsed = time_end - time_start

steps = length(U) - 1
h_ave = (b-a)/steps
U_exact = u.(t)
U_error = U_exact - U
U_max = norm(U_error, Inf)
println()
println("With error tolerance $errortolerance, this took $steps time steps, of␣

↪average length $(round(h_ave,4))")

(continues on next page)

7.5. Error Control and Variable Step Sizes 265



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

println("The maximum absolute error is $(round(U_max,4))")
println("The maximum absolute error per time step is $(round(U_max/steps,4))")
println("The time taken to solve was $(round(time_elapsed,4)) seconds")

figure(figsize=[10,4])
title("Solution to du/dt=$(K)u, u($a)=$u_0")
plot(t, U, ".:")
grid(true)

figure(figsize=[10,4])
title("Error in the above")
plot(t, U_error, ".:")
grid(true);

t_i=1.0: Decreasing step size to 0.09 and trying again.

With error tolerance 0.01, this took 36 time steps, of average length 0.05556
The maximum absolute error is 0.8311
The maximum absolute error per time step is 0.02309
The time taken to solve was 0.09479 seconds

266 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

errortolerance = 1e-3
time_start = time()
(t, U) = eulermethod_errorcontrol(f, a, b, u_0; errortolerance=errortolerance,␣

↪demomode=true)
time_end = time()
time_elapsed = time_end - time_start

steps = length(U) - 1
h_ave = (b-a)/steps
U_exact = u.(t)
U_error = U_exact - U
U_max = norm(U_error, Inf)
println()
println("With error tolerance $errortolerance, this took $steps time steps, of␣

↪average length $(round(h_ave,4))")
println("The maximum absolute error is $(round(U_max,4))")
println("The maximum absolute error per time step is $(round(U_max/steps,4))")
println("The time taken to solve was $(round(time_elapsed,4)) seconds")

figure(figsize=[10,4])
title("Solution to du/dt=$(K)u, u($a)=$u_0")
plot(t, U, ".:")
grid(true)

figure(figsize=[10,4])
title("Error in the above")
plot(t, U_error, ".:")
grid(true);

t_i=1.0: Decreasing step size to 0.02846 and trying again.

With error tolerance 0.001, this took 119 time steps, of average length 0.01681
The maximum absolute error is 0.2648
The maximum absolute error per time step is 0.002225
The time taken to solve was 0.000586 seconds

7.5. Error Control and Variable Step Sizes 267



Introduction to Numerical Methods and Analysis with Julia (draft)

errortolerance = 1e-4
time_start = time()
(t, U) = eulermethod_errorcontrol(f, a, b, u_0; errortolerance=errortolerance,␣

↪demomode=true)
time_end = time()
time_elapsed = time_end - time_start

steps = length(U) - 1
h_ave = (b-a)/steps
U_exact = u.(t)
U_error = U_exact - U
U_max = norm(U_error, Inf)
println()
println("With error tolerance $errortolerance, this took $steps time steps, of␣

↪average length $(round(h_ave,4))")
println("The maximum absolute error is $(round(U_max,4))")
println("The maximum absolute error per time step is $(round(U_max/steps,4))")
println("The time taken to solve was $(round(time_elapsed,4)) seconds")

(continues on next page)

268 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

figure(figsize=[10,4])
title("Solution to du/dt=$(K)u, u($a)=$u_0")
plot(t, U)
grid(true)

figure(figsize=[10,4])
title("Error in the above")
plot(t, U_error)
grid(true);

t_i=1.0: Decreasing step size to 0.009 and trying again.

With error tolerance 0.0001, this took 380 time steps, of average length 0.005263
The maximum absolute error is 0.08398
The maximum absolute error per time step is 0.000221
The time taken to solve was 0.0007212 seconds

7.5. Error Control and Variable Step Sizes 269



Introduction to Numerical Methods and Analysis with Julia (draft)

7.5.5 The explicit trapezoid method with error control

In practice, one usually needs at least second order accuracy, and one approach to that is using computing a “candidates”
for the next time step with a second order accurate Runge-Kutta method and also a third order accurate one, the latter
used only to get an error estimate for the former.
Perhaps the simplest of these is based on adding error estimation to the Explicit Trapezoid Rule. Omitting the step size
adjustment for now, the main ingredients are:

Algorithm 7.7
𝐾1 = ℎ𝑓(𝑡, 𝑈)
𝐾2 = ℎ𝑓(𝑡 + ℎ, 𝑈 + 𝐾1)
(So far, as for the explicit trapezoid method)
𝐾3 = ℎ𝑓(𝑡 + ℎ/2, 𝑈 + (𝐾1 + 𝐾2)/4)
(a midpoint approximation, using the above)
𝛿2 = (𝐾1 + 𝐾2)/2
(The order 2 increment as for the explicit trapezoid method)
𝛿3 = (𝐾1 + 4𝐾3 + 𝐾2)/6
(An order 3 increment — note the resemblance to Simpson’s Rule for integration. This is only used to get the final error
estimate below)
𝑒ℎ = |𝛿2 − 𝛿3|, = |𝐾1 − 2𝐾3 + 𝐾2|/3

Again, if this step is accepted, one uses the explicit trapezoid rule step: 𝑈𝑖+1 = 𝑈𝑖 + 𝛿2.

Step size adjustment

The scale factor 𝑠 for step size adjustment must be modified for a method order 𝑝 (with 𝑝 = 2 now):
• Changing step size by a factor 𝑠 will change the error 𝑒ℎ in a single time step by a factor of about 𝑠𝑝+1.
• Thus, we want a new step with this rescaled error of about 𝑠𝑝+1𝑒ℎ roughly matching the tolerance 𝑇 . Equating
would give 𝑠𝑝+1𝑒ℎ = 𝑇 , so 𝑠 = (𝑇 /𝑒ℎ))1/(𝑝+1), but as noted above, since we are using only an approximation ̃𝑒ℎ
of 𝑒ℎ it is typical to include a “safety factor” of about 0.9, so something like

𝑠 = 0.9 ( 𝑇
| ̃𝑒ℎ|)

1/(𝑝+1)

Thus for this second order accurate method, we then get

𝑠 = 0.9 ( 3𝑇
|𝐾1 − 2𝐾3 + 𝐾2|)

1/3

A variant: relative error control
One final refinement: it is more common in software to impose a relative error bound: aiming for |𝑒ℎ/𝑢(𝑡)| ≤ 𝑇 , or
|𝑒ℎ| ≤ 𝑇 |𝑢(𝑡)|. Approximating 𝑢(𝑡) by 𝑈𝑖, this changes the step size rescaling guideline to

𝑠 = 0.9 ∣𝑇 𝑈𝑖
̃𝑒ℎ

∣
1/(𝑝+1)

270 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Exercise C

Implement The explicit trapezoid method with error control, and test on the two familiar examples

𝑑𝑢/𝑑𝑡 = 𝐾𝑢
and

𝑑𝑢/𝑑𝑡 = 𝐾(cos(𝑡) − 𝑢) − sin(𝑡)

(𝐾 = 1 is enough.)

7.5.6 Fourth order accurate methods with error control: Runge-Kutta-Felberg and
some newer refinements

The details involve some messy coefficients; see the references above for those.
The basic idea is to devise a fifth order accurate Runge-Kutta method such that we can also get a fourth order accurate
method from the same colection of stages 𝐾𝑖 values. One catch is that any such fifth order method requires six stages
(not five as you might have guessed).
The first such method, still widely used, is the Runge-Kutta-Felberg Method published by Erwin Fehlberg in 1970:

Algorithm 7.8 (RUnge-Kutta-Fehlberg)
𝐾1 = ℎ𝑓(𝑡, 𝑈)
𝐾2 = 𝑓(𝑡 + 1

4 ℎ, 𝑈 + 𝐾1/4)
𝐾3 = 𝑓(𝑡 + 3

8 ℎ, 𝑈 + 3
32 𝐾1 + 9

32 𝐾2)
𝐾4 = 𝑓(𝑡 + 12

13 ℎ, 𝑈 + 1932
2197 𝐾1 − 7200

2197 𝐾2 + 7296
2197 𝐾3)

𝐾5 = 𝑓(𝑡 + ℎ, 𝑈 + 439
216 𝐾1 − 8𝐾2 + 3680

2565 𝐾3 − 845
4104 𝐾4)

𝐾6 = 𝑓(𝑡 + 1
2 ℎ, 𝑈 − 8

27 𝐾1 + 2𝐾2 − 3544
513 𝐾3 + 1859

4104 𝐾4 − 11
40 𝐾5)

𝛿4 = 25
216 𝐾1 + 1408

2565 𝐾3 + 2197
4104 𝐾4 − 1

5 𝐾5

(The order 4 increment that will actually be used)
𝛿5 = 16

135 𝐾1 + 6656
12825 𝐾3 + 28561

56430 𝐾4 − 9
50 𝐾5 + 2

55 𝐾6

(The order 5 increment, used only to get the following error estimate)
̃𝑒ℎ = 1

360 𝐾1 − 128
4275 𝐾3 + 2197

75240 𝐾4 + 1
50 𝐾5 + 2

55 𝐾6

This method is typically used with the relative error control mentioned above, and since the order is 𝑝 = 4, the recom-
mended step-size rescaling factor is

𝑠 = 0.9 ∣𝑇 𝑈𝑖
̃𝑒ℎ

∣
1/5

, = 0.9 ∣ 𝑇 𝑈𝑖
1

360 𝐾1 − 128
4275 𝐾3 + 2197

75240 𝐾4 + 1
50 𝐾5 + 2

55 𝐾6
∣
1/5

,

7.5. Error Control and Variable Step Sizes 271

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method


Introduction to Numerical Methods and Analysis with Julia (draft)

7.5.7 ODE solvers in Julia package DifferentialEquations

Newer software often uses variants such as the method of Dormand–Prince method published in 1980 or that of Tsitouras
published in 2011.
These (and many others) are available in the Julia package DifferentialEquations as DP5 and Tsit45 respec-
tively.

Example using package DifferentialEquations— to be added

7.6 An Introduction to Multistep Methods

References:
• Section 6.7 Multistep Methods of [Sauer, 2019].
• Section 5.6 Multistep Methods of [Burden et al., 2016].

7.6.1 Introduction

When approximating derivatives we saw that there is a distinct advantage in accuracy to using the centered difference
approximation

𝑑𝑓
𝑑𝑡 (𝑡) ≈ 𝛿ℎ𝑓(𝑡) ∶= 𝑓(𝑡 + ℎ) − 𝑓(𝑡 − ℎ)

2ℎ
(with error 𝑂(ℎ2)) over the forward difference approximation

𝑑𝑓
𝑑𝑡 (𝑡) ≈ Δℎ𝑓(𝑡) ∶= 𝑓(𝑡 + ℎ) − 𝑓(𝑡)

ℎ
(which has error 𝑂(ℎ)).
However Euler’s method used the latter, and all ODE methods seen so far avoid using values at “previous” times like
𝑡 − ℎ. There is a reason for this, as using data from previous times introduces some complications, but sometimes those
are worth overcoming, so let us look into this.
In this section, we look at one simple multi-step method, based on the above centered-difference derivative approximation.
Future sections will look at higher order methods such as the Adams-Bashforth and Adams-Moulton methods.

7.6.2 The Leapfrog method

Inserting the above centered difference approximation of the derivative into the ODE 𝑑𝑢/𝑑𝑡 = 𝑓(𝑡, 𝑢) gives

𝑢(𝑡 + ℎ) − 𝑢(𝑡 − ℎ)
ℎ ≈ 𝑓(𝑡, 𝑢(𝑡))

which leads to the leapfrog method

𝑈𝑖+1 − 𝑈𝑖−1
2ℎ = 𝑓(𝑡𝑖, 𝑈𝑖)

or

𝑈𝑖+1 = 𝑈𝑖−1 + 2ℎ𝑓(𝑡𝑖, 𝑈𝑖)

272 Chapter 7. Initial Value Problems for Ordinary Differential Equations

https://en.wikipedia.org/wiki/Dormand%E2%80%93Prince_method


Introduction to Numerical Methods and Analysis with Julia (draft)

This is the first example of a

Definition 7.1 (Multistep Method)
A multistep method for numerical solution of an ODE IVP 𝑑𝑢/𝑑𝑡 = 𝑓(𝑡, 𝑢), 𝑢(𝑡0) = 𝑢0 is one of the form

𝑈𝑖+1 = 𝜙(𝑈𝑖, … 𝑈𝑖−𝑠+1, ℎ), 𝑠 > 1

so that the new approximate value of 𝑢(𝑡) depends on approximate values at multiple previous times.
More specifically, this is called an 𝑠-step method.

This jargon is consistent with all methods seen in earlier sections being called one-step methods. For example, Euler’s
method can be written as

𝑈𝑖+1 = 𝜙𝐸(𝑈𝑖, ℎ) ∶= 𝑈𝑖 + ℎ𝑓(𝑡𝑖, 𝑈𝑖)

and the explicit midpoint method can be written as the one-liner

𝑈𝑖+1 = 𝜙𝐸𝑀𝑃 (𝑈𝑖, ℎ) ∶= 𝑈𝑖 + ℎ𝑓(𝑡𝑖 + ℎ/2, 𝑈𝑖 + ℎ𝑓(𝑡𝑖, 𝑈𝑖)/2)ℎ

The leapfrog method already illustrates two of the complications that arise with multistep methods:
• The initial data 𝑢(𝑎) = 𝑢0 gives 𝑈0, but then the above formula gives 𝑈1 in terms of 𝑈0 and the non-existent value

𝑈−1; a different method is needed to get 𝑈1. More generally, with an 𝑠-step methods, one needs to compute the
first 𝑠 − 1 steps, up to 𝑈𝑠−1, by some other method.

• leapfrog needs a constant step size ℎ; the strategy of error estimation and error control using variable step size is
still possible with some multistep methods, but that is distinctly more complicated than we have seen with one-step
methods, and is not addressed in these notes.

Fortunately, many differential equations can be handled well by choosing a suitable fixed step size ℎ. Thus, in these notes
we work only with equal step sizes, so that our times are 𝑡𝑖 = 𝑎 + 𝑖ℎ and we aim for approximations 𝑈𝑖 ≈ 𝑢(𝑎 + 𝑖ℎ).

7.6.3 Second order accuracy of the leapfrog method

Using the fact that the centered difference approximation is second order accurate, one can verify that

𝑢(𝑡𝑖+1) − 𝑢(𝑡𝑖−1)
2ℎ − 𝑓(𝑡, 𝑢(𝑡𝑖)) = 𝑂(ℎ2)

(Alternatively one can get this by inserting quadratic Taylor polynomials centered at 𝑡𝑖, and their error terms.)
The definition of local trunctation error needs to be extended slightly: it is the error 𝑈𝑖+1 − 𝑢(𝑡𝑖+1) when one starts with
exact values for all previous steps; that is, assuming 𝑈𝑗 = 𝑢(𝑡𝑗) for all 𝑗 ≤ 𝑖.
The above results then shows that the local truncation error in each step is 𝑈𝑖+1 − 𝑢(𝑡𝑖+1) = 𝑂(ℎ3), so that the “local
truncation error per unit time” is

$𝑈𝑖+1−𝑢(𝑡𝑖+1)
ℎ = 𝑂(ℎ2)$.

A theorem in the section on A Global Error Bound for One Step Methods says that when a one-step methods has local
truncation error per unit time of 𝑂(ℎ𝑝) it also has global truncation error of the same order. The situation is a bit more
complicated with multi-step methods, but loosely:
if the errors in a multistep method has local truncation 𝑂(ℎ𝑝) and it converges (i.e. the global error goes to zero at
ℎ → 0) then it does so at the expected rate of 𝑂(ℎ𝑝).

7.6. An Introduction to Multistep Methods 273



Introduction to Numerical Methods and Analysis with Julia (draft)

But multi-step methods can fail to converge, even if the local truncation error is of high order! This is dealt with via the
concept of stability; not considered here, but addressed in both references above, and a topic for future expansion of
these notes.
In particular, when the leapfrog method converges it is second order accurate, just like the centered difference approxi-
mation of 𝑑𝑢/𝑑𝑡 that it is built upon.

7.6.4 The speed advantage of multi-step methods like the leapfrog method

This second order accuracy illustrates a major potential advantage of multi-step methods: whereas any one-step Runge-
Kutta method that is second order accurate (such as the explicit trapezoid or explicit midpoint methods) require at least
two evaluations of 𝑓(𝑡, 𝑢) for each time step, the leapfrog methods requires only one.
More generally, for every 𝑠, there are 𝑠-step methods with errors 𝑂(ℎ𝑠) that require only one evaluation of 𝑓(𝑡, 𝑢) per
time step — for example, the Adams-Bashforth methods, as seen at

• Section Adams-Bashforth Multistep Methods
• https://en.wikipedia.org/wiki/Linear_multistep_method#Adams-Bashforth_methods
• https://en.m.wikiversity.org/wiki/Adams-Bashforth_and_Adams-Moulton_methods
• [Sauer, 2019] Section 6.7.1 and 6.7.2
• [Burden et al., 2016] Section 5.6

In comparison, any explicit one-step method order 𝑝 require at least 𝑝 evaluations of 𝑓(𝑡, 𝑢) per time step.
(See the Implicit Methods: Adams-Moulton for the distinction between explicit and implicit methods.)

using PyPlot

include("NumericalMethods.jl")

Main.NumericalMethods

import .NumericalMethods as NM

function leapfrog(f, a, b, U_0, U_1, n)
n_unknowns = length(U_0)
t = range(a, b, n+1)
u = zeros(n+1, n_unknowns)
u[1,:] = U_0
u[2,:] = U_1
h = (b-a)/n
for i in 2:n

u[i+1,:] = u[i-1,:] + 2*h*f(t[i], u[i,:])
end
return (t, u)

end;

274 Chapter 7. Initial Value Problems for Ordinary Differential Equations

https://en.wikipedia.org/wiki/Linear_multistep_method#Adams-Bashforth_methods
https://en.m.wikiversity.org/wiki/Adams-Bashforth_and_Adams-Moulton_methods


Introduction to Numerical Methods and Analysis with Julia (draft)

Demo with the mass-spring system

As seen in the section Systems of ODEs and Higher Order ODEs
the damped mass-spring equation is

𝑀 𝑑2𝑦
𝑑𝑡2 = −𝐾𝑦 − 𝐷𝑑𝑦

𝑑𝑡
with initial conditions

𝑦(𝑎) = 𝑦0
𝑑𝑦
𝑑𝑡 ∣

𝑡=𝑎
= 𝑣0

with first-order system form

𝑑𝑢0
𝑑𝑡 = 𝑢1

𝑑𝑢1
𝑑𝑡 = − 𝐾

𝑀 𝑢0 − 𝐷
𝑀 𝑢1

with initial conditions
𝑢0(𝑎) = 𝑦0
𝑢1(𝑎) = 𝑣0

The right-hand side 𝑓 is given by

f_mass_spring(t, u) = [ u[2], -(K/M)*u[1] - (D/M)*u[2] ];

and the solutions seen in that section are given by function y_mass_spring

function y_mass_spring(t; t_0, u_0, K, M, D)
(y_0, v_0) = u_0
discriminant = D^2 - 4K*M
if discriminant < 0 # underdamped

omega = sqrt(4K*M - D^2)/(2M)
A = y_0
B = (v_0 + y_0*D/(2M))/omega
return exp(-D/(2M)*(t-t_0)) * ( A*cos(omega*(t-t_0)) + B*sin(omega*(t-t_0)))

elseif discriminant > 0 # overdamped
Delta = sqrt(discriminant)
lambda_plus = (-D + Delta)/(2M)
lambda_minus = (-D - Delta)/(2M)
A = M*(v_0 - lambda_minus * y_0)/Delta
B = y_0 - A
return A*exp(lambda_plus*(t-t_0)) + B*exp(lambda_minus*(t-t_0))

else
lambda = -D/(2M)
A = y_0
B = v_0 - A * lambda
return (A + B*t)*exp(lambda*(t-t_0))

end
end;

which alternatively could be imported from module NumericalMethods.

7.6. An Introduction to Multistep Methods 275



Introduction to Numerical Methods and Analysis with Julia (draft)

M = 1.0
K = 1.0
D = 0.0
U_0 = [1.0, 0.0]
a = 0.0
periods = 4
b = 2pi * periods

# Note: In the notes on systems, the second order methods were tested with 50 steps␣
↪per period

#stepsperperiod = 50 # As for the second order accurate explicit trapezoid and␣
↪midpoint methods

stepsperperiod = 100 # Equal cost per unit time as for the explicit trapezoid and␣
↪midpoint and Runge-Kutta methods

n = Int(stepsperperiod * periods)

# We need U_1, and get it with the Runge-Kutta method;
# this is overkill for accuracy, but since only one step is needed, the time cost is␣

↪negligible.
h = (b-a)/n
(t_1step, U_1step) = NM.rungekutta_system(f_mass_spring, a, a+h, U_0, 1)
U_1 = U_1step[end,:]
(t, U) = leapfrog(f_mass_spring, a, b, U_0, U_1, n)

Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("y for K/M=$(K/M), D=$D by leapfrog with $periods periods, $stepsperperiod␣

↪steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

figure(figsize=[6,6]) # Make axes equal length; orbits should be circular or
↪"circular spirals"

title("The orbits")
plot(Y, DY)
xlabel("y")
plot(Y[1], DY[1], "g*", label="start")
plot(Y[end], DY[end], "r*", label="end")
legend()
grid(true)

276 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

7.6. An Introduction to Multistep Methods 277



Introduction to Numerical Methods and Analysis with Julia (draft)

D = 0.0

periods = 16
b = 2pi * periods

# Note: In the notes on systems, the second order methods were tested with 50 steps␣
↪per period

stepsperperiod = 50 # As for the second order accurate explicit trapezoid and␣
↪midpoint methods

#stepsperperiod = 100 # Equal cost per unit time as for the explicit trapezoid and␣
↪midpoint and Runge-Kutta methods

n = Int(stepsperperiod * periods)

# We need U_1, and get it with the Runge-Kutta method;
# this is overkill for accuracy, but since only one step is needed, the time cost is␣

↪negligible.
h = (b-a)/n
(t_1step, U_1step) = NM.rungekutta_system(f_mass_spring, a, a+h, U_0, 1)
U_1 = U_1step[end,:]
(t, U) = leapfrog(f_mass_spring, a, b, U_0, U_1, n)

(continues on next page)

278 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("y for K/M=$(K/M), D= $D by leapfrog with $periods periods, $stepsperperiod␣

↪steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

figure(figsize=[6,6]) # Make axes equal length; orbits should be circular or
↪"circular spirals"

title("The orbits")
plot(Y, DY)
xlabel("y")
plot(Y[1], DY[1], "g*", label="start")
plot(Y[end], DY[end], "r*", label="end")
legend()
grid(true)

7.6. An Introduction to Multistep Methods 279



Introduction to Numerical Methods and Analysis with Julia (draft)

The errors in leapfrog have an interesting feature: they are largely in timing, with its solutions rotating a little too fast,
while the orbits stay on the correct circle: leapfrog respects the conserved “energy” 𝐸(𝑡) = 1

2 (𝑦2(𝑡) + 𝐷𝑦2(𝑡)). In the

280 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

section Adams-Bashforth Multistep Methods, this behavior wil be compared to a more “typical” methods.
In some situations, this respecting of conserved quantities is very important, and the so-called conservative methods like
leapfrog are then good choices.

But with damping, things eventually go wrong!

This is an example in instability: reducing the step-size only postpones the problem, but does not avoid it.
In future sections it will be seen that the leapfrog method is stable (and a good choice) for “conservative” systems like the
undamped mass-spring system, but unstable otherwise, such as for the damped case.

D = 0.2

periods = 16
b = 2pi * periods

# We need U_1, and get it with the Runge-Kutta method;
# this is overkill for accuracy, but since only one step is needed, the time cost is␣

↪negligible.
h = (b-a)/n
(t_1step, U_1step) = NM.rungekutta_system(f_mass_spring, a, a+h, U_0, 1)
U_1 = U_1step[end,:]
(t, U) = leapfrog(f_mass_spring, a, b, U_0, U_1, n)

Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("y for K/M=$(K/M), D=$D by leapfrog with $periods periods, $stepsperperiod␣

↪steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

7.6. An Introduction to Multistep Methods 281



Introduction to Numerical Methods and Analysis with Julia (draft)

7.7 Adams-Bashforth Multistep Methods

References:
• Section 6.7 Multistep Methods in [Sauer, 2019].
• Section 5.6 Multistep Methods in [Burden et al., 2016].

282 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

7.7.1 Introduction

Recall from An Introduction to Multistep Methods:

Definition 7.2 (Multistep Method)
A multistep method for numerical solution of an ODE IVP 𝑑𝑢/𝑑𝑡 = 𝑓(𝑡, 𝑢), 𝑢(𝑡0) = 𝑢0 is one of the form

𝑈𝑖 = 𝜙(𝑈𝑖−1, … 𝑈𝑖−𝑠, ℎ), 𝑠 > 1

so that the new approximate value of 𝑢(𝑡) depends on approximate values at multiple previous times. (The shift of
indexing to describe “present” in terms of “past” wil be convenient here.)
This is called an 𝑠-step method: the Runge-Kutta family of methods are all one-step.

We will be more specifically interted in what are called linear multistep methods, where the function at right is a linear
combination of value of 𝑢(𝑡) and 𝑓(𝑡, 𝑢(𝑡)).
So for now we look at

𝑈𝑖 = 𝑎0𝑈𝑖−𝑠 + ⋯ + 𝑎𝑠−1𝑈𝑖−1 + ℎ(𝑏0𝑓(𝑡𝑖−𝑠, 𝑈𝑖−𝑠) + ⋯ + 𝑏𝑠−1𝑓(𝑡𝑖−1, 𝑈𝑖−1))

The Adams-Bashforth methods are a case of this with the only 𝑎𝑖 term being 𝑎𝑠−1 = 1:

𝑈𝑖 = 𝑈𝑖−1 + ℎ(𝑏0𝑓(𝑡𝑖−𝑠, 𝑈𝑖−𝑠) + ⋯ + 𝑏𝑠−1𝑓(𝑡𝑖−1, 𝑈𝑖−1))

As wil be verified later, the 𝑠-step version of this is accurate to order 𝑠, so one can get arbitrarily high order of accuracy
by using enough steps.
Aside. The case 𝑠 = 1 is Euler’s method, now written as

𝑈𝑖 = 𝑈𝑖−1 + ℎ𝑓(𝑡𝑖−1, 𝑈𝑖−1)

The Adams-Bashforth methods are probably the most comomnly used explicit, one-stagemulti-step methods; we will see
more about the alternatives of implicit and multi-stage options in future sections. (Note that all Runge-Kutta methods
(except Euler’s) are multi-stage: the explicit trapezoid and midpoint methods are 2-stage; the classical Runge-Kutta
method is 4-stage.)
The most basic Adams-Bashforth multi-step method is the 2-step method, which can be thought of this way:

1. Start with the two most recent values, 𝑈𝑖−1 ≈ 𝑢(𝑡𝑖)−ℎ and 𝑈𝑖−2 ≈ 𝑢(𝑡𝑖 − 2ℎ)
2. Use the derivative approximations 𝐹𝑖−1 ∶= 𝑓(𝑡𝑖−1, 𝑈𝑖−1) ≈ 𝑢′(𝑡𝑖−1) and 𝐹𝑖−2 ∶= 𝑓(𝑡𝑖−2, 𝑈𝑖−2) ≈ 𝑢′(𝑡𝑖−2) and

linear extrapolation to “predict” the value of 𝑢′(𝑡𝑖 −ℎ/2); one gets: 𝑢′(𝑡𝑖 −ℎ/2) ≈ 3
2 𝑢′(𝑡𝑖 −ℎ)− 1

2 𝑢′(𝑡𝑖 −2ℎ) ≈
3
2 𝐹𝑖−1 − 1

2 𝐹𝑖−2

3. Use this in the centered difference approximation
𝑢(𝑡𝑖) − 𝑢(𝑡𝑖−1)

ℎ ≈ 𝑢′(𝑡𝑖 − ℎ/2)
to get

𝑈𝑖 − 𝑈𝑖−1
ℎ ≈ 3

2𝐹𝑖−1 − 1
2𝐹𝑖−2

That is,

𝑈𝑖 = 𝑈𝑖−1 + ℎ
2 (3𝐹𝑖−1 − 𝐹𝑖−2) , = 𝑈𝑖−1 + ℎ

2 (3𝑓(𝑡𝑖−1, 𝑈𝑖−1) − 𝑓(𝑡𝑖−2, 𝑈𝑖−2)) (7.11)

Equivalently, one can

7.7. Adams-Bashforth Multistep Methods 283



Introduction to Numerical Methods and Analysis with Julia (draft)

1. Find the collocating polynomial 𝑝(𝑡) through (𝑡𝑖−1, 𝐹𝑖−1) and (𝑡𝑖−2, 𝐹𝑖−2) [so just a line in this case]
2. Use this on the interval (𝑡𝑖−1, 𝑡𝑖) (extrapolation) as an approximation of 𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) in that interval.
3. Use

𝑢(𝑡𝑖) = 𝑢(𝑡𝑖−1) + ∫
𝑡𝑖

𝑡𝑖−1

𝑢′(𝜏)𝑑𝜏 ≈ 𝑢(𝑡𝑖−1) + ∫
𝑡𝑖

𝑡𝑖−1

𝑝(𝜏)𝑑𝜏,

where the latter integral is easy to evaluate exactly.
One does not actually do this in each case; it is enough to verify that the integral gives ( 3

2 𝐹𝑖−1 − 1
2 𝐹𝑖−2) ℎ.

See Exercise 1.
To code this algorithm, it is convenient to shift the indices, to get a formula for 𝑈𝑖. Also, note that what is 𝐹𝑖 = 𝑓(𝑡𝑖, 𝑈𝑖)
at one step is reused as 𝐹𝑖−1 = 𝑓(𝑡𝑖−1, 𝑈𝑖−1) at the next, so to avoid redundant evaluations of 𝑓(𝑡, 𝑢), these quantities
should also be saved, at least till the next step:

𝑈𝑖 = 𝑈𝑖−1 + ℎ
2 (3𝐹𝑖−1 − 𝐹𝑖−2)

using PyPlot

include("NumericalMethods.jl")

Main.NumericalMethods

import .NumericalMethods as NM

function adamsbashforth2(f, a, b, U_0, U_1, n)
n_unknowns = length(U_0)
t = range(a, b, n+1)
u = zeros(n+1, n_unknowns)
u[1,:] = U_0
u[2,:] = U_1
F_i_2 = f(a, U_0) # F_0 to start when computing U_2
h = (b-a)/n
for i in 2:n # i is the mathematical index, so "+1" for Julia array indices

F_i_1 = f(t[i], u[i,:])
u[i+1,:] = u[i,:] + (3*F_i_1 - F_i_2) * (h/2)
F_i_2 = F_i_1

end
return (t, u)

end;

Demonstrations with the mass-spring system

f_mass_spring(t, u) = [ u[2]; -(K/M)*u[1] - (D/M)*u[2] ];

using .NumericalMethods: y_mass_spring

284 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

M = 1.0
K = 1.0
D = 0.0
y_0 = 1.0
v_0 = 0.0
U_0 = [y_0, v_0]
a = 0.0
periods = 4
b = 2pi * periods

# Using the same time step size as with the leapfrog method in the previous section.
stepsperperiod = 100
n = Int(stepsperperiod * periods)

# We need U_1, and get it with the Runge-Kutta method;
# this is overkill for accuracy, but since only one step is needed, the time cost is␣

↪negligible.
h = (b-a)/n
(t_1step, U_1step) = NM.rungekutta_system(f_mass_spring, a, a+h, U_0, 1)
U_1 = U_1step[end,:]
(t, U) = adamsbashforth2(f_mass_spring, a, b, U_0, U_1, n)

Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("K/M=$(K/M), D=$D by 2-step Adams-Bashforth with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
xlabel("y")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

figure(figsize=[6,6]) # Make axes equal length; orbits should be circular or
↪"circular spirals"

title("The orbit")
plot(Y, DY)
xlabel("y")
plot(Y[1], DY[1], "g*", label="start")
plot(Y[end], DY[end], "r*", label="end")
legend()
grid(true)

7.7. Adams-Bashforth Multistep Methods 285



Introduction to Numerical Methods and Analysis with Julia (draft)

286 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

D = 0.0

periods = 16
b = 2pi * periods

# Using the same time step size as with the leapfrog method in the previous section.
stepsperperiod = 100
n = Int(stepsperperiod * periods)

# We need U_1, and get it with the Runge-Kutta method;
# this is overkill for accuracy, but since only one step is needed, the time cost is␣

↪negligible.
h = (b-a)/n
(t_1step, U_1step) = NM.rungekutta_system(f_mass_spring, a, a+h, U_0, 1)
U_1 = U_1step[end,:]
(t, U) = adamsbashforth2(f_mass_spring, a, b, U_0, U_1, n)

Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

(continues on next page)

7.7. Adams-Bashforth Multistep Methods 287



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

figure(figsize=[10,4])
title("K/M=$(K/M), D=$D by 2-step Adams-Bashforth with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
ylabel("y")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

figure(figsize=[6,6]) # Make axes equal length; orbits should be circular or
↪"circular spirals"

title("The orbits")
plot(Y, DY)
xlabel("y")
xlabel("dy/dt")
plot(Y[1], DY[1], "g*", label="start")
plot(Y[end], DY[end], "r*", label="end")
legend()
grid(true)

288 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

In comparison to the (also second order accurate) leap-frog method, this is distinctly worse; the errors are more than
twice as large, and the solution fails to stay on the circle; unlike leapfrog, the energy 𝐸(𝑡) = 1

2 (𝑦2(𝑡) + 𝐷𝑦2(𝑡)) is not

7.7. Adams-Bashforth Multistep Methods 289



Introduction to Numerical Methods and Analysis with Julia (draft)

conserved.
On the other hand …

This time with damping, nothings goes wrong!

This is an example in stability; in future sections it will be seen that the the Adams-Bashforth methods are all stable for
these equations for small enough step size ℎ, and so converge to the correct solution as ℎ → 0.
Looking back, this suggests (correctly) that while the leapfrog method is well-suited to conservative equations, Adams-
Bashforth methods are much preferable for more general equations.

D = 0.5

periods = 4
b = 2pi * periods

# Using the same time step size as with the leapfrog method in the previous section.
stepsperperiod = 100
n = Int(stepsperperiod * periods)

# We need U_1, and get it with the Runge-Kutta method;
# this is overkill for accuracy, but since only one step is needed, the time cost is␣

↪negligible.
h = (b-a)/n
(t_1step, U_1step) = NM.rungekutta_system(f_mass_spring, a, a+h, U_0, 1)
U_1 = U_1step[end,:]
(t, U) = adamsbashforth2(f_mass_spring, a, b, U_0, U_1, n)

Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("K/M=$(K/M), D=$D by 2-step Adams-Bashforth with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
ylabel("y")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

290 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

7.7.2 Higher order Adams-Bashforth methods

The strategy described above of polynomial approximation, extrapolation, and integration can be generalized to get the 𝑠
step Adams-Bashforth method, of order 𝑠; to get the approximation 𝑈𝑖 of 𝑢(𝑡𝑖) from data at the 𝑠 most recent previous
times 𝑡𝑖−1 to 𝑡𝑖−𝑠:

1. Find the collocating polynomial 𝑝(𝑡) of degree 𝑠 − 1 through (𝑡𝑖−1, 𝐹𝑖−1) … (𝑡𝑖−𝑠, 𝐹𝑖−𝑠)
2. Use this on the interval (𝑡𝑖−1, 𝑡𝑖) (extrapolation) as an approximation of 𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) in that interval.

3. Use 𝑢(𝑡𝑖) = 𝑢(𝑡𝑖−1) + ∫𝑡𝑖
𝑡𝑖−1

𝑢′(𝜏)𝑑𝜏 ≈ 𝑢(𝑡𝑖−1) + ∫𝑡𝑖
𝑡𝑖−1

𝑝(𝜏)𝑑𝜏 , where the latter integral can be evaluated exactly.
Again, one does not actually evaluate this integral; it is enough to verify that the resulting form will be

𝑈𝑖 = 𝑈𝑖−1 + ℎ(𝑏0𝐹𝑖−𝑠 + 𝑏1𝐹𝑖−𝑠+1 + ⋯ 𝑏𝑠−1𝐹𝑖−1)

with the coefficients being the same for any 𝑓(𝑡, 𝑢) and any ℎ.

7.7. Adams-Bashforth Multistep Methods 291



Introduction to Numerical Methods and Analysis with Julia (draft)

In fact, the polynomial fitting and integration can be skipped: thecoefficients can be derived by themethod of undetermined
coefficients as seen in Approximating Derivatives by the Method of Undetermined Coefficients and this also established that
the local truncation error is 𝑂(ℎ𝑠):

• insert Taylor polynomial approximations of 𝑢(𝑡𝑖−𝑘) = 𝑢(𝑡𝑖)−𝑘ℎ) and 𝑓(𝑡𝑖−𝑘, 𝑢(𝑡𝑖−𝑘)) = 𝑢′(𝑡𝑖−𝑘) = 𝑢′(𝑡𝑖 −𝑘ℎ)
into $𝑈𝑖 = 𝑈𝑖−1 + ℎ(𝑏0𝑓(𝑡𝑖−𝑠, 𝑈𝑖−𝑠) + ⋯ + 𝑏𝑠−1𝑓(𝑡𝑖−1, 𝑈𝑖−1))$

• solve for the 𝑠 coefficients 𝑏0 … 𝑏𝑠−1 that give the highest power for the residual error: the terms in the first 𝑠 powers
of ℎ (from ℎ0 = 1 to ℎ𝑠−1) can be cancelled, leaving an error 𝑂(ℎ𝑠).

The first few Adams-Bashforth formulas are:
• 𝑠 = 1: 𝑏0 = 1, $𝑈𝑖 = 𝑈𝑖−1 + ℎ𝐹𝑖−1 = 𝑈𝑖−1 + ℎ𝑓(𝑡𝑖−1, 𝑈𝑖−1) (Euler's method)$
• 𝑠 = 2: 𝑏0 = −1/2, 𝑏1 = 3/2, $𝑈𝑖 = 𝑈𝑖−1 + ℎ

2 (3𝐹𝑖−1 − 𝐹𝑖−2) (as above)$

• 𝑠 = 3: 𝑏0 = 5/12, 𝑏1 = −16/12, 𝑏2 = 23/12, $𝑈𝑖 = 𝑈𝑖−1 + ℎ
12 (23𝐹𝑖−1 − 16𝐹𝑖−2 + 5𝐹𝑖−3)$

• 𝑠 = 4: 𝑏0 = −9/24, 𝑏1 = 37/24, 𝑏2 = −59/24, 𝑏3 = 55/24, $𝑈𝑖 = 𝑈𝑖−1 +
ℎ
24 (55𝐹𝑖−1 − 59𝐹𝑖−2 + 37𝐹𝑖−3 − 9𝐹𝑖−4)$

function adamsbashforth3(f, a, b, U_0, U_1, U_2, n)
n_unknowns = length(U_0)
h = (b-a)/n
t = range(a, b, n+1)
u = zeros(n+1, n_unknowns)
u[1,:] = U_0
u[2,:] = U_1
u[3,:] = U_2
F_i_3 = f(a, U_0) # F_0 to start when computing U_3
F_i_2 = f(a+h, U_1) # F_1 to start when computing U_3
for i in 3:n # i is the mathematical index, so "+1" for Julia array indices

F_i_1 = f(t[i], u[i,:])
u[i+1,:] = u[i,:] + (23F_i_1 - 16F_i_2 + 5F_i_3) * (h/12)
(F_i_2, F_i_3) = (F_i_1, F_i_2)

end
return (t, u)

end;

D = 0.0

periods = 16
b = 2pi * periods

# Using the same time step size as for leapfrog method in the previous section.
stepsperperiod = 100
n = Int(stepsperperiod * periods)

# We need U_1 and U_2, and get them with the Runge-Kutta method;
# this is overkill for accuracy, but since only two steps are needed, the time cost␣

↪is negligible.
h = (b-a)/n
(t_2step, U_2step) = NM.rungekutta_system(f_mass_spring, a, a+2h, U_0, 2)
U_1 = U_2step[2,:]
U_2 = U_2step[3,:]
(t, U) = adamsbashforth3(f_mass_spring, a, b, U_0, U_1,U_2, n)

Y = U[:,1]
DY = U[:,2]

(continues on next page)

292 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("K/M=$(K/M), D=$D by 3-step Adams-Bashforth with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
ylabel("y")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

figure(figsize=[6,6]) # Make axes equal length; orbits should be circular or
↪"circular spirals"

title("The orbit")
plot(Y, DY)
xlabel("y")
plot(Y[1], DY[1], "g*", label="start")
plot(Y[end], DY[end], "r*", label="end")
legend()
grid(true)

7.7. Adams-Bashforth Multistep Methods 293



Introduction to Numerical Methods and Analysis with Julia (draft)

Comparing to the leap-frog method, this higher order method at last has smaller errors (and they can be got even smaller
by increasing the number of steps) but the leapfrog method is still better at keeping the solutions on the circle.

294 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

D = 0.5

periods = 4
b = 2pi * periods

# Note: In the notes on systems, the second order Runge-Kutta methods were tested␣
↪with 50 steps per period

#stepsperperiod = 50 # As for the second order accurate explicit trapezoid and␣
↪midpoint methods

stepsperperiod = 100 # Equal cost per unit time as for the explicit trapezoid and␣
↪midpoint and Runge-Kutta methods

n = Int(stepsperperiod * periods)

# We need U_1 and U_2, and get them with the Runge-Kutta method;
# this is overkill for accuracy, but since only two steps are needed, the time cost␣

↪is negligible.
h = (b-a)/n
(t_2step, U_2step) = NM.rungekutta_system(f_mass_spring, a, a+2h, U_0, 2)
U_1 = U_2step[2,:]
U_2 = U_2step[3,:]
(t, U) = adamsbashforth3(f_mass_spring, a, b, U_0, U_1,U_2, n)

Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("K/M=$(K/M), D=$D by 3-step Adams-Bashforth with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
ylabel("y")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

7.7. Adams-Bashforth Multistep Methods 295



Introduction to Numerical Methods and Analysis with Julia (draft)

The fourth-order, four step method does at last appear to surpass leap-frog on the conservative case:

function adamsbashforth4(f, a, b, U_0, U_1, U_2, U_3, n)
n_unknowns = length(U_0)
h = (b-a)/n
t = range(a, b, n+1)
u = zeros(n+1, n_unknowns)
u[1,:] = U_0
u[2,:] = U_1
u[3,:] = U_2
u[4,:] = U_3
F_i_4 = f(a, U_0) # F_0 to start when computing U_4
F_i_3 = f(a+h, U_1) # F_1 to start when computing U_4
F_i_2 = f(a+2h, U_2) # F_1 to start when computing U_4
h = (b-a)/n
for i in 4:n # i is the mathematical index, so "+1" for Julia array indices

F_i_1 = f(t[i], u[i,:])
u[i+1,:] = u[i,:] + (55F_i_1 - 59F_i_2 + 37F_i_3 - 9F_i_4) * (h/24)
(F_i_2, F_i_3, F_i_4) = (F_i_1, F_i_2, F_i_3)

(continues on next page)

296 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

end
return (t, u)

end;

D = 0.0

periods = 16
b = 2pi * periods

# Using the same time step size as for leapfrog method in the previous section.
stepsperperiod = 100
n = Int(stepsperperiod * periods)

# We need U_1, U_2 and U_3, and get them with the Runge-Kutta method;
# this is overkill for accuracy, but since only three steps are needed, the time cost␣

↪is negligible.
h = (b-a)/n
(t_3step, U_3step) = NM.rungekutta_system(f_mass_spring, a, a+3h, U_0, 3)
U_1 = U_3step[2,:]
U_2 = U_3step[3,:]
U_3 = U_3step[4,:]
(t, U) = adamsbashforth4(f_mass_spring, a, b, U_0, U_1, U_2, U_3, n)

Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("K/M=$(K/M), D=$D by 4-step Adams-Bashforth with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
ylabel("y")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

figure(figsize=[6,6]) # Make axes equal length; orbits should be circular or
↪"circular spirals"

title("The orbit")
plot(Y, DY)
xlabel("y")
plot(Y[1], DY[1], "g*", label="start")
plot(Y[end], DY[end], "r*", label="end")
legend()
grid(true)

7.7. Adams-Bashforth Multistep Methods 297



Introduction to Numerical Methods and Analysis with Julia (draft)

298 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

D = 0.5

periods = 4
b = 2pi * periods

# Using the same time step size as for leapfrog method in the previous section.
stepsperperiod = 50
n = Int(stepsperperiod * periods)

# We need U_1, U_2 and U_3, and get them with the Runge-Kutta method.
h = (b-a)/n
(t_3step, U_3step) = NM.rungekutta_system(f_mass_spring, a, a+3h, U_0, 3)
U_1 = U_3step[2,:]
U_2 = U_3step[3,:]
U_3 = U_3step[4,:]
(t, U) = adamsbashforth4(f_mass_spring, a, b, U_0, U_1, U_2, U_3, n)

Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

(continues on next page)

7.7. Adams-Bashforth Multistep Methods 299



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

figure(figsize=[10,4])
title("K/M=$(K/M), D=$D by 4-step Adams-Bashforth with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
ylabel("y")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

Finally, an “equal cost” comparison to the forht order Runge-Kutta method results in section Systems of ODEs and Higher
Order ODEs with four times as many steps per unit time: the fourth order Adams-Bashforth method come out ahead in
these two test cases.

300 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

D = 0.0

periods = 16
b = 2pi * periods

stepsperperiod = 100
n = Int(stepsperperiod * periods)

# We need U_1, U_2 and U_3, and get them with the Runge-Kutta method;
# this is overkill for accuracy, but since only three steps are needed, the time cost␣

↪is negligible.
h = (b-a)/n
(t_3step, U_3step) = NM.rungekutta_system(f_mass_spring, a, a+3h, U_0, 3)
U_1 = U_3step[2,:]
U_2 = U_3step[3,:]
U_3 = U_3step[4,:]
(t, U) = adamsbashforth4(f_mass_spring, a, b, U_0, U_1, U_2, U_3, n)

Y = U[:,1]
DY = U[:,2]
y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("K/M=$(K/M), D=$D by 4-step Adams-Bashforth with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
ylabel("y")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

figure(figsize=[6,6]) # Make axes equal length; orbits should be circular or
↪"circular spirals"

title("The orbit")
plot(Y, DY)
xlabel("y")
plot(Y[1], DY[1], "g*", label="start")
plot(Y[end], DY[end], "r*", label="end")
legend()
grid(true)

7.7. Adams-Bashforth Multistep Methods 301



Introduction to Numerical Methods and Analysis with Julia (draft)

302 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

D = 0.5

periods = 4
b = 2pi * periods

# Using the same time step size as for leapfrog method in the previous section.
stepsperperiod = 100
n = Int(stepsperperiod * periods)

# We need U_1, U_2 and U_3, and get them with the Runge-Kutta method;
# this is overkill for accuracy, but since only three steps are needed, the time cost␣

↪is negligible.
h = (b-a)/n
(t_3step, U_3step) = NM.rungekutta_system(f_mass_spring, a, a+3h, U_0, 3)
U_1 = U_3step[2,:]
U_2 = U_3step[3,:]
U_3 = U_3step[4,:]
(t, U) = adamsbashforth4(f_mass_spring, a, b, U_0, U_1, U_2, U_3, n)

Y = U[:,1]
DY = U[:,2]

(continues on next page)

7.7. Adams-Bashforth Multistep Methods 303



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

y = y_mass_spring.(t; t_0=a, u_0=U_0, K=K, M=M, D=D) # Exact solution

figure(figsize=[10,4])
title("K/M=$(K/M), D=$D by 4-step Adams-Bashforth with $periods periods,

↪$stepsperperiod steps per period")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
xlabel("t")
ylabel("y")
grid(true)

figure(figsize=[10,4])
title("Error in Y")
plot(t, y-Y)
xlabel("t")
grid(true)

304 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

7.7.3 Exercises

Exercise 1

Verify the derivation of Equation (7.11) for the second order Adams-Bashforth method, via polynomial collocation and
integration.

Exercise 2

Verify the above result for 𝑠 = 3 by the method of undetermined coefficients.

7.8 Implicit Methods: Adams-Moulton

References:
• Section 6.7 Multistep Methods in [Sauer, 2019].
• Section 5.6 Multistep Methods in [Burden et al., 2016].

7.8.1 Introduction

So far, most methods we have seen give the new approximation value with an explicit formula for it in terms of previous
and so already known) values; the general explicit s-step method seen in Adams-Bashforth Multistep Methods was

𝑈𝑖 = 𝜙(𝑈𝑖−1, … 𝑈𝑖−𝑠+, ℎ), 𝑠 > 1

However, we briefly saw two implict methods back in Runge-Kutta Methods, in the process of deriving the explicit
trapezoid and explicit midpoint methods: the Implicit Trapezoid Method (or just the Trapezoid Method, as this is the
real thing, before the further approximations were used to get an explicit formula)

𝑈𝑖+1 = 𝑈𝑖 + ℎ𝑓(𝑡𝑖, 𝑈𝑖) + 𝑓(𝑡𝑖+1, 𝑈𝑖+1))
2

and the Implicit Midpoint Method

𝑈𝑖+1 = 𝑈𝑖 + ℎ𝑓 (𝑡 + ℎ/2, 𝑈𝑖 + 𝑈𝑖+1
2 )

These are clearly not as simple to work with as explicit methods, but the equation solving can often be done. In particular
for linear differential equations, these give linear equations for the unknown 𝑈𝑖+1, so even for systems, they can be solved
by the method seen earlier in these notes.
Another strategy is noting that these are fixed point equations, so that fixed point iteration can be used. The factor ℎ at
right helps; it can be shown that for small enough ℎ (how small depends on the function 𝑓), these are contraction mappings
and so fixed point iteration works.

7.8. Implicit Methods: Adams-Moulton 305



Introduction to Numerical Methods and Analysis with Julia (draft)

This idea can be combined with linear multistep methods, and one important case is modifying the Adams-Bashforth
method by allowing 𝐹𝑖 = 𝑓(𝑡𝑖, 𝑈𝑖) to appear at right: this gives the Adams-Moulton form

𝑈𝑖 = 𝑈𝑖−1 + ℎ(𝑏0𝑓(𝑡𝑖−𝑠, 𝑈𝑖−𝑠) + ⋯ + 𝑏𝑠𝑓(𝑡𝑖, 𝑈𝑖))

where the only change from Adams-Bashforth methods is that 𝑓(𝑡𝑖, 𝑈𝑖) term.
The coefficients can be derived much as for Adams-Bashforth methods, by the method of undetermined coefficients; one
valuable difference is that there at now 𝑠 + 1 undetermined coefficients, so all error terms up to 𝑂(ℎ𝑠) can be cancelled
and the error made 𝑂(ℎ𝑠+1): one degree higher.
The 𝑠 = 1 case is familiar:

𝑈𝑖 = 𝑈𝑖−1 + ℎ(𝑏0𝑓(𝑡𝑖−1, 𝑈𝑖−1) + 𝑏1𝑓(𝑡𝑖, 𝑈𝑖))

and as symmetry suggests, the solution is 𝑏0 = 𝑏1 = 1/2, giving

𝑈𝑖 = 𝑈𝑖−1 + ℎ𝑓(𝑡𝑖−1, 𝑈𝑖−1) + 𝑓(𝑡𝑖, 𝑈𝑖)
2

which is the (implicit) trapzoid rule in the new shifted indexing.
This is much used for numerical solution of partial differential equations of evoluton type (after first approximating by a
large system of ordinary differnetial equations). In that context it is often known as the Crank-Nicholson method.
We can actually start at 𝑠 = 0; the first few Adams-Moulton methods are:

𝑠 = 0 ∶ 𝑏0 = 1
𝑈𝑖 − ℎ𝑓(𝑡𝑖, 𝑈𝑖)) = 𝑈𝑖−1 The backward Euler method

𝑠 = 1 ∶ 𝑏0 = 𝑏1 = 1/2

𝑈𝑖 − ℎ
2 𝑓(𝑡𝑖, 𝑈𝑖) = 𝑈𝑖−1 + ℎ

2 (𝐹𝑖−1) The (implicit) trapezoid method

𝑠 = 2 ∶ 𝑏0 = −1/12, 𝑏1 = 8/12, 𝑏2 = 5/12

𝑈𝑖 − 5ℎ
12 𝑓(𝑡𝑖, 𝑈𝑖) = 𝑈𝑖−1 + ℎ

12(−𝐹𝑖−2 + 8𝐹𝑖−1)
𝑠 = 3 ∶ 𝑏0 = 1/24, 𝑏1 = −5/24, 𝑏2 = 19/24, 𝑏3 = 9/24

𝑈𝑖 − 9ℎ
24 𝑓(𝑡𝑖, 𝑈𝑖) = 𝑈𝑖−1 + ℎ

24(𝐹𝑖−3 − 5𝐹𝑖−2 + 19𝐹𝑖−1)

The use of 𝐹𝑖−𝑘 notation emphasizes that these earlier values of 𝐹𝑖−𝑘 = 𝑓(𝑡𝑖−𝑘, 𝑈𝑖−𝑘) are known from a previous step,
so can be stored for reuse.
The backward Euler method has not been mentioned before; it comes from using the backward counterpart of the forward
difference approximation of the derivative:

𝑢′(𝑡) ≈ 𝑢(𝑡) − 𝑢(𝑡 − ℎ)
ℎ

Like Euler’s method it is only first order accurate, but it has excellent stability properties, which makes it useful in some
situations.

Example 7.7 (An equation with fast and slow time scales)
The equation

𝑦″ + 101𝑦′ + 100𝑦 = 0, 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑣0

306 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

has the general solution

𝑦(𝑡) = 𝐴𝑒−𝑡 + 𝐵𝑒−100𝑡

With explicit methods, the time-step size has to be smal enought to resove the fast time scale, so ℎ of order 1/100, but
the second term decays very rapdly, and with some equations like this it is enough to resolve the dominant behavior of
the 𝑒−𝑡 term, which some implict method can resolve with far larger step sizes.
Let us compare how this is handled by the implicit trapezoid and explicit trapezoid methods.

The system form is

𝑑
𝑑𝑡 [ 𝑢1

𝑢2
] = [ 0 1

−100 −101 ] [ 𝑢1
𝑢2

]

The trapezoid method is thus

𝑈𝑖 − ℎ
2 [ 0 1

−100 −101 ] 𝑈𝑖 = 𝑈𝑖−1 + ℎ
2 [ 0 1

−100 −101 ]

or

[ 1 −ℎ/2
50ℎ 1 + 101ℎ/2 ] 𝑈𝑖 = [ 1 ℎ/2

−50ℎ 1 − 101ℎ/2 ] 𝑈𝑖−1

using PyPlot

include("NumericalMethods.jl")
using .NumericalMethods: explicittrapezoid_system, approx3

function f_fast_slow(t, u)
return [u[2], -K*u[1] - (K+1)*u[2]]

end;

function y_fast_slow(t; t_0, y_0, v_0, K)
B = -(y_0 + v_0)/(K-1)
A = y_0 - B
return A*exp(-(t-t_0)) + B*exp(-K*(t-t_0))

end;

K = 100.0
y_0 = 1.0
v_0 = 0.0
u_0 = [y_0; v_0]
a = 0.0
b = 0.5;

n = 200 # explicit trapezoid works
#n = 50 # explicit trapezoid works, barely

h = (b-a)/n
t = range(a, b, n+1)
M = [(1) (-h/2);

(continues on next page)

7.8. Implicit Methods: Adams-Moulton 307



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

(50h) (1 + 101h/2)]
N = [(1) (h/2);

(-50h) (1 - 101h/2)]
U = zeros(n+1, 2)
U[1,:] = u_0
for i in 1:n

U[i+1,:] = M\(N*U[i,:])
end

Y = U[:,1]
y = y_fast_slow.(t, t_0 = 0.0, y_0=y_0, v_0=v_0, K=K)
figure(figsize=[10,4])
title("With K=$K, by trapezoid with step size h=$(approx3(h))")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
grid(true)

Yerror = y-Y
figure(figsize=[10,4])
title("Error")
plot(t, Yerror)
grid(true)

n_middle = n ÷ 2
figure(figsize=[10,4])
title("Error, second half")
plot(t[n_middle:end], Yerror[n_middle:end])
grid(true)

308 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

Compare to the explicit trapezoid method

(t_ET, U) = explicittrapezoid_system(f_fast_slow, a, b, u_0, n)
Y = U[:,1]
y = y_fast_slow.(t, t_0 = 0.0, y_0=y_0, v_0=v_0, K=K)

figure(figsize=[10,4])
title("With K=$K, by explicit trapezoid with step size h=$(approx3(h))")

plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
grid(true)

yerror = y-Y
figure(figsize=[10,4])
title("Error")
plot(t, yerror)

(continues on next page)

7.8. Implicit Methods: Adams-Moulton 309



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

grid(true)

n_middle = n ÷ 2
t_secondhalf = t[n_middle:end]
yerror_secondhalf = yerror[n_middle:end]
yerrormin = minimum([minimum(yerror_secondhalf), 0.0])*1.1
yerrormax = maximum([maximum(yerror_secondhalf), 0.0])*1.1

figure(figsize=[10,4])
title("Error, second half")
ylim(yerrormin, yerrormax)
plot(t_secondhalf, yerror_secondhalf)
grid(true)

310 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

n = 48 # explicit trapezoid fails

h = (b-a)/n
t = range(a, b, n+1)
M = [(1) (-h/2);

(50h) (1 + 101h/2)]
N = [(1) (h/2);

(-50h) (1 - 101h/2)]
U = zeros(n+1, 2)
U[1,:] = u_0
for i in 1:n

U[i+1,:] = M\(N*U[i,:])
end

Y = U[:,1]
y = y_fast_slow.(t, t_0 = 0.0, y_0=y_0, v_0=v_0, K=K)

figure(figsize=[10,4])
title("K=$K, by trapezoid with step size h=$(approx3(h))")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
grid(true)

Yerror = y-Y
figure(figsize=[10,4])
title("Error")
plot(t, Yerror)
grid(true)

n_middle = n ÷ 2
figure(figsize=[10,4])
title("Error, second half")
plot(t[n_middle:end], Yerror[n_middle:end])
grid(true)

7.8. Implicit Methods: Adams-Moulton 311



Introduction to Numerical Methods and Analysis with Julia (draft)

(t_ET, U) = explicittrapezoid_system(f_fast_slow, a, b, u_0, n)

(continues on next page)

312 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

Y = U[:,1]
y = y_fast_slow.(t, t_0 = 0.0, y_0=y_0, v_0=v_0, K=K)

figure(figsize=[10,4])
title("With K=$K, by explicit trapezoid with step size h=$(approx3(h))")
plot(t, Y, label="y computed")
plot(t, y, label="exact solution")
legend()
grid(true)

yerror = y-Y
figure(figsize=[10,4])
title("Error")
plot(t, yerror)
grid(true)

n_middle = n ÷ 2
t_secondhalf = t[n_middle:end]
yerror_secondhalf = yerror[n_middle:end]
yerrormin = minimum([minimum(yerror_secondhalf), 0.0])*1.1
yerrormax = maximum([maximum(yerror_secondhalf), 0.0])*1.1

figure(figsize=[10,4])
title("Error, second half")
ylim(yerrormin, yerrormax)
plot(t_secondhalf, yerror_secondhalf)
grid(true)

7.8. Implicit Methods: Adams-Moulton 313



Introduction to Numerical Methods and Analysis with Julia (draft)

Example 7.8 (Comparing 4th order methods: Adams-Moulton vs Runge-Kutta (coming soon))
Implementing the 𝑠 = 3 case above, which is fourth order accurate, and compare it to the classical Runge-Kutta method
Algorithm 7.3.

Rather than implementing any of these in general, the next section introduces a strategy for converting these to explicit
methods, much as in section Runge-Kutta Methods Euler’s method (Adams-Bashforth 𝑠 = 1) was combined with the
trapezoid method (Adams-Moulton 𝑠 = 1) to get the explicit trapozoid method: an explicit method with the same order
of accuracy as the latter of this pair.

314 Chapter 7. Initial Value Problems for Ordinary Differential Equations



Introduction to Numerical Methods and Analysis with Julia (draft)

7.8.2 Exercises

Coming soon.

7.8. Implicit Methods: Adams-Moulton 315



Introduction to Numerical Methods and Analysis with Julia (draft)

316 Chapter 7. Initial Value Problems for Ordinary Differential Equations



CHAPTER

EIGHT

BIBLIOGRAPHY

317



Introduction to Numerical Methods and Analysis with Julia (draft)

318 Chapter 8. Bibliography



CHAPTER

NINE

APPENDICES

TO DO: add an overview of the appendices.

9.1 Installing Julia and some useful add-ons

Remark 9.1 (TO DO)
Reformat using package prf.

To use Julia with the code and notebook in this book, there are several steps:
1. Install the Julia language itself
2. Make Julia usable in notebooks

1. Install Anaconda, which contains the JupyerLab notebook tool.
2. Enable use of Julia from within JupyerLab.

3. Install a few additional packages (Step 3 can be done before step 2.)

9.1.1 Installing Julia

Get it from the Julia download site.

9.1.2 Installing Anaconda (for Jupyterlab)

First, download the installer from www.anaconda.com. This page should detect your OS and hardware type (i.e. x86 or
Apple silicon) and point you to the appropriate version. If not, click the logo for your OS below and select from the list.
Installation (at least on macOS) might best be done by deviating from the default, which is to install for the current user
only, inside your file space (in cse I supose you do not have admin pvivileges to put it elsewhere.) If instead you want it
available to all users in the standard place, select “Install on a specific disk” and then navigate to the appropriate folder.

319

https://julialang.org/downloads/
https://www.anaconda.com/products/distribution/


Introduction to Numerical Methods and Analysis with Julia (draft)

9.1.3 Enabling Julia in JupyterLab

This is done by adding package “IJulia” , so read on.

9.1.4 Adding some useful Julia packages

The following Pkg.add commands should only need to be done “once per computer”; each one requires first making
Pkg available with

using Pkg

All these commands can be done with the basic Julia comand line tool installed as above; alternativel once IJulia is
installed, they can be run from a notebook; for example by running this one.

Package “IJulia”, which enables Julia in JupyterLab

This adds the option of creating and using Jupyter notebooks that use Julia to the basic option of Python; it also adds the
option of opening a Julia console as a tab inside JupyterLab, for running Julia commands interactively.

Pkg.add("IJulia")

Use an interface to the Python package Matplotlib.pyplot

Pkg.add("PyPlot")

Deployed in a particular notebook or Julia session with

using PyPlot

Allow LaTeX notation in creating strings, using prefix “L”.

For example L”y = \cos(x^2)” gives 𝑦 = cos(𝑥2)

Pkg.add("LaTeXStrings")

Deployed with

using LaTeXStrings

320 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

Add some random number stuff

Pkg.add("Random")

Deploy with

using Random

9.2 Notes on the Julia Language

Revised September 23, 2022
These notes are not intended to teach the Julia language from scratch, or comprehensively; instead they are addressed to
readers who already know somewhat similar tools like Matlab or “Python Scientific” (Python + Numpy + Matplotlib),
and they focus on the parts of Julia actually used in this book.
A very short version of the story is that what works in Matlab often also work in Julia; one design principle is offering
familiarity for Matlab users by having the Matlab syntax work (at least as one option) except where that would get in the
way of moderization. Though some syntax comes from Python and some from C. And one bit is from Perl.
An intermediate version is this summary of Julia’s noteworthy differences from other languages, with comparisons to
Matlab and Python (and also to R and C/C++).
For the full story, see resources like the official Julia documentation. (Don’t read it all at once: the PDF version is over
1500 pages.)

9.2.1 Characters and strings

The character set is Unicode via UTF-8, so Greek letters and much more are usable.
I generally advise against going beyond plain old ASCII characters, but see the functions plu and forwardsubstitution in
the collection Module NumericalMethods where Unicode is used to illustrate the possibility of following mathematical
notation more closely.
The usual style is that the names of variable and functions use only (Roman alphabet) letter, digits, and possibly under-
scores to separate words in names that are descriptive phrases.

println("π/2 = ", π/2)

π/2 = 1.5707963267948966

(That function println will be explained below in Displaying values.)
So not only is 𝜋 is the character set; it is the name of predefined constant. (which can also be referred to as pi)
Typing such characters is done using LaTeX notation and tabbing: for 𝜋, type the three character sequence \pi and then
press TAB.
The above characters are in single right quotes (to be pedantic, apostrophes), whereas strings of characters must be
surrounded, more properly, by double quote characters:

9.2. Notes on the Julia Language 321

https://docs.julialang.org/en/v1/manual/noteworthy-differences/
https://docs.julialang.org/en/v1/


Introduction to Numerical Methods and Analysis with Julia (draft)

"This is a string"
'This is a syntax error'

This one comes from C, I think.
Aside: here is a quirky use of Unicode built in to Julia:

√4

2.0

String concatenation and duplication

To concatenate two strings, “multiply” them with *. (Versus “adding” them as in Python.)
Also, consistent with that, making multiple copies of a string is done by “exponentiation”, with ^:

greeting = "Hello"
audience = "world"
sentence = greeting * ' ' * audience * '.'
println(sentence)
println((greeting*' ')^3)

Hello world.
Hello Hello Hello

Note that single characters can also be concatenated into strings, and exponentiated:

gamma = 'g' * 'a' * 'm'^2 * 'a'

"gamma"

9.2.2 Displaying values: println, print and just saying the name

We have seen above two basic ways of getting output displayed on the screen:
• the function println
• putting an expression on the last line of a cell (or typing it into the interactive Julia command line), which causes
that expression to be evaluated and the result displayed. This is as in both Matlab and Python, and with the same
method for supressing output: ending that line with a semi-colon.

The basic usage of function println is as for the synonymous function in Matlab and print in Python: input is a
sequence of strings whose values are ouptut on a line, after which output moves to a newline.
There is also a variant print which does not go to a new line at the end; useful for assembling a line of output piece-
by-piece:

322 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

println("The"," end.")
println()
print("That's")
print(" all")
print(" folks")
println("!")

The end.

That's all folks!

Note that in each case, the spaces must be explicitly specified. Also, the sequence of strings can be empty: get just a
blank line with println().

9.2.3 Displaying the values of variables and expressions

As already seen above, there are several ways of display the value of a variable, or more generally of an expression.
One is to put such expressions in the sequence of arguments to println (so I lied slightly about the arguments being
strings):

a = 2
println("a = ", a, " and its cube is ", a^3)

a = 2 and its cube is 8

Another is to use ‘$’ interpolation, adopted from the Perl language:

println("a = $a and its cube is $(a^3)")

a = 2 and its cube is 8

When the expression whose value to interpolate is just a variable name, it is enough to prefix that name by
‘′.𝐻𝑜𝑤𝑒𝑣𝑒𝑟𝑚𝑜𝑟𝑒𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠𝑚𝑢𝑠𝑡𝑏𝑒𝑝𝑎𝑟𝑒𝑛𝑡ℎ𝑒𝑠𝑖𝑠𝑒𝑑, 𝑎𝑠𝑤𝑖𝑡ℎ‵(a^3)`.
Fun fact: the string in the last example is an expression whose value is the string displayed, so its value can also be
displayed by simply having it as the last (and semicolon-free) line of a cell:

"a = $a and its cube is $(a^3)"

"a = 2 and its cube is 8"

This is useful to know since it reveals a nice “orthogonality of features”: interpolation is not a special feature of function
println but something that can be used in other situations; probably the most common use in this book will be putting
annotations on graphs.
Sometimes it is illuminating to use the “last line automatic display” feature rather than print because it reveals some
information about the type of a quantity rather than just its value. This book uses that often when discussing Julia language
features rather than when actually doing numerical computing; see for example the notes on arrays below.

9.2. Notes on the Julia Language 323



Introduction to Numerical Methods and Analysis with Julia (draft)

On the other hand, many expressions give output values that you might not expect, like the definitions of functions and
function plot in the notes on modules below; thus you might want to end many cells with a semi-colon to supress
unneeded output. An end-of-line semi-colon never hurts, even where redundant, so you may type like a C programmer
if you wish.
Semicolons can also be used to combine statements on a single line. This is often considered as poor style, but I sometimes
find that it improves readability with several short and closely related statements:

a = 1; b = 3
print("a=",a,", b=",b)

a=1, b=3

9.2.4 Boolean values (true-false)

These are true and false and nothing else:
• not capitalized as they are in Python
• not “1” and “0” or “nonzero” vs “zero” or any other laziness.

The logical operators are much as in C: “&&”, “||”, “&”, “|”, and “!” for negation.
Be careful with that last one; logical negation is not “~” as in Matlab.
The doubled forms “&&” and “||” use lazy or “short-circuiting” evaluation: if the value the left-hand term determines the
truth value of the whole, then the second term is not evaluated. For example, the following avoids division by zero:

if q != 0 && -1 < p/q < 1
println("$p/$q is a proper fraction")

else
println("$p/$q is not a proper fraction")

end

9.2.5 Comparisons

The usual comparisons of numbers and tests for equality exist,

< <= == >= !=

with a couple of extra twists.
the first is the comparisons can be chained, as seen above:

-1 < p/q < 1

is equivalant to

-1 < p/q && p/q < 1

324 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

but bothmore readable andmore efficient, because themiddle term is only evaluated once. Like&&, this is short-circuiting.
(This one comes from Python, the only other language I know of with this feature.)
This can even be done in cases where usual mathematical style forbids, with reversing of the direction of the inequalities:

2 < 4 > 3

true

The second extra is the function isequal(a, b). This is mostly the same as == but with some special handling for
the special values -0.0 and NaN of IEEE floating point numbers:

NaN == NaN

false

isequal(NaN, NaN)

true

-0.0 == 0.0

true

isequal(-0.0, 0.0)

false

9.2.6 Numbers

As just mentioned, the default floating point numbers and arithmetic are IEEE Float64, and the default integers are Int64;
others are available (like Int32 and unsigned integers) but they will not be mentioned again in this book.
Thus the main novelty here is a notation: the underscore can be used within numbers to improve readabilty, as commas
are (and periods in some countries.) They can be put wherever you like:

two_thousand_million = 2_000_000000 # British English
println("two_thousand_million is ",two_thousand_million)
crore = 1_00_00_000 # This is where Indian style puts the commas
println("In the Indian number naming system, one crore is $crore")
almostpi = 3.1415_9265
println("pi is approximately $almostpi")

two_thousand_million is 2000000000
In the Indian number naming system, one crore is 10000000
pi is approximately 3.14159265

9.2. Notes on the Julia Language 325



Introduction to Numerical Methods and Analysis with Julia (draft)

A point on recommended style: although floating point numbers can be typed with the decimal point at the beginning or
the end, as with 2. and .5, it is recommended style to always have digits around the decimal point, as with 2.0 and
0.5.
One reason is that the period ‘.’ is used with many other meanings, so this style helps to avoid ambiguities; see below
about vectorization.

Complex numbers

Julia uses im for the square root of -1 rather than i or j, and im cannot be used as the name of a variable.
In general, the complex number 𝑎 + 𝑏𝑖 is expressed as a + bim where ‘b’ is a literal number, not the name of a variable.
Then im is immediately juxtaposed with that number, no intervening space allowed).

z = 3 + 4im
println("z = ", z)
println("Its absolute value is ", abs(z))

z = 3 + 4im
Its absolute value is 5.0

As you might expect, imaginary numbers can be written without the real part 𝑎, as bim and when 𝑏 = 1, it can be
ommited
However, the imaginary part b is always needed, even when 𝑏 = 0, to announce that the nuber is to br treated a complex.

println(2im)

0 + 2im

println(im)

im

println(im^2)

-1 + 0im

println(-1im)

0 - 1im

println(-im)

0 - 1im

However, the imaginary part b is always needed, even when 𝑏 = 0, to announce that the number is to be treated a complex.

326 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

sqrt(-1 + 0im)

0.0 + 1.0im

sqrt(-1)

DomainError with -1.0:
sqrt will only return a complex result if called with a complex argument. Try␣

↪sqrt(Complex(x)).

Stacktrace:
[1] throw_complex_domainerror(f::Symbol, x::Float64)

@ Base.Math ./math.jl:33
[2] sqrt

@ ./math.jl:591 [inlined]
[3] sqrt(x::Int64)

@ Base.Math ./math.jl:1372
[4] top-level scope

@ In[158]:1
[5] eval

@ ./boot.jl:368 [inlined]
[6] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String,␣
↪filename::String)
@ Base ./loading.jl:1428

The name im is reserved for this role; it cannot be used as a variable name:

im = 100

cannot assign a value to variable Base.im from module Main

Stacktrace:
[1] top-level scope

@ In[159]:1
[2] eval

@ ./boot.jl:368 [inlined]
[3] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String,␣
↪filename::String)
@ Base ./loading.jl:1428

9.2.7 Arithemetic operators

With arithmetic on numbers, the main items to note are
1. exponentiation
2. division with integers, and
3. multiplication by juxtoposition
• Exponentiation 𝑎𝑏 is given by a^b (as in Matlab and different from Python’s a**b).
• p/q with p and q both integers promotes to floating point arithmetic.

9.2. Notes on the Julia Language 327



Introduction to Numerical Methods and Analysis with Julia (draft)

• To do integer division with integer result, use p ÷ q (or div(p,q) to avoid that Unicode: all operators also
have function forms).

• The remainder is given by p%q, or rem(p,q). Thus (p ÷ q)* q + p%q = p

• There is also “backward division”: q\p is the same as p/q; see below.
• The product of a literal number by a variable or function value can be indicated by juxtoposition, no ‘*’ needed:

println(2π)
println(4tan(pi/4))

6.283185307179586
3.9999999999999996

9.2.8 Arrays

Julia has numerical arrays bult in, and the basic construction notation is much as in Matlab, with semicolons separating
rows. However, not everything is a matrix of real numbers:

• Integer values are supported.
• There is a distinction between matrices and vectors, with the latter being equivalent to single column matrices.
• Single row matrices are still considered as matrices.

This all follows common mathematical conventions, and so does multiplication.
Vectors (1-index arrays) are created with bracketed, comma separated lists; note the column vector presentation.

v = [1, 2, 3]

3-element Vector{Int64}:
1
2
3

Matrices are created with rows separated by semicolons and elements with a row separated only by spaces:

A = [ 1.0 2.0 3.0 ; 4.0 5.0 6.0 ]

2×3 Matrix{Float64}:
1.0 2.0 3.0
4.0 5.0 6.0

Note the difference from vector v above:

u = [ 1 2 3 ]

1×3 Matrix{Int64}:
1 2 3

On the other hand, a vector can be created as a one-column matrix:

328 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

v_as_matrix = [ 1 ; 2 ; 3 ]

3-element Vector{Int64}:
1
2
3

v == v_as_matrix

true

v == u

false

u * v # like u-transpose times v; the inner product

1-element Vector{Int64}:
14

outer = v * u # The outer product

3×3 Matrix{Int64}:
1 2 3
2 4 6
3 6 9

v * v # vector times vector, a mismatch

MethodError: no method matching *(::Vector{Int64}, ::Vector{Int64})
Closest candidates are:

*(::Any, ::Any, ::Any, ::Any...) at operators.jl:591
*(::StridedMatrix{T}, ::StridedVector{S}) where {T<:Union{Float32, Float64,␣

↪ComplexF32, ComplexF64}, S<:Real} at /Applications/Julia-1.8.app/Contents/
↪Resources/julia/share/julia/stdlib/v1.8/LinearAlgebra/src/matmul.jl:49
*(::StridedVecOrMat, ::LinearAlgebra.Adjoint{<:Any, <:LinearAlgebra.LQPackedQ})␣

↪at /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/
↪LinearAlgebra/src/lq.jl:269
...

Stacktrace:
[1] top-level scope

@ In[169]:1
[2] eval

@ ./boot.jl:368 [inlined]
[3] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String,␣
↪filename::String)
@ Base ./loading.jl:1428

A row matrix can be converted to a vector with function collect, which we will see again below.

9.2. Notes on the Julia Language 329



Introduction to Numerical Methods and Analysis with Julia (draft)

collect(v)

3-element Vector{Int64}:
1
2
3

Array indexing and slicing

Indices run from 1 (like Matlab, unlike Python), but indices are indicated with brackets (like Python, unlike Matlab —
which uses parentheses for too many things!)

v[1]

1

A[2,3]

6.0

Be careful with single indexing a higher dimensional array.
This treats the elements of the array as if laid out in a singe row (“flattened”), rather than selecting a row as in Python.

A[1], A[2], A[3], A[4], A[5], A[6]

(1.0, 4.0, 2.0, 5.0, 3.0, 6.0)

Also note the order: the columns are joined end-to-end, not the rows: Julia follows Matlab (and Fortran) in storing arrays
in column-major order, as opposed to the row-major order of Python (and C ,and Java, and in general in languages
that count fom zero.)
One can also index expressions directly

(v*u)[2,2]

4

Indexing part of an array can be done with slicing which works mostly as in Matlab.
The basic form is first:last, selecting indices from first to last inclusive (like Matlab, unlike Python)

v[2:3]

2-element Vector{Int64}:
2
3

330 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

A[1:2,2:3]

2×2 Matrix{Float64}:
2.0 3.0
5.0 6.0

The final index value can be indicated by end, and index arithmetic can be done on this:

println("The last entry in v is ", v[end], ", the penultimate is ", v[end-1])
println("The last two columns of A are")
A[1:end, end-1:end]

The last entry in v is 3, the penultimate is 2
The last two columns of A are

2×2 Matrix{Float64}:
2.0 3.0
5.0 6.0

When the slice on an index is all values, one can use : instead of 1:end. So the previous example could also be done as

A[:, end-1:end]

2×2 Matrix{Float64}:
2.0 3.0
5.0 6.0

One can also specify an arbitrary collection of indices by giving a bracketed list (a one index array) of indices.
For example, The “corners” of the outer product u * v, flipped vertically, are

outer[[3,1], [1,3]]

2×2 Matrix{Int64}:
3 9
1 3

and we can permute rows like this

outer[[3,1,2],:]

3×3 Matrix{Int64}:
3 6 9
1 2 3
2 4 6

A tricky point: slicing to a single row matrix vs slicing to a vector.
For some matrix-vector caclulations is is necessary to ensure that an object is a “1 by n” rowmatrix rather than an n-vector
(which is an “n by 1” column matrix) but unfortunately, slicing out a single row of matrix returns a vector:

9.2. Notes on the Julia Language 331



Introduction to Numerical Methods and Analysis with Julia (draft)

A[1,:] # gives a vector, a.k.a. a 1 column matrix

3-element Vector{Float64}:
1.0
2.0
3.0

To keep the slice as a row, indicating the row as [i] rather than just i:

A[[1],:] # gives a 1 row matrix

1×3 Matrix{Float64}:
1.0 2.0 3.0

So this works as an outer product

[3, 4, 5] * A[[1],:]

3×3 Matrix{Float64}:
3.0 6.0 9.0
4.0 8.0 12.0
5.0 10.0 15.0

but this fails as a “vector times vector””

[3, 4, 5] * A[1,:]

MethodError: no method matching *(::Vector{Int64}, ::Vector{Float64})
Closest candidates are:

*(::Any, ::Any, ::Any, ::Any...) at operators.jl:591
*(::StridedMatrix{T}, ::StridedVector{S}) where {T<:Union{Float32, Float64,␣

↪ComplexF32, ComplexF64}, S<:Real} at /Applications/Julia-1.8.app/Contents/
↪Resources/julia/share/julia/stdlib/v1.8/LinearAlgebra/src/matmul.jl:49
*(::StridedVecOrMat, ::LinearAlgebra.Adjoint{<:Any, <:LinearAlgebra.LQPackedQ})␣

↪at /Applications/Julia-1.8.app/Contents/Resources/julia/share/julia/stdlib/v1.8/
↪LinearAlgebra/src/lq.jl:269
...

Stacktrace:
[1] top-level scope

@ In[184]:1
[2] eval

@ ./boot.jl:368 [inlined]
[3] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String,␣
↪filename::String)
@ Base ./loading.jl:1428

Slicing can also select equally spaced values with syntax first:step:last
Warning to Python users: the order is different (Python uses first:last:step)

A[:,1:2:3]

332 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

2×2 Matrix{Float64}:
1.0 3.0
4.0 6.0

In particular, this allows counting backwards, with step of -1:

A[:,end:-1:1]

2×3 Matrix{Float64}:
3.0 2.0 1.0
6.0 5.0 4.0

One big difference from Matlab or Python is some “orthogonality”: rather than just being a notation used in this context
of array indexing, this colon notation is a function (named :) whose value is a data type called a range that can be used
in a variety of contexts, and assigned to variables.
One other usage will be seen soon in the notes on iteration. Meanwhile:

oddcolumnsorrows = 1:2:3

1:2:3

print("The odd numbered rows of A are")
A[:,oddcolumnsorrows]

The odd numbered rows of A are

2×2 Matrix{Float64}:
1.0 3.0
4.0 6.0

print("The odd numbered rows of the outer product 'v u' are")
(v*u)[oddcolumnsorrows,:]

The odd numbered rows of the outer product 'v u' are

2×3 Matrix{Int64}:
1 2 3
3 6 9

9.2. Notes on the Julia Language 333



Introduction to Numerical Methods and Analysis with Julia (draft)

Function range

Closely related to this slice syntax is the function range, which produces a range value as above, and has several flavors:
• range(start, stop) returns start:stop.
• range(start, stop, length) returns a range running from start to stop with length values —
like linspace in both Matlab and Python.

• range(start, stop, step=stepsize) returns start:stepsize:stop. But note that this flexi-
bility requires specifying what the third parameter means by using its name: it is a keyword parameter.

• More generally, there are four parameters start, stop, length and step and you can specify any three
(which determines the fourth). However, all other combinations require specifying some or all of them by name,
as keyword parameters.

Keyword parameters will be discussed in the section Functions, Part 2 once that is written.
Meanwhile, some examples.

range(1,11)

1:11

range(1,2,11)

1.0:0.1:2.0

range(1, 2, step=0.1)

1.0:0.1:2.0

range(step=0.1, stop=2, length=11) # A weird but legal way to do it

1.0:0.1:2.0

9.2.9 Tuples

Julia also has tuples, much as in Python.
These resemble one index arrays, excpr that

• The elements can be anythingm and do not need to be of the same type.
• They are immutable: leemts can be accessed by indexing, but cannnot be changed.

Tuples are created as a comma-separated lists, optionally parenthesized:

tuple123 = ('1', "two", 3)

('1', "two", 3)

334 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

or equivalently

syntax: extra token "equivalently" after end of expression

Stacktrace:
[1] top-level scope

@ In[195]:1
[2] eval

@ ./boot.jl:368 [inlined]
[3] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String,␣
↪filename::String)
@ Base ./loading.jl:1428

tuple123 = '1', "two", 3

('1', "two", 3)

tuple123[2]

"two"

but this is not allowed:

tuple123[3] = 4

MethodError: no method matching setindex!(::Tuple{Char, String, Int64}, ::Int64,␣
↪::Int64)

Stacktrace:
[1] top-level scope

@ In[198]:1
[2] eval

@ ./boot.jl:368 [inlined]
[3] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String,␣
↪filename::String)
@ Base ./loading.jl:1428

One very common use of tuples is in functions that return more than one quantity, such as rowreduction in Module
NumericalMethods which returns its results with

return (U, c)

Strictly a single quantity is returned, but it is a tuple.

9.2. Notes on the Julia Language 335

NumericalMethods.html#rowreduction


Introduction to Numerical Methods and Analysis with Julia (draft)

9.2.10 Arithmetic operations on arrays: vectorization and broadcasting

• With arrays, addition and subtraction and multiplicato or division by numbers work as one would expect with vector
matrices and such.

• Multiplication of arrays as with A*b does matrix-matrix or matrix-vector product (again as with Matlab).
• A/b and A\b are also matrix and vector friendly; in particular x = A\bmeans 𝑥 = 𝐴−1𝑏 and so solves 𝐴𝑥 = 𝑏.
• Also copied from Matlab is the “dot” or “pointwise” versions of operators, but this goes beyond what Matlab does.
In the following I use lower case lettters for numbers, upper case for arrays, and illustrate only for 1D arrays though
it works in higher dimensions too.

• The first case is vectorization, creating implicit loops over one or more indices:
– C = A .* B computes the product point-wise product, so C[i] = A[i]*B[i].
– C = a.^B gives C[i] = a^B[i]

– C = A.^b gives C[i] = A[i]^b

– C = A.^B gives C[i] = A[i]^B[i]

• The second concept is broadcasting where a number is promoted to an appropriate array with that number in each
element.

• For example a + B is an error, but a .+ B gives array C with C[i] = a + B[i].

9.2.11 Condititional statements

One example probably says it all:

x = 11.0

11.0

if x > 0
println("x is positive")

elseif x < 0
println("x is negative")

else
println("x is zero")

end

x is positive

In other words, “as in Matlab”, again.
Note also the use of the Matlab style of using end to end blocks of code, which will of course also be seen with loops,
function definition and so on. Indentation is optional but “four spaces per level (no tabs)” is the usual style.
Also note the println; more on output to the screen (and to files) later.

336 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

9.2.12 Iteration with for, while, break and continue

The title tells much of the story: this is all very much as in Matlab — and as in Python except with end statements.
The only novelty is the details of the for statement, which are roughly the union of the Matlab and Python options.
Julia denotes ranges of values with Matlab-style notation:

• a:b is the values from a to b by steps of one,
• a:step:b is the values from a to b by steps of step.

This gives the first, Matlab-style for loop syntax:

for i = 1:5
print(i) # no end of lines or spaces

end

12345

for i = 1:2:5
print(i," ")

end

1 3 5

for i = 5:-1:1
print(i," ")

end

5 4 3 2 1

However, there is a far more flexible syntax for looping over all kinds of lists and even more general collections. The
general form is

for item in list
...

end

but until we see all the sorts of things that the “list” can be, just a few examples:

for i in 1:4
println("$i^2 is $(i^2)")

end

1^2 is 1
2^2 is 4
3^2 is 9
4^2 is 16

for x in [1, 4/3, sqrt(11)]
println("x is $x")

end

9.2. Notes on the Julia Language 337



Introduction to Numerical Methods and Analysis with Julia (draft)

x is 1.0
x is 1.3333333333333333
x is 3.3166247903554

A final example using some exotic stuff that will be explained later:

theta = pi/6
for f in [sin, cos, tan]

fname = String(Symbol(f))
println("$fname($theta) = $(f(theta))")

end

sin(0.5235987755982988) = 0.49999999999999994
cos(0.5235987755982988) = 0.8660254037844387
tan(0.5235987755982988) = 0.5773502691896257

9.2.13 Using modules and packages, and some graph plotting

Much like Python, collections of functions (and other stuff like constants) can be created and their contents used.
There are several ways to do this; here I describe some but not all, and only for a package that already exists (creating
your own comes later): PyPlot, which is for plotting, and is very similar to both Matlab’s plotting commands and the
Python package matplotlib.pyplot. (There is a bit more more about PyPlot below.)
Method 1 import a module: make the module (or package) available, and access its contents by “full name”; much like
the same statement in Python:

import PyPlot
x = range(0.0, 2pi, 100)
y = sin.(x)
PyPlot.plot(x, y);

338 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

Notes:
• Function range is similar to linspace in bothMatlab and Python; the usage here is range(first, last,
number_of_points), giving that many equally spaced values.

• This is our first example of vectorizing a function; it must be sin. not just sin
Method 2 import specific items from amodule, making them available by “first name” only; much like from PyPlot
import plot, title In Python:

import PyPlot: plot, title
x = range(0, 2pi, 100)
y = sin.(x)
plot(x, y)
title("y = sin(x)");

9.2. Notes on the Julia Language 339



Introduction to Numerical Methods and Analysis with Julia (draft)

Method 3. using a module, which makes all items available on a first-name basis full; much like a wild import from
PyPlot import * in Python.
But whereas Python style recommends against wild imports, this is common usage in Julia. In this book I will avoid this
with user defined modules, to avoid uncertaintly about where an item comes from.
(Confession: the above is not quite true: a module can choose to “export” only some of its items, but not others; then
using provides only those exported items on a first-name basis; other items must still be accessed by their full name.)

using PyPlot
x = range(0, 2pi, 100)
y = sin.(x)
plot(x, y)
title("y = sin(x)")
xlabel("x")
ylabel("y");

340 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

Note: those one character labels still need to be in double quotes; the argument is a string, not a character.

9.2.14 Functions, part I

Julia’s function system is quite innovative, powerful, flexible — and therefore rather complicated to describe. So I start
with just the simplest cases.

One liners

A very simple syntax for function that just evaluates a single formula is:

f(x) = 2x^2 - 6x + 4;

(Multiplication by juxtoposition is nice here!)
Note: semi-colon suppression is used here because the expression defining a function returns a value: some information
about the function.
This can be used for graphing, but must be vectorized:

x = range(0, 3, 100)
plot(x, f.(x))
grid(true)

9.2. Notes on the Julia Language 341



Introduction to Numerical Methods and Analysis with Julia (draft)

Functions defined by a block of code

The more general syntax is function ... end, which for the above example is

function f(x)
2x^2 - 6x + 4

end;

a = 2
b = -6
vertex = -b/(2a)
println("The vertex is at $vertex, giving minimum value $(f(vertex))")

The vertex is at 1.5, giving minimum value -0.5

The keyword return

This is fine if the output value is always computed on the last line of code, but for more flexibility (and to my mind, better
readability) there is the keyword return:

function f(x)
return 2x^2 - 6x + 4

end;

This time the style is more “Pythonic”, since the output variables are specifed in the return line rather than on the
function line as Matlab does. This allows different calls of the function to return different type of value:

342 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

function squareroots(x)
if x > 0

return sqrt(x), -sqrt(x)
elseif x == 0

return 0
else

println("I can only handle real roots; sorry.")
end

end;

squareroots(3.0)

(1.7320508075688772, -1.7320508075688772)

squareroots(0.0)

0

squareroots(-1.0)

I can only handle real roots; sorry.

9.2.15 Vectorization of Functions

One innovation in Julia is that the dot notation introduced above for arithmetic on arrays can also be used to vectorize a
function; both ones provided by Julia and ones defined in your code.
A function f(x) whose code expects a number x or one g(x, y) that expects several numbers can be used on
compatable arrays with

Y = f.(X)
Z = g.(X,Y)

The former is thus roughly a short-hand for

for i in length(X)
Y[i] = f(X[i])

end

This is used quite a lot in the next section.

9.2. Notes on the Julia Language 343



Introduction to Numerical Methods and Analysis with Julia (draft)

9.2.16 Plotting graphs: a bit more about PyPlot

There are many graphics packages for Julia; this book uses PyPlot. The name is because this is a front end to the Python
package matplotlib.pyplot and in turn that name reflects the fact that Matplotlib mimics Matlab’s plotting tools,
so this choice makes it easiest for readers familiar with one of those languages.
To install PyPlot, see the notes on getting PyPlot in Installing Julia and some useful add-ons

L-Strings for inserting LaTeX mathematical markup

Mathematical formulas can be used in the annotations on graphs by the use of L-strings: string prefixed with ‘L’ and
containing LaTeX mathematical markup between ‘$’ signs.
For now I just illustrate all this with a few examples.

using PyPlot

x = range(0, 4pi, 100)
y = exp.(-x/8) .* cos.(x)

figure()
title(L"The decaying oscilation $y = e^{-x/8} \cos x$")
plot(x, y)
xlabel("x")
ylabel("y")

figure(figsize=[12,6])
z = exp.(-x/4) .* sin.(2x)
title("Adding a faster decay, labels, and wide graph paper")
plot(x, y, label=L"$e^{-x/8} \cos x$")
plot(x, z, label=L"$e^{-x/4} \sin 2x$")
xlabel("x")
ylabel("y and z")
legend()
grid(true)

344 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

To Be Continued …

9.2. Notes on the Julia Language 345



Introduction to Numerical Methods and Analysis with Julia (draft)

9.3 Module NumericalMethods

Version of 2022-11-13
The following code cells are the content of file NumericalMethods.jl, used to define the module Numerical-
Methods

This file exists for two reasons:
1. It can be convenient to gather the cells defining various functions for the module in a notebook like this one, which

allows documentation, and then convert to the the “.jl” file with the JupterLab command File > Save and
Export Notebook As ... > Executable Script This gathers the contents of the code cells, ignorig
any markdown cells.

2. This description of the module’s definitions can be used as a section in a Jupyter Book.
Usage is:

include("NumericalMethods.jl")

then

using .NumericalMethods

or for a particular function, like

import .NumericalMethods: newtonmethod

# Module `NumericalMethods`

# Version of 2022-11-13

# The following code cells are the content of file `NumericalMethods.jl`, used to␣
↪define the module `NumericalMethods`

# The notebook file version exists for two reasons:
#
# 1. It can be convenient to gather the cells defining various functions for the␣

↪module in a notebook like this one,
# which allows documentation, and then convert to the the ".jl" file with the␣

↪JupterLab command
# `File > Save and Export Notebook As ... > Executable Script`
#
# This gathers the contents of the code cells, ignorig any markdown cells.

# 2. This description of the module's definitions can be used as a section in a␣
↪Jupyter Book.

module NumericalMethods

346 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

9.3.1 Root-finding

Newton’s method

function newtonmethod(f, Df, x0, errortolerance; maxiterations=20, demomode=false)
# Basic usage is:
# (rootApproximation, errorEstimate, iterations) = newton(f, Df, x0,␣

↪errorTolerance)
# There is an optional input parameter "demomode" which controls whether to
# - println intermediate results (for "study" purposes), or to
# - work silently (for "production" use).
# The default is silence.

if demomode
println("Solving by Newton's Method.")
println("maxiterations = $maxiterations")
println("errortolerance = $errortolerance")

end
x = x0
global errorestimate # make it global to this function; without this it would be␣

↪local to the "for" loop.
for iteration in 1:maxiterations

fx = f(x)
Dfx = Df(x)
# Note: a careful, robust code would check for the possibility of division by␣

↪zero here,
# but for now I just want a simple presentation of the basic mathematical␣

↪idea.
dx = fx/Dfx
x -= dx # Aside: this is shorthand for "x = x - dx"
errorestimate = abs(dx);
if demomode

println("At iteration $iteration, x = $x with estimated error
↪$errorestimate and backward error $(abs(f(x)))")

end
if errorestimate <= errortolerance

if demomode
println("Done!")

end
return (x, errorestimate, iteration)

end
end
# Note: if we get to here (no "return" above), it completed maxIterations␣

↪iterations without satisfying the accuracy target,
# but we still return the information that we have.
return (x, errorestimate, maxiterations)

end;

9.3. Module NumericalMethods 347



Introduction to Numerical Methods and Analysis with Julia (draft)

The secant method

function secantmethod(f, a, b, errortolerance; maxiterations=20, demomode=false)
# Solve f(x)=0 in the interval [a, b] by the Secant Method.
if demomode

print("Solving by the Secant Method.")
end;
# Some more descriptive names
x_older = a
x_more_recent = b
f_x_older = f(x_older)
f_x_more_recent = f(x_more_recent)
for iteration in 1:maxiterations

global x_new, errorestimate
if demomode

println("\nIteration $(iteration):")
end;
x_new = (x_older * f_x_more_recent - f_x_older * x_more_recent)/(f_x_more_

↪recent - f_x_older)
f_x_new = f(x_new)
(x_older, x_more_recent) = (x_more_recent, x_new)
(f_x_older, f_x_more_recent) = (f_x_more_recent, f_x_new)
errorestimate = abs(x_older - x_more_recent)
if demomode

println("The latest pair of approximations are $x_older and $x_more_
↪recent,")

println("where the function's values are $f_x_older and $f_x_more_recent␣
↪respectively.")

println("The new approximation is $x_new with estimated error
↪$errorestimate and backward error $(abs(f_x_new))")

end;
if errorestimate < errortolerance

break
end;

end;
# Whether we got here due to accuracy of running out of iterations,
# return the information we have, including an error estimate:
return (x_new, errorestimate)

end;

9.3.2 Linear Algebra and Simultaneous Equations

Row Reduction

(with no pivoting)

function rowreduce(A, b)
# To avoid modifying the matrix and vector specified as input,
# they are copied to new arrays, with the function copy().
# Warning: it does not work to say "U = A" and "c = b";
# this makes these names synonyms, referring to the same stored data.

U = copy(A) # not "U=A", which makes U and A synonyms
c = copy(b)

(continues on next page)

348 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

n = length(b)
L = zeros(n, n)
for k in 1:n-1

for i in k+1:n
# compute all the L values for column k:
L[i,k] = U[i,k] / U[k,k] # Beware the case where U[k,k] is 0
for j in k+1:n

U[i,j] -= L[i,k] * U[k,j]
end
# Put in the zeros below the main diagonal in column k of U;
# this is not important for calculations, since those elements of U are␣

↪not used in backward substitution,
# but it helps for displaying results and for checking the results via␣

↪residuals.
U[i,k] = 0.

c[i] -= L[i,k] * c[k]
end

end
for i in 2:n

for j in 1:i-1
U[i,j] = 0.

end
end
return (U, c)

end;

Backward substitution

function backwardsubstitution(U, c; demomode=false)
n = length(c)
x = zeros(n)
x[end] = c[end]/U[end,end]
if demomode

println("x_$n = $(x[n])")
end
for i in n-1:-1:1

if demomode
println("i=$i")

end
x[i] = ( c[i] - sum(U[i,i+1:end] .* x[i+1:end]) ) / U[i,i]
if demomode

print("x_$i = $(x[i])")
end

end
return x

end;

9.3. Module NumericalMethods 349



Introduction to Numerical Methods and Analysis with Julia (draft)

Solve a linear system (no pivoting)

solvelinearsystem(A, b) = backwardsubstitution(rowreduce(A, b)...);

LU factorization

function lu_factorize(A; demomode=false)
# Compute the Doolittle LU factorization of A.
# Sums like $\sum_{s=1}^{k-1} l_{k,s} u_{s,j}$ are done as matrix products;
# in the above case, row matrix L[k, 1:k-1] by column matrix U[1:k-1,j] gives the␣

↪sum for a give j,
# and row matrix L[k, 1:k-1] by matrix U[1:k-1,k:n] gives the relevant row vector.
n = size(A)[1] # First component of the array's size; size(A) returns "(rows,␣

↪columns)"
# Initialize U as a zero matrix;
# correct below the main diagonal, with the other entries to be computed and␣

↪filled below.
U = zeros(n,n)
# Initialize L as a zero matrix;
# correct above the main diagonal, with the other entries to be computed and␣

↪filled in below.
L = zeros(n,n)
# Column and row 1 are special:
U[1,:] = A[1,:]
L[1,1] = 1.
L[2:end,1] = A[2:end,1]/U[1,1]
if demomode

println("After step k=1")
println("U="); printmatrix(U)
println("L="); printmatrix(L)

end;
for k in 2:n-1

# Julia note: it is necessary to use indices "[k]" and so on to get a one-row␣
↪matrix instead of a vector.

U[[k],k:end] = A[[k],k:end] - L[[k],1:k] * U[1:k,k:end]
L[k,k] = 1.
L[k+1:end,k] = ( A[k+1:end,k] - L[k+1:end,1:k] * U[1:k,k] )/U[k,k]
if demomode

println("After step k=$k")
println("U="); printmatrix(U)
println("L="); printmatrix(L)

end;
end;
# The last row is also special: nothing to do for L
L[end,end] = 1.
U[end,end] = A[end,end] - sum(L[[n],1:end-1] * U[1:end-1,end])
if demomode

println("After step k=$n")
println("U="); printmatrix(U)

end;
return [L, U]

end;

350 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

Forward substitution

(without pivoting)

function forwardsubstitution(L, b)
# Solve L c = b for c.
n = length(b)
c = zeros(n)
c[1] = b[1]
for i in 2:n

c[i] = b[i] - sum(L[i:i,1:i] * c[1:i])
end;
return c

end;

PLU factorization

function plu(A; demomode=false)
# Compute the Doolittle PA=LU factorization of A —
# but with the permutation recorded as permutation vector, not as the permutation␣

↪matrix P.
# Sums like $\sum_{s=1}^{k-1} l_{k,s} u_{s,j}$ are done as matrix products;
# in the above case, row matrix L[k, 1:k-1] by column matrix U[1:k-1,j] gives the␣

↪sum for a give j,
# and row matrix L[k, 1:k-1] by matrix U[1:k-1,k:n] gives the relevant row vector.

n = size(A)[1] # gives the number of rows in the 2D array.
π = zeros(Int, n)
# Julia can use Greek letters (and in fact, UNICODE):
# to insert character π, type \pi, hit tab, and select "π" from the menu.
# Or just call it "perm" or such.
π = collect(1:n)
# Julia language note: function "collect" converts the abstract entity "1:n" into␣

↪an array of numbers.

# Initialize U as the zero matrix;
# correct below the main diagonal, with the other entries to be computed below.
U = zeros(n,n)

# Initialize L as zeros;
# correct above the main diagonal, with the other entries to be computed below,
# including the ones on the diagonal.
L = zeros(n,n)

for k in 1:n-1
if demomode; println("k=$k"); end
# Find the pivot element in column k:
pivotrow = k
abs_u_ik_max = abs(A[π[k],k])
for row in k+1:n

abs_u_ik = abs(A[π[row],k])
if abs_u_ik > abs_u_ik_max

pivotrow = row
abs_u_ik_max = abs_u_ik

end

(continues on next page)

9.3. Module NumericalMethods 351



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

end
if pivotrow > k # swap rows, virtually

if demomode; println("Swap row $k with row $pivotrow"); end
(π[k], π[pivotrow]) = (π[pivotrow], π[k])

else
if demomode; println("No row swap needed."); end

end
U[k,k:end] = A[[π[k]],k:end] - L[[π[k]],1:k] * U[1:k,k:end]
L[π[k],k] = 1.
for row in k+1:n

L[π[row],k] = ( A[π[row],k] - L[π[row],1:k] ⋅ U[1:k,k] ) / U[k,k]
# Julia note: To enter the centered dot notation for the dot product,␣

↪type "\cdot" and then hit the tab key.
end
if demomode

println("permuted A is:")
for row in 1:n

println(A[π[row],:])
end
println("Intermediate L is"); printmatrix(L)
println("Intermediate U is"); printmatrix(U)

end
end
# The last row (index "end") is special: nothing to do for L except put in the 1␣

↪on the "permuted main diagonal"
L[π[end],end] = 1.
U[end,end] = A[π[end],end] - L[π[end],1:end-1] ⋅ U[1:end-1,end]
if demomode

println("After the final step, k=$(n-1)")
println("L is"); printmatrix(L)
println("U is"); printmatrix(U)

end
return (L, U, π)

end;

Forward substitution with pivoting

function forwardsubstitution(L, b, π)
# Version 2: with permutation of rows
# Solve L c = b for c, with permutation of the rows of L and of b.
n = length(b)
c = zeros(n)
c[1] = b[π[1]]
for i in 2:n

c[i] = b[π[i]] - L[π[i], 1:i] ⋅ c[1:i]
end
return c

end;

352 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

9.3.3 Collocation and Data Fitting

Polynomial collocation

function polyfit(x, y)
# Version 1: exact collocation.
# Compute the coeffients c_i of the polynomial of lowest degree that collocates␣

↪the points (x[i], y[i]).
# These are returned in an array c of the same length as x and y, even if the␣

↪degree is less than the normal length(x)-1,
# in which case the array has some trailing zeroes.
# The polynomial is thus p(x) = c[1] + c[2]x + ... c[d+1] x^d where d =length(x)-

↪1, the nominal degree.
n_nodes = length(x)
degree = n_nodes - 1
V = zeros(n_nodes,n_nodes)
for i in 0:degree

for j in 0:degree
V[i+1,j+1] = x[i+1]^j # Shift the array indices up by one, since Julia␣

↪counts from 1, not 0.
end

end
c = solvelinearsystem(V, y)
return c

end;

Least squares polynomial approximation

function polyfit(x, y, n)
# Version 2: least squares fitting.
# Compute the coeffients c_i of the polynomial of degree n that give the best␣

↪least squares fit to data (x[i], y[i]).
N = length(x)
m = zeros(2n+1)
for k in 0:2n

m[k+1] = sum(x.^k) # Here and below, shift the indices up by one, since␣
↪Julia counts from 1, not 0.

end
M = zeros(n+1,n+1)
for i in 0:n

for j in 0:n
M[i+1, j+1] = m[i+j+1]

end
end
p = zeros(n+1)
for k in 0:n

p[k+1] = sum(x.^k .* y)
end
c = solvelinearsystem(M, p)
return c

end;

9.3. Module NumericalMethods 353



Introduction to Numerical Methods and Analysis with Julia (draft)

Evaluate a polynomial

function polyval(x; coeffs) # coeffs has to be a keyword argument in order that only␣
↪x gets vectorized

# Evaluate the polynomial with coefficients in c (as given by polyfit, for␣
↪example).

# If x is an array, the usage becomes y = polyval.(c, x)
# for each element of array x.
y = coeffs[1]
for i in 2:length(coeffs)

y += coeffs[i]*x^(i-1)
end
return y

end;

9.3.4 Derivatives and Definite Integrals

9.3.5 Minimization

9.3.6 Differential Equations

Euler’s method

function eulermethod(f, a, b, u_0; n=100)
# Solve du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0
h = (b-a)/n
t = range(a, b, n+1) # Note: "n" counts steps, so there are n+1 values for t.
u = zeros(n+1)
u[1] = u_0
for i in 1:n

u[i+1] = u[i] + f(t[i], u[i])*h
end
return (t, u)

end;

function eulermethod_errorcontrol(f, a, b, u_0; errortolerance=1e-3, h_min=1e-6, h_
↪max=0.1, steps_max=1000, demomode=false)

steps = 0
t_i = a
U_i = u_0
t = [t_i]
U = [U_i]
h = h_max # Start optimistically!
while t_i < b && steps < steps_max

K_1 = h*f(t_i, U_i)
K_2 = h*f(t_i + h/2, U_i + K_1/2)
errorestimate = abs(K_1 - K_2)
s = 0.9 * sqrt(errortolerance/errorestimate)
if errorestimate <= errortolerance # Success!

t_i += h
U_i += K_1
append!(t, t_i)

(continues on next page)

354 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

append!(U, U_i)
# Adjust step size up, but not too big
h = min(s*h, h_max)

else # Innacurate; reduce step size and try again
h = max(s*h, h_min)
if demomode

println("t_i=$t_i: Decreasing step size to $(about(h)) and trying␣
↪again.")

end
end
# A refinement not mentioned above; the next step should not overshoot t=b:
if t_i + h > b

h = b - t_i
end
steps += 1

end
return (t, U)
# Note: if the step count ran out, this does not reach t=b, but at least it is␣

↪correct as far as it goes
end;

function eulermethod_system(f, a, b, u_0, n)
# TO DO: one could use multiple dispatch to keep the name "eulermethod".
# The conversion for the system version is mainly "U[i] -> U[i,:]"

h = (b-a)/n
t = range(a, b, n+1)

# The following three lines and the one in the for loop below change for the␣
↪system version

n_unknowns = length(u_0)
U = zeros(n+1, n_unknowns)
U[1,:] = u_0 # Only for system version

for i in 1:n
U[i+1,:] = U[i,:] + f(t[i], U[i,:])*h # For the system version

end
return (t, U)

end;

The explicit trapezoid method

function explicittrapezoid(f, a, b, u_0; n=100, demomode=false)
# Use the Explict Trapezoid Method (a.k.a Improved Euler) to solve
# du/dt = f(t, u)
# for t in [a, b], with initial value u(a) = u_0

h = (b-a)/n
t = range(a, b, n+1) # Note: "n" counts steps, so there are n+1 values for t.
u = zeros(n+1)
u[1] = u_0
for i in 1:n

K_1 = f(t[i], u[i])*h

(continues on next page)

9.3. Module NumericalMethods 355



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

K_2 = f(t[i]+h, u[i]+K_1)*h
u[i+1] = u[i] + (K_1 + K_2)/2.0

end;
return (t, u)

end;

function explicittrapezoid_system(f, a, b, u_0, n)
# Use the Explict Trapezoid Method (a.k.a Improved Euler) to solve the system
# du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0
# The conversion for the system version is mainly "u[i] -> u[i,:]"

h = (b-a)/n
t = range(a, b, n+1)
n_unknowns = length(u_0)
u = zeros(n+1, n_unknowns)
u[1,:] = u_0
for i in 1:n

K_1 = f(t[i], u[i,:])*h
K_2 = f(t[i]+h, u[i,:]+K_1)*h
u[i+1,:] = u[i,:] + (K_1 + K_2)/2.0

end
return (t, u)

end;

The explicit midpoint method

function explicitmidpoint(f, a, b, u_0; n=100, demomode=false)
# Use the Explicit Midpoint Method (a.k.a Modified Euler) to solve
# du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0

h = (b-a)/n
t = range(a, b, n+1) # Note: "n" counts steps, so there are n+1 values for t.
u = zeros(length(t))
u[1] = u_0
for i in 1:n

K_1 = f(t[i], u[i])*h
K_2 = f(t[i]+h/2, u[i]+K_1/2)*h
u[i+1] = u[i] + K_2

end;
return (t, u)
end;

function explicitmidpoint_system(f, a, b, u_0, n)
# Use the Explict Midpoint Method (a.k.a Modified Euler) to solve the system
# du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0
# The conversion for the system version is mainly "u[i] -> u[i,:]"

h = (b-a)/n
t = range(a, b, n+1)
n_unknowns = length(u_0)
u = zeros(n+1, n_unknowns)
u[1,:] = u_0

(continues on next page)

356 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

for i in 1:n
K_1 = f(t[i], u[i,:])*h
K_2 = f(t[i]+h/2, u[i,:]+K_1/2)*h
u[i+1,:] = u[i,:] + K_2

end
return (t, u)

end;

The Runge-Kutta method

function rungekutta(f, a, b, u_0; n=100, demomode=false)
# Use the (classical) Runge-Kutta Method to solve
# du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0
h = (b-a)/n
t = range(a, b, n+1) # Note: "n" counts steps, so there are n+1 values for t.
u = zeros(length(t))
u[1] = u_0
for i in 1:n

K_1 = f(t[i], u[i])*h
K_2 = f(t[i]+h/2, u[i]+K_1/2)*h
K_3 = f(t[i]+h/2, u[i]+K_2/2)*h
K_4 = f(t[i]+h, u[i]+K_3)*h
u[i+1] = u[i] + (K_1 + 2*K_2 + 2*K_3 + K_4)/6

end;
return (t, u)

end;

function rungekutta_system(f, a, b, u_0, n)
# Use the (classical) Runge-Kutta Method to solve
# du/dt = f(t, u) for t in [a, b], with initial value u(a) = u_0
# The conversion for the system version is mainly "u[i] -> u[i,:]"

h = (b-a)/n
t = range(a, b, n+1)
n_unknowns = length(u_0)
u = zeros(n+1, n_unknowns)
u[1,:] = u_0
for i in 1:n

K_1 = f(t[i], u[i,:])*h
K_2 = f(t[i]+h/2, u[i,:]+K_1/2)*h
K_3 = f(t[i]+h/2, u[i,:]+K_2/2)*h
K_4 = f(t[i]+h, u[i,:]+K_3)*h
u[i+1,:] = u[i,:] + (K_1 + 2*K_2 + 2*K_3 + K_4)/6

end
return (t, u)

end;

9.3. Module NumericalMethods 357



Introduction to Numerical Methods and Analysis with Julia (draft)

9.3.7 Some auxilliary functions

For examples, presentation of results, etc.

Helper function printmatrix

function printmatrix(A)
# A helper function to "pretty print" matrices
(rows, cols) = size(A)
print("[ ")
for row in 1:rows

if row > 1
print(" ")

end
for col in 1:cols

print(A[row,col], " ")
end
if row < rows;

println()
else

println("]")
end

end
end;

# A helper function for rounding some output to three significant digits
approx3(x) = round(x, sigdigits=3);

# A helper function for rounding some output to four significant digits
approx4(x) = round(x, sigdigits=4);

9.3.8 For some examples in Chapter Initial Value Problems for Ordinary Differential
Equations

f_mass_spring(t, u) = [ u[2], -(K/M)*u[1] - (D/M)*u[2] ];

function y_mass_spring(t; t_0, u_0, K, M, D)
(y_0, v_0) = u_0
discriminant = D^2 - 4K*M
if discriminant < 0 # underdamped

omega = sqrt(4K*M - D^2)/(2M)
A = y_0
B = (v_0 + y_0*D/(2M))/omega
return exp(-D/(2M)*(t-t_0)) * ( A*cos(omega*(t-t_0)) + B*sin(omega*(t-t_0)))

elseif discriminant > 0 # overdamped
Delta = sqrt(discriminant)
lambda_plus = (-D + Delta)/(2M)
lambda_minus = (-D - Delta)/(2M)
A = M*(v_0 - lambda_minus * y_0)/Delta
B = y_0 - A

(continues on next page)

358 Chapter 9. Appendices



Introduction to Numerical Methods and Analysis with Julia (draft)

(continued from previous page)

return A*exp(lambda_plus*(t-t_0)) + B*exp(lambda_minus*(t-t_0))
else

lambda = -D/(2M)
A = y_0
B = v_0 - A * lambda
return (A + B*t)*exp(lambda*(t-t_0))

end
end;

function damping(K, M, D)
if D == 0

println("Undamped")
else

discriminant = D^2 - 4K*M
if discriminant < 0

println("Underdamped")
elseif discriminant > 0

println("Overdamped")
else

println("Critically damped")
end

end
end;

end;

9.3. Module NumericalMethods 359



Introduction to Numerical Methods and Analysis with Julia (draft)

360 Chapter 9. Appendices



BIBLIOGRAPHY

[BFB16] Richard L. Burden, J. Douglas Faires, and Annette M. Burden. Numerical Analysis. Cengage, 10th edition,
2016.

[CK12] Ward Chenney and David Kincaid. Numerical Mathematics and Computing. Cengage, 7 edition, 2012.
[KC90] David Kincaid and Ward Chenney. Numerical Analysis. Brooks/Cole, 1990.
[Sau19] Timothy Sauer. Numerical Analysis. Pearson, 3rd edition, 2019.

361



Introduction to Numerical Methods and Analysis with Julia (draft)

362 Bibliography



PROOF INDEX

a-contraction-mapping-theorem
a-contraction-mapping-theorem (docs/fixed-

point-iteration), 18

a-derivative-based-fixed-point-
theorem
a-derivative-based-fixed-point-theorem

(docs/fixed-point-iteration), 19

absolute-backward-error
absolute-backward-error (docs/error-measures-

convergence-rates), 46

absolute-error
absolute-error (docs/error-measures-convergence-

rates), 45

algorithm-Doolittle-factorization
algorithm-Doolittle-factorization

(docs/linear-equations-3-lu-factorization),
96

algorithm-plu-1
algorithm-plu-1 (docs/linear-equations-4-plu-

factorization), 105

algorithm-plu-2
algorithm-plu-2 (docs/linear-equations-4-plu-

factorization), 107

algorithm-plu-fragment
algorithm-plu-fragment (docs/linear-equations-

4-plu-factorization), 105

backward-error
backward-error (docs/newtons-method), ??

backward-error-redux
backward-error-redux (docs/error-measures-

convergence-rates), 46

backward-substitution
backward-substitution (docs/linear-equations-1-

row-reduction), 72

backward-substitution-redux
backward-substitution-redux (docs/linear-

equations-7-tridiagonal-banded-and-SDD-
matrices), 127

bisection-for
bisection-for (docs/root-finding-by-interval-

halving), 12

bisection-step
bisection-step (docs/root-finding-by-interval-

halving), 11

bisection-while
bisection-while (docs/root-finding-by-interval-

halving), 13

bisection-x-cosx
bisection-x-cosx (docs/root-finding-by-interval-

halving), 5

check-with-taylor`
check-with-taylor` (docs/derivatives-and-the-

method-of-undetermined-coefficents), 179

choose-=step-size-2
choose-=step-size-2 (docs/ODE-IVP-5-error-

control), 264

choose-step-size-1
choose-step-size-1 (docs/ODE-IVP-5-error-

control), 263

collocation-error-formula
collocation-error-formula (docs/polynomial-

collocation-error-formulas), 146

363



Introduction to Numerical Methods and Analysis with Julia (draft)

collocation-error-formula-equally-
spaced-nodes
collocation-error-formula-equally-

spaced-nodes (docs/polynomial-collocation-
error-formulas), 146

comparison-to-taylor-error-formula
comparison-to-taylor-error-formula

(docs/polynomial-collocation-error-formulas),
146

convergence-of-order-p
convergence-of-order-p (docs/error-measures-

convergence-rates), 47

definition-absolute-error
definition-absolute-error (docs/fixed-point-

iteration), 20

definition-columnwise-strictly-
diagonally-dominant
definition-columnwise-strictly-

diagonally-dominant (docs/linear-
equations-1-row-reduction), 80

definition-contraction-mapping
definition-contraction-mapping (docs/fixed-

point-iteration), 18

definition-error
definition-error (docs/fixed-point-iteration), 20

definition-mapping
definition-mapping (docs/fixed-point-iteration), 17

definition-psychologically-triangular
definition-psychologically-triangular

(docs/linear-equations-4-plu-factorization), 110

definition-strictly-diagonally-
dominant
definition-strictly-diagonally-

dominant (docs/linear-equations-1-row-
reduction), 80

definition-tridiagonal
definition-tridiagonal (docs/linear-equations-

7-tridiagonal-banded-and-SDD-matrices), 126

definition-vector-valued-contraction-
mapping
definition-vector-valued-contraction-

mapping (docs/linear-equations-6-iterative-
methods), 122

dolittle-general
dolittle-general (docs/linear-equations-7-

tridiagonal-banded-and-SDD-matrices), 127

error-bound-chebychev-collocation
error-bound-chebychev-collocation

(docs/polynomial-collocation-chebychev), 154

error-bounds-clamped-splines
error-bounds-clamped-splines

(docs/piecewise-polynomial-approximation-
and-splines), 158

error-bounds-hermite-cubics
error-bounds-hermite-cubics (docs/piecewise-

polynomial-approximation-and-splines), 159

error-left-endpoint-rule
error-left-endpoint-rule (docs/integrals-1-

building-blocks), 190

error-redux
error-redux (docs/error-measures-convergence-rates),

45

errors-when-approximating-
derivatives
errors-when-approximating-derivatives

(docs/machine-numbers-rounding-error-and-
error-propagation), 88

euler-variable-h
euler-variable-h (docs/ODE-IVP-5-error-control),

261

example-0
example-0 (docs/ODE-IVP-8-implicit-methods-Adams-

Moulton), 306

example-1-x-4cosx
example-1-x-4cosx (docs/fixed-point-iteration), 17

example-2
example-2 (docs/newtons-method), ??

364 Proof Index



Introduction to Numerical Methods and Analysis with Julia (draft)

example-2-x-cosx
example-2-x-cosx (docs/fixed-point-iteration), 19

example-3
example-3 (docs/newtons-method), ??

example-3-x-cosx-fpi
example-3-x-cosx-fpi (docs/fixed-point-iteration),

21

example-4
example-4 (docs/fixed-point-iteration), 23

example-almost-division-by-zero
example-almost-division-by-zero

(docs/linear-equations-1-row-reduction), 77

example-avoiding-small-
denominators
example-avoiding-small-denominators

(docs/linear-equations-1-row-reduction), 79

example-basic-forward-difference
example-basic-forward-difference

(docs/derivatives-and-the-method-of-
undetermined-coefficents), 176

example-hilbert-matrices
example-hilbert-matrices (docs/linear-

equations-5-error-bounds-condition-numbers),
114

example-integration
example-integration (docs/ODE-IVP-1-basics-

and-Euler), ??

example-less-obvious-division-by-
zero
example-less-obvious-division-by-zero

(docs/linear-equations-1-row-reduction), 76

example-newton-x-cosx
example-newton-x-cosx (docs/newtons-method),

??

example-nonlinear-ode
example-nonlinear-ode (docs/ODE-IVP-1-basics-

and-Euler), ??

example-obvious-division-by-zero
example-obvious-division-by-zero

(docs/linear-equations-1-row-reduction), 76

example-simplest-real-ode
example-simplest-real-ode (docs/ODE-IVP-1-

basics-and-Euler), ??

example-simplest-real-ode-solved
example-simplest-real-ode-solved

(docs/ODE-IVP-2-Runge-Kutta), 223

example-stiff-ode
example-stiff-ode (docs/ODE-IVP-1-basics-and-

Euler), ??

example-stiff-ode-solved
example-stiff-ode-solved (docs/ODE-IVP-2-

Runge-Kutta), 224

example-three-point-centered-
difference
example-three-point-centered-

difference (docs/derivatives-and-the-
method-of-undetermined-coefficents), 177

example-three-point-one-sided-
difference
example-three-point-one-sided-

difference (docs/derivatives-and-the-
method-of-undetermined-coefficents), 176

example-three-point-one-sided-
difference-method-2
example-three-point-one-sided-

difference-method-2 (docs/derivatives-
and-the-method-of-undetermined-coefficents),
178

explicit-midpoint
explicit-midpoint (docs/ODE-IVP-2-Runge-Kutta),

226

explicit-trapezoid
explicit-trapezoid (docs/ODE-IVP-2-Runge-

Kutta), 222

forward-substitution
forward-substitution (docs/linear-equations-7-

tridiagonal-banded-and-SDD-matrices), 126

gaussian-elimination
gaussian-elimination (docs/linear-equations-1-

row-reduction), 67

Proof Index 365



Introduction to Numerical Methods and Analysis with Julia (draft)

gaussian-elimination-inserting-zeros
gaussian-elimination-inserting-zeros

(docs/linear-equations-1-row-reduction), 66

generalized-mean-value-theorem
generalized-mean-value-theorem

(docs/integrals-2-composite-rules), 193

geometrical-derivation-of-least-
squares
geometrical-derivation-of-least-

squares (docs/least-squares-fitting), 163

inf-nan
inf-nan (docs/linear-equations-1-row-reduction), 76

integral-mean-value-theorem
integral-mean-value-theorem (docs/integrals-

1-building-blocks), 188

interpolation-example-1
interpolation-example-1 (docs/polynomial-

collocation+approximation), 138

interpolation-example-2
interpolation-example-2 (docs/polynomial-

collocation+approximation), 142

interpolation-example-3
interpolation-example-3 (docs/polynomial-

collocation+approximation), 143

inverse-power-method
inverse-power-method (docs/eigenproblems), 133

julia-Random-rand
julia-Random-rand (docs/linear-equations-1-row-

reduction), 74

julia-array-slicing
julia-array-slicing (docs/linear-equations-1-

row-reduction), 70

julia-array-slicing-2
julia-array-slicing-2 (docs/linear-equations-1-

row-reduction), 70

julia-collect
julia-collect (docs/linear-equations-5-error-

bounds-condition-numbers), 118

julia-dot
julia-dot (docs/eigenproblems), 130

julia-eigenvec
julia-eigenvec (docs/eigenproblems), 132

julia-function-short-form
julia-function-short-form (docs/root-finding-

by-interval-halving), 6

julia-iteration-conditionals
julia-iteration-conditionals (docs/root-

finding-by-interval-halving), 12

julia-modules
julia-modules (docs/linear-equations-1-row-

reduction), 69

julia-norm-opnorm
julia-norm-opnorm (docs/linear-equations-5-error-

bounds-condition-numbers), 113

julia-println
julia-println (docs/root-finding-by-interval-

halving), 7

julia-range
julia-range (docs/root-finding-by-interval-halving), 6

julia-remark-keyword-parameters
julia-remark-keyword-parameters

(docs/newtons-method), ??

julia-splat
julia-splat (docs/linear-equations-1-row-reduction),

74

julia-summing
julia-summing (docs/linear-equations-1-row-

reduction), 72

julia-vectorization
julia-vectorization (docs/polynomial-

collocation+approximation), 139

linear-convergence
linear-convergence (docs/error-measures-

convergence-rates), 47

lu-banded
lu-banded (docs/linear-equations-7-tridiagonal-

banded-and-SDD-matrices), 128

366 Proof Index



Introduction to Numerical Methods and Analysis with Julia (draft)

lu-banded-symmetric
lu-banded-symmetric (docs/linear-equations-7-

tridiagonal-banded-and-SDD-matrices), 128

lu-factorization
lu-factorization (docs/linear-equations-7-

tridiagonal-banded-and-SDD-matrices), 126

midpoint-rule-error
midpoint-rule-error (docs/integrals-1-building-

blocks), 187

module-numerical-methods
module-numerical-methods (docs/newtons-

method), ??

multiplication-by-juxtaposition-in-
julia
multiplication-by-juxtaposition-

in-julia (docs/polynomial-
collocation+approximation), 139

multistep-method-redux
multistep-method-redux (docs/ODE-IVP-7-multi-

step-methods-Adams-Bashforth), 283

naive-gaussian-elimination
naive-gaussian-elimination (docs/linear-

equations-1-row-reduction), 66

no-scaled-partial-pivoting
no-scaled-partial-pivoting (docs/linear-

equations-2-pivoting), 90

observation-1
observation-1 (docs/root-finding-without-

derivatives), 62

ode-ivp-7-2
ode-ivp-7-2 (docs/ODE-IVP-8-implicit-methods-

Adams-Moulton), 314

odeivp-onestep-order-of-global-error
odeivp-onestep-order-of-global-error

(docs/ODE-IVP-3-error-results-one-step-
methods), 236

polyfit-and-multiple-dispatch
polyfit-and-multiple-dispatch (docs/least-

squares-fitting), 161

power-method
power-method (docs/eigenproblems), 131

proposition-1
proposition-1 (docs/newtons-method-convergence-

rate), ??

proposition-1-fpi-iterates-converge-
to-fp
proposition-1-fpi-iterates-converge-

to-fp (docs/fixed-point-iteration), 16

proposition-2
proposition-2 (docs/newtons-method-convergence-

rate), ??

proposition-2-ivp-fpi-version
proposition-2-ivp-fpi-version (docs/fixed-

point-iteration), 17

proposition-3
proposition-3 (docs/fixed-point-iteration), 20

relative-error
relative-error (docs/error-measures-convergence-

rates), 45

remark-1
remark-1 (docs/integrals-2-composite-rules), 195

remark-1-not-quite-zero-values-and-
rounding
remark-1-not-quite-zero-values-and-

rounding (docs/linear-equations-1-row-
reduction), 66

remark-12
remark-12 (docs/fixed-point-iteration), 20

remark-2-lu-is-functionally-correct
remark-2-lu-is-functionally-correct

(docs/linear-equations-1-row-reduction), 73

remark-3
remark-3 (docs/polynomial-collocation-error-formulas),

153

remark-5
remark-5 (docs/error-measures-convergence-rates), 46

Proof Index 367



Introduction to Numerical Methods and Analysis with Julia (draft)

remark-LU-with-P
remark-LU-with-P (docs/linear-equations-4-plu-

factorization), 107

remark-dolittle
remark-dolittle (docs/linear-equations-3-lu-

factorization), 97

remark-importing-
backwardsubstitution
remark-importing-backwardsubstitution

(docs/linear-equations-1-row-reduction), 73

remark-julia-arrays
remark-julia-arrays (docs/linear-equations-1-

row-reduction), 65

remark-julia-style
remark-julia-style (docs/newtons-method), ??

remark-multiple-dispatch-polyfit
remark-multiple-dispatch-polyfit

(docs/least-squares-fitting), 165

remark-other-matrix-norms
remark-other-matrix-norms (docs/linear-

equations-5-error-bounds-condition-numbers),
113

remark-positive-definite-also-works
remark-positive-definite-also-works

(docs/linear-equations-3-lu-factorization), 103

remark-positive-definite-matrices-
also-work
remark-positive-definite-matrices-

also-work (docs/linear-equations-1-row-
reduction), 80

remark-vector-derivative notation
remark-vector-derivative notation

(docs/newtons-method-for-systems-intro), ??

richardson-forward-differences
richardson-forward-differences

(docs/richardson-extrapolation), 182

richardson0n-to-kn
richardson0n-to-kn (docs/richardson-

extrapolation), 183

rkf
rkf (docs/ODE-IVP-5-error-control), 271

robust
robust (docs/machine-numbers-rounding-error-and-

error-propagation), 81

romberg-integration
romberg-integration (docs/integrals-4-romberg-

integration), 200

runge-kutta
runge-kutta (docs/ODE-IVP-2-Runge-Kutta), 229

secant-method
secant-method (docs/root-finding-without-

derivatives), 56

separatrices
separatrices (docs/ODE-IVP-4-system-higher-order-

equations), 240

stiffness
stiffness (docs/ODE-IVP-4-system-higher-order-

equations), 239

super-linear
super-linear (docs/error-measures-convergence-

rates), 47

swapping-values-in-julia
swapping-values-in-julia (docs/linear-

equations-2-pivoting), 91

taylors-theorem-a
taylors-theorem-a (docs/taylors-theorem), ??

taylors-theorem-h
taylors-theorem-h (docs/taylors-theorem), ??

theorem-1
theorem-1 (docs/derivatives-and-the-method-of-

undetermined-coefficents), 178

theorem-Crout-SDD
theorem-Crout-SDD (docs/linear-equations-3-lu-

factorization), 103

theorem-LU-SDD
theorem-LU-SDD (docs/linear-equations-3-lu-

factorization), 102

368 Proof Index



Introduction to Numerical Methods and Analysis with Julia (draft)

theorem-collocation
theorem-collocation (docs/polynomial-

collocation+approximation), 137

theorem-gaus-seidel-convergence
theorem-gaus-seidel-convergence

(docs/linear-equations-6-iterative-methods),
125

theorem-jacobi-convergence
theorem-jacobi-convergence (docs/linear-

equations-6-iterative-methods), 124

theorem-loss-of-precision
theorem-loss-of-precision (docs/machine-

numbers-rounding-error-and-error-
propagation), 88

theorem-matrix-iteration-
convergence
theorem-matrix-iteration-convergence

(docs/linear-equations-6-iterative-methods), 122

theorem-no-pivoting-columnwise-
sdd
theorem-no-pivoting-columnwise-sdd

(docs/linear-equations-2-pivoting), 94

theorem-row-reduction-preserves-
sdd
theorem-row-reduction-preserves-sdd

(docs/linear-equations-1-row-reduction), 80

to-do-Installing
to-do-Installing (docs/installing-julia-and-

packages), 319

trapezoid-rule-error
trapezoid-rule-error (docs/integrals-1-building-

blocks), 187

trapezoid-step-size
trapezoid-step-size (docs/ODE-IVP-5-error-

control), 270

triangular-matrix
triangular-matrix (docs/linear-equations-3-lu-

factorization), 94

uniformly-contracting
uniformly-contracting (docs/fixed-point-

iteration), 18

vector-valued-contraction-mapping-
theorem
vector-valued-contraction-mapping-

theorem (docs/linear-equations-6-iterative-
methods), 122

vectorization-broadcasting-in-julia
vectorization-broadcasting-in-julia

(docs/polynomial-collocation+approximation),
140

well-posed
well-posed (docs/machine-numbers-rounding-error-

and-error-propagation), 81

zip-in-julia
zip-in-julia (docs/polynomial-

collocation+approximation), 140

Proof Index 369


	Introduction
	Topics
	Julia: a New Alternative to Matlab and Python

	Root-finding
	Root Finding by Interval Halving (Bisection)
	Introduction
	A first algorithm for the bisection method
	Pseudo-code for describing algorithms

	Error bounds, and a more refined algorithm
	Error tolerances and stopping conditions
	Exercises
	Exercise A
	Exercise B


	Solving Equations by Fixed Point Iteration (of Contraction Mappings)
	Introduction
	Fixed-point equations
	An easy way of checking whether a differentiable function is a contraction
	The contraction constant C as a measure of how fast the approximations improve (the smaller the better)

	Exercises
	Exercise A


	Newton’s Method for Solving Equations
	Introduction
	Derivation as a contraction mapping with “very small contraction coefficient C”
	Graphing Newton’s method iterations as a fixed point iteration

	Newton’s method works with complex numbers too
	Newton’s method derived via tangent line approximations: linearization
	Step 1: Linearize at x0.
	Step 2: Find the zero of this linearization
	Step 3: Iterate

	How accurate and fast is this?
	Exercises
	Exercise A
	Exercise B


	Taylor’s Theorem and the Accuracy of Linearization
	Taylor’s theorem
	Error formula for linearization

	Measures of Error and Order of Convergence
	Error measures
	Backward error (and forward error)

	Order of convergence of a sequence of approximations
	Big-O and little-o notation
	Little-o notation, for “negligibly small terms”


	The Convergence Rate of Newton’s Method
	A Practical error estimate for fast-converging iterative methods
	When is a fixed point iteration “fast enough” for this heuristic?


	Root-finding without Derivatives
	Introduction
	Using Linear Approximation Without Derivatives
	First Attempt: The Method of False Position
	Refinement: Alway Use the Two Most Recent Approximations — The Secant Method
	Pseduo-code for a Secant Method Algorithm
	Julia Code for this Secant Method Algorithm



	Linear Algebra and Simultaneous Equations
	Row Reduction/Gaussian Elimination
	Introduction
	Strategy for getting from mathematical facts to a good algorithm and then to its implentation in [Julia] code
	Step 1. Get a basic algorithm:
	Step 2. Refine to get a more robust algorithm:
	Step 3. Refine to get a more efficient algorithm

	Gaussian elimination, a.k.a. row reduction
	Determining those choices, to produce a first algorithm: “naive gaussian elimination”

	The general case of solving Ax = b
	The naive Gaussian elimination algorithm, in pseudo-code
	The naive Gaussian elimination algorithm, in Julia
	Backward substitution with an upper triangular matrix
	The backward substitution algorithm in Julia

	Two code testing hacks: starting from a known solution, and using randomly generated examples
	What can go wrong? Some examples
	When naive Guassian elimination is safe: diagonal dominance

	Machine Numbers, Rounding Error and Error Propagation
	Overview
	Robustness and well-posedness
	Rounding error and accuracy problems due to “loss of significance”
	2. Refine to get a more robust algorithm

	The essentials of machine numbers and rounding in machine arithmetic
	Binary floating point machine numbers
	Worst case rounding error
	Rounding error in the mantissa, (1. b1 b2 …bp-1)2
	Rounding error in general, for  ±(1. b1 b2 …bp-1)2 ·2e.

	IEEE 64-bit numbers: more details and some experiments

	Propagation of error in arithmetic
	Notation: xa = x(1 + δx) for errors and fl(x) for rounding
	Propagation of error in products
	Exercise 1
	Propagation or error in sums (of positive numbers)
	Propagation or error in differences (of positive numbers): loss of significance/loss of precision
	Exercise 2
	Upper and lower bounds on the relative error in subtraction
	Exercise 3
	Conclusions from this example


	Partial Pivoting
	Introduction
	What can go wrong with naive Gaussian elimination?
	The basic fix: partial pivoting
	Handling rounding error: maximal element partial pivoting
	Exercise 1
	Some demonstrations

	When is it safe to do without pivoting?

	Solving Ax = b with LU factorization
	Avoiding repeated calculation, excessive rounding and messy notation: LU factorization
	The direct method for the Doolittle LU factorization
	A test case on LU factorization
	Forward substitution: solving Lc = b for c
	Exercise 1
	A test case on forward substitution
	Completing the test case, with backward substitution
	Exercise 2

	When does LU factorization work?
	Crout decomposition

	Solving Ax = b With Both Pivoting and LU Factorization
	Introduction
	Row swapping is all you need
	Example: what happens at stage 5 (k=5)?
	The general pattern
	Pseudo-code for LU factorization with row swapping (first version)
	But what about the right-hand side, b?
	Pseudo-code for LU factorization with a permutation vector
	Forward and backward substitution with a permutation vector


	Error bounds for linear algebra, condition numbers, matrix norms, etc.
	Residuals, backward errors, forward errors, and condition numbers
	Matrix norms induced by vector norms
	Properties of (induced) matrix norms
	Relative error bound and condition number
	Aside: estimating  A-1 ∞ and thence the condition number

	Well-conditioned and ill-conditioned problems and matrices

	Iterative Methods for Simultaneous Linear Equations
	Introduction
	The Jacobi method
	Exercise 1: Implement and test the Jacobi method

	The underlying strategy
	What does this say about the Jacobi method?

	The Gauss-Seidel method
	Exercise 2: Implement and test the Gauss-Seidel method, and compare to Jacobi

	A family of test cases, arising from boundary value problems for differential equations

	Faster Methods for Solving Ax = b for Tridiagonal and Banded matrices, and Strict Diagonal Dominance
	Tridiagonal systems
	Algorithms
	Generalizing to banded matrices
	Eliminating redundant calculation in the above

	Strict diagonal dominance helps again

	Computing Eigenvalues and Eigenvectors: the Power Method, and a bit beyond
	The Power Method
	Exercise 1
	Refinement: deciding the iteration count
	Exercise 2

	The Inverse Power Method
	Exercise 3

	Getting other eigenvalues with the Shifted Inverse Power Method
	Exercise 4

	Further topics: getting all the eigenvalues with the QR Method, etc.

	Solving Nonlinear Systems of Equations by generalizations of Newton’s Method — a brief introduction
	Background
	Newton’s method iteration formula for systems
	Justification: linearization for function of several variables



	Polynomial Collocation and Approximation
	Polynomial Collocation (Interpolation/Extrapolation) and Approximation
	Introduction
	Functions for computing the coefficients and evaluating the polynomials

	Error Formulas for Polynomial Collocation
	Introduction
	Error in Pn(x) collocating a polynomial of degree n+1
	Error in Pn(x) when collocating with a sufficiently differentiable function
	Error bound with equally spaced nodes is O(hn+1), but …
	Possible failure of convergence
	Two solutions: piecewise interpolation and least squares approximation
	Preview: definite integrals (en route to solving differential equations)


	Choosing the collocation points: the Chebyshev method
	Piecewise Polynomial Approximating Functions: Splines and Hermite Cubics
	Spline Interpolation
	Clamped Splines and Error Bounds
	Error Bounds for Approximation with Clamped Splines
	Hermite Cubic Approximation

	Least-Squares Fitting to Data
	Measuring “goodness of fit”: several options
	What doesn’t work
	Linear least squares
	Least squares fiting to higher degree polynomials
	Nonlinear fitting: power-law relationships
	A simulation

	Least-squares Fitting to Data: Appendix on The Geometrical Approach
	Introduction
	Linear least squares: minimizing RMS error using calculus
	Linear least squares: minimizing RMS error by minimizing “Euclidean” distance with geometry


	Derivatives and Definite Integrals
	Approximating Derivatives by the Method of Undetermined Coefficients
	Method 1: use Taylor polynomials in h of degree p+k-1
	Degree of Precision and testing with monomials
	Method 2: use monomials of degree up to p+k-1
	Exercises
	Exercise 1
	Exercise 2: like Exercise 1, but using Method 2


	Richardson Extrapolation
	Motivation
	Procedure
	Rewriting to get an error estimate
	Exercise 1(a)
	Exercise 1(b)
	Exercise 2

	A variant, more useful for integration and ODE boundary value problems: parameter n
	A common verbal description for both forms
	Rewriting to get an error estimate, again

	Repeated Richardson extrapolation

	Definite Integrals, Part 1: The Building Blocks
	Introduction
	Approximating with a single linear function: the Trapezoid Rule
	Approximating with a constant: the Midpoint Rule
	Error Formulas
	Proofs of these error results

	Appendix: Approximating a Definite Integral With the Left-hand Endpoint Rule

	Definite Integrals, Part 2: The Composite Trapezoid and Midpoint Rules
	Introduction
	The Composite Midpoint Rule
	The Composite Trapezoid Rule
	Accuracy and Error Formulas

	Cancelling Some Error Terms: The Composite Simpson’s Rule
	The Missing Step: A Generalized Mean Value Theorem
	Completing the derivation of the error formulas for these composite rules
	Another error formula, useful for Richardson Extrapolation

	Appendix: The Composite Left-hand Endpoint Rule, and its Error

	Definite Integrals, Part 3: The (Composite) Simpson’s Rule and Richardson Extrapolation
	Introduction
	The Basic Simpson’s Rule by Richardson Extrapolation
	Accuracy and Order of Precision of Simpson’s Rule
	Appendix: Deriving Simpson’s Rule by the Method of Undetermined Coefficients

	Definite Integrals, Part 4: Romberg Integration
	Introduction
	An algorithm, in pseudocode


	Minimization
	Finding the Minimum of a Function of One Variable Without Using Derivatives – under construction
	Introduction
	Step 1: finding a smaller interval within [a, b] that contains the minimum
	Step 2: choosing the internal points so that the method is guaranteed to converge
	Step 3: choosing the internal points so that the method converges as fast as possible

	Finding the Minimum of a Function of Several Variables — Coming Soon
	Introduction


	Initial Value Problems for Ordinary Differential Equations
	Basic Concepts and Euler’s Method
	The Basic ODE Initial Value Problem
	Notation for the solution of an initial value problem

	Examples
	The Tangent Line Method, a.k.a. Euler’s Method
	Exercise A
	Solving for Example 7.1, an integration
	Solving for Example 7.2, some exponential functions
	Solving for Example 7.3: solutions that blow up
	Solving for Solving for Example 7.4, a stiff ODE
	Variable Time Step Sizes hi (just a preview)
	Error Analysis for the Canonical Test Case, u' = k u.
	Global Error and Local (Truncation) Error
	Error propagation in u' = k u, k ≥0.
	Bounding the local truncation errors …
	… and using this to complete the bound on the global truncation error
	A more general error bound
	There is much room for improvement
	Error propagation for Example 7.1
	Error propagation for Example 7.2


	Runge-Kutta Methods
	Introduction
	Euler’s Method as a Runge-Kutta method
	Second order Runge-Kutta methods
	The Explicit Trapezoid Method (a.k.a. the Improved Euler method or Huen’s method)
	Examples
	The Explicit Midpoint Method (a.k.a. Modified Euler)
	Examples

	The “Classical”, Fourth Order Accurate, Runge-Kutta Method
	Examples

	For comparison: the above examples done with Euler’s Method
	Exercises
	Exercise 1
	Exercise 2 (a lot like the previous)
	Exercise 3
	Exercise 4


	A Global Error Bound for One Step Methods
	Order of accuracy for the basic Runge-Kutta type methods

	Systems of ODEs and Higher Order ODEs
	Converting a second order ODE to a first order system
	Test Cases
	Test Case A: Motion of a (Damped) Mass-Spring System in One Dimension
	Exact solutions

	Test Case B: A “Fast-Slow” Equation
	Test Case C: The Freely Rotating Pendulum

	Solving the Mass-Spring System
	First solve without damping, so the solutions have sinusoidal solutions
	Next solve with damping

	The “Classical” Runge-Kutta Method, Extended to Systems of Equations
	Solving the Freely Rotating Pendulum Equations
	Appendix: the Explicit Trapezoid and Midpoint Methods for systems

	Error Control and Variable Step Sizes
	The Basic ODE Initial Value Problem
	Error Control by Varying the Time Step Size hi
	A crude error estimate for Euler’s Method: Richardson Extrapolation
	Step size choice
	Exercise A
	Error tolerance
	A crude approach to reducing the step size when needed
	Increasing the step size when desirable

	Another strategy for getting error estimates: two (related) Runge-Kutta methods
	Exercise B
	Partial Solution to Exercise B


	The explicit trapezoid method with error control
	Step size adjustment
	Exercise C

	Fourth order accurate methods with error control: Runge-Kutta-Felberg and some newer refinements
	ODE solvers in Julia package DifferentialEquations
	Example using package DifferentialEquations — to be added


	An Introduction to Multistep Methods
	Introduction
	The Leapfrog method
	Second order accuracy of the leapfrog method
	The speed advantage of multi-step methods like the leapfrog method
	Demo with the mass-spring system
	But with damping, things eventually go wrong!


	Adams-Bashforth Multistep Methods
	Introduction
	Demonstrations with the mass-spring system
	This time with damping, nothings goes wrong!

	Higher order Adams-Bashforth methods
	Exercises
	Exercise 1
	Exercise 2


	Implicit Methods: Adams-Moulton
	Introduction
	Compare to the explicit trapezoid method

	Exercises


	Bibliography
	Appendices
	Installing Julia and some useful add-ons
	Installing Julia
	Installing Anaconda (for Jupyterlab)
	Enabling Julia in JupyterLab
	Adding some useful Julia packages
	Package “IJulia”, which enables Julia in JupyterLab
	Use an interface to the Python package Matplotlib.pyplot
	Allow LaTeX notation in creating strings, using prefix “L”.
	Add some random number stuff


	Notes on the Julia Language
	Characters and strings
	String concatenation and duplication

	Displaying values: println, print and just saying the name
	Displaying the values of variables and expressions
	Boolean values (true-false)
	Comparisons
	Numbers
	Complex numbers

	Arithemetic operators
	Arrays
	Array indexing and slicing
	Function range

	Tuples
	Arithmetic operations on arrays: vectorization and broadcasting
	Condititional statements
	Iteration with for, while, break and continue
	Using modules and packages, and some graph plotting
	Functions, part I
	One liners
	Functions defined by a block of code
	The keyword return

	Vectorization of Functions
	Plotting graphs: a bit more about PyPlot
	L-Strings for inserting LaTeX mathematical markup


	Module NumericalMethods
	Root-finding
	Newton’s method
	The secant method

	Linear Algebra and Simultaneous Equations
	Row Reduction
	Backward substitution
	Solve a linear system (no pivoting)
	LU factorization
	Forward substitution
	PLU factorization
	Forward substitution with pivoting

	Collocation and Data Fitting
	Polynomial collocation
	Least squares polynomial approximation
	Evaluate a polynomial

	Derivatives and Definite Integrals
	Minimization
	Differential Equations
	Euler’s method
	The explicit trapezoid method
	The explicit midpoint method
	The Runge-Kutta method

	Some auxilliary functions
	Helper function printmatrix

	For some examples in Chapter Initial Value Problems for Ordinary Differential Equations


	Bibliography
	Proof Index

